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Lecture 15
Foundations of Cryptography



Zero Knowledge Proofs

An Interactive Protocol (P,V) is a 
perfect/statistical/computational zero-knowledge proof 
system for a language 𝐿	if it is 
a. Complete
b. Sound and
c. Zero knowledge: for every PPT 𝑽∗, there exists a 

(expected) poly time simulator S s.t. for every 𝑥 ∈ 𝐿, 
the following two distributions are 
identical/statistically close/computationally close:

1. 𝑣𝑖𝑒𝑤!∗(𝑃, 𝑉∗) 2. 𝑆(𝑥, 1#)



Prover
Verifier

𝐾 = 𝜌(𝐺) 
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ZK Proof for Graph Isomorphism

Graph G Graph H

𝐇 = 𝝅(𝑮) where 𝜌 is a random permutation

random challenge bit 𝑏

𝑏 = 0: send 𝜋" s.t. K = 𝜋"(𝐺) 

𝑏 = 1: send 𝜋# s.t. H = 𝜋#(𝐾) 



Prover
Verifier

𝐾 = 𝜌(𝐺) 

ZK Proof for Graph Isomorphism

𝐇 = 𝝅(𝑮) where 𝜌 is a random permutation

random challenge bit 𝑏

𝑏 = 0: send 𝜋" = 𝜌

𝑏 = 1: send 𝜋# = 𝜋 ∘ 𝜌$#

Completeness? 



Prover
Verifier

𝐾 = 𝜌(𝐺) 

ZK Proof for Graph Isomorphism

𝐇 = 𝝅(𝑮) where 𝜌 is a random permutation

random challenge bit 𝑏

𝑏 = 0: send 𝜋" = 𝜌

𝑏 = 1: send 𝜋# = 𝜋 ∘ 𝜌$#

Soundness: Suppose G and H are non-isomorphic, and a 
prover could answer both the verifier challenges. Then, 
K = 𝜋"(𝐺) and H = 𝜋# 𝐾 .
In other words, H = 𝜋#∘ 𝜋"(𝐺), a contradiction!



Prover
Verifier

𝐾 = 𝜌(𝐺) 

ZK Proof for Graph Isomorphism

𝐇 = 𝝅(𝑮) where 𝜌 is a random permutation

random challenge bit 𝑏

𝑏 = 0: send 𝜋" = 𝜌

𝑏 = 1: send 𝜋# = 𝜋 ∘ 𝜌$#

Zero Knowledge?



Efficient Prover (given a Witness)

In both these protocols, the (honest) prover is actually 
polynomial-time given the NP witness (the square root 
of 𝑦 in the case of QR, and the isomorphism in the case 
of graph-iso.)   

Soundness is nevertheless against any, even 
computationally unbounded, prover 𝑃∗.



Do all NP languages have Perfect ZK proofs?

We showed two languages with perfect ZK proofs. Can 
we show this for all NP languages?

Theorem [Fortnow’89, Aiello-Hastad’87] No, unless 
bizarre stuff happens in complexity theory (technically: 
the polynomial hierarchy collapses.)  



Do all NP languages have ZK proofs?
Nevertheless, today, we will show:

Theorem [Goldreich-Micali-Wigderson’87] Assuming 
one-way functions exist, all of NP has computational 
zero-knowledge proofs.

This theorem is amazing: it tells us that everything that 
can be proved (in the sense of Euclid) can be proved in 
zero knowledge!



Zero Knowledge Proof for 3-Coloring

NP-Complete Problem:
Every other problem in NP can be 
reduced to it.



We need a commitment scheme (aka a “promise hiding 
scheme” from pset 1).

Sender Receiver

Bit b

bCommit to b:

1. Hiding: The locked box should completely hide b.

2. Binding: Sender shouldn’t be able to open to 1-b.

b

Open:  b,



In pset 1, you implemented a commitment scheme using 
PRGs. We will later show another construction using one-
way permutations.

Sender Receiver

Bit b

bCommit to b:

1. Hiding: The locked box should completely hide b.

2. Binding: Sender shouldn’t be able to open to 1-b.

Open:  b,

ACCEPT/
REJECT



Zero Knowledge Proof for 3COL
Graph G
=(V,E)

Graph G

1 2

4 3

1 2

4 3

Come up with a random 
permutation of the colors

𝜌: 𝑉 → {𝑅, 𝐵, 𝐺}

𝜌 1 ,… , 𝜌(𝑛)

random edge (𝑖, 𝑗)

open ρ(𝑖) and ρ(𝑗) 

1. Check the openings
2. Check: ρ 𝑖 , ρ 𝑗 ∈ {𝑅, 𝐵, 𝐺} 
3.   Check: ρ 𝑖 ≠ ρ 𝑗  .

𝜌(1) 𝜌(𝑛)…



Zero Knowledge Proof for 3COL

Graph G

1 2

4 3

1 2

4 3

random edge (𝑖, 𝑗)

open ρ(𝑖) and ρ(𝑗) 

Completeness: Exercise.

Graph G
=(V,E)

𝜌(1) 𝜌(𝑛)…



Zero Knowledge Proof for 3COL

Graph G

1 2

4 3

1 2

4 3

random edge (𝑖, 𝑗)

open ρ(𝑖) and ρ(𝑗) 

Soundness: If the graph is not 3COL, in every 3-coloring (that P 
commits to), there is some edge whose end-points have the same color.
V will catch this edge and reject with probability ≥ 1/|𝐸|. 

Graph G
=(V,E)

𝜌(1) 𝜌(𝑛)…



Zero Knowledge Proof for 3COL

Graph G

1 2

4 3

1 2

4 3

random edge (𝑖, 𝑗)

open ρ(𝑖) and ρ(𝑗) 

Repeat |𝑬| E 𝝀 times to get the verifier to accept with probability 
  ≤ (1 − 1/|𝐸|)|"|#$ ≤ 2%$

Graph G
=(V,E)

𝜌(1) 𝜌(𝑛)…



Commitment Schemes



Sender S
Receiver R

Bit b

Commitment Schemes

     Commitment Protocol 
𝐷𝐸𝐶, 𝐶𝑂𝑀 ← (𝑆 𝑏, 1$ , 𝑅 1$ )

COMDEC
b, DEC

ACCEPT/
REJECT

1. Completeness: R always accepts in an honest execution.



Sender S
Receiver R

Bit b

2. Computational Hiding: For every possibly malicious 
(PPT) 𝑅∗, 
 𝑣𝑖𝑒𝑤%∗(𝑆 0 , 𝑅∗) ≈&  𝑣𝑖𝑒𝑤%∗(𝑆 1 , 𝑅∗)

Commitment Schemes

     Commitment Protocol 
𝐷𝐸𝐶, 𝐶𝑂𝑀 ← (𝑆 𝑏, 1$ , 𝑅 1$ )

COMDEC
b, DEC

ACCEPT/
REJECT



Sender S
Receiver R

Bit b

3. Perfect Binding: For every possibly malicious 𝑆∗, let 
COM be the receiver’s output in an execution of 𝑆∗, 𝑅 . 
There is no pair of decommitments 𝐷𝐸𝐶", 𝐷𝐸𝐶#  s.t. R 
accepts both com, 0, 𝐷𝐸𝐶" 	and	(com, 1, 𝐷𝐸𝐶#).

Commitment Schemes

     Commitment Protocol 
𝐷𝐸𝐶, 𝐶𝑂𝑀 ← (𝑆 𝑏, 1$ , 𝑅 1$ )

COMDEC
b, DEC

ACCEPT/
REJECT



Sender S Receiver R

Bit b

A Commitment Scheme from any OWP

𝐶𝑂𝑀 = (𝑓 𝑟 , 𝐻𝐶𝐵(𝑟) ⊕ 𝑏)

𝐷𝐸𝐶 = 𝑟

𝑂𝑃𝐸𝑁: (𝑏, 𝑟)

Let 𝐶𝑂𝑀 = 𝑥, 𝑦 . 
Check that
1. 𝑓 𝑟 = 𝑥 and 
2. 𝐻𝐶𝐵(𝑟) ⊕𝑏 = y

1. Completeness: Exercise.
2. Comp. Hiding: by the hardcore bit property.

3. Perfect Binding: because f is a permutation. 



Back to ZK Proof for 3COL

Graph G

1 2

4 3

1 2

4 3

{𝐶𝑜𝑚 𝜌 𝑘 ; 𝑟& }&'()

random edge (𝑖, 𝑗)

send openings 𝜌 𝑖 , 𝑟'  and 𝜌 𝑗 , 𝑟(  

Graph G
=(V,E)



Why is this zero-knowledge?

{𝐶𝑜𝑚 𝜌 𝑘 ; 𝑟! }!"#$

edge (𝑖, 𝑗)

send openings 𝑟% and 𝑟& 

Simulator S works as follows:

1. First pick a random edge (𝑖∗, 𝑗∗)  

2. Feed the commitments of the colors 
to 𝑉∗	and get edge (𝑖, 𝑗)  

3. If 𝑖, 𝑗 ≠ (𝑖∗, 𝑗∗), go back and 
repeat.

Color vertices	𝑖∗ and 𝑗∗ with 
random, different colors
Color all other vertices red.

4. If 𝑖, 𝑗 = (𝑖∗, 𝑗∗), output the commitments and openings 𝑟+ 
and 𝑟, as the simulated transcript.



Why is this zero-knowledge?

{𝐶𝑜𝑚 𝜌 𝑘 ; 𝑟! }!"#$

edge (𝑖, 𝑗)

send openings 𝑟% and 𝑟& 

Lemma: 
(1) Assuming the commitment is 

hiding, S runs in expected 
polynomial-time. 

(2) When S outputs a view, it is 
comp. indist. from the view of 
𝑉∗ in a real execution. 



Why is this zero-knowledge?

{𝐶𝑜𝑚 𝜌 𝑘 ; 𝑟! }!"#$

edge (𝑖, 𝑗)

send openings 𝑟% and 𝑟& 

1. First pick a random edge (𝑖∗, 𝑗∗)  

2. Feed the commitments of the colors 
to 𝑉∗ and get edge (𝑖, 𝑗)  

3. If 𝑖, 𝑗 ≠ (𝑖∗, 𝑗∗), go back and 
repeat.

Color vertices 𝑖∗ and 𝑗∗ with 
random, different colors
Color all other vertices red.

4. If 𝑖, 𝑗 = (𝑖∗, 𝑗∗), output the commitments and openings 𝑟+ 
and 𝑟, as the simulated transcript.

Simulator S works as follows (call this Hybrid 0) 



Why is this zero-knowledge?

{𝐶𝑜𝑚 𝜌 𝑘 ; 𝑟! }!"#$

edge (𝑖, 𝑗)

send openings 𝑟% and 𝑟& 

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (𝑖∗, 𝑗∗)  

2. Feed the commitments of the colors 
to 𝑉∗ and get edge (𝑖, 𝑗)  

3. If 𝑖, 𝑗 ≠ (𝑖∗, 𝑗∗), go back and 
repeat.

Permute a legal coloring and 
color all vertices correctly.

4. If 𝑖, 𝑗 = (𝑖∗, 𝑗∗), output the commitments and openings 𝑟+ 
and 𝑟, as the simulated transcript.



Why is this zero-knowledge?

Claim: Hybrids 0 and 1 are computationally 
indistinguishable, assuming the commitment scheme is 
computationally hiding.

Proof: By contradiction. Show a reduction that breaks 
the hiding property of the commitment scheme, 
assuming there is a distinguisher between hybrids 0 
and 1.



Why is this zero-knowledge?

{𝐶𝑜𝑚 𝜌 𝑘 ; 𝑟! }!"#$

edge (𝑖, 𝑗)

send openings 𝑟% and 𝑟& 

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (𝑖∗, 𝑗∗)  

2. Feed the commitments of the colors 
to 𝑉∗ and get edge (𝑖, 𝑗)  

3. If 𝑖, 𝑗 ≠ (𝑖∗, 𝑗∗), go back and 
repeat.

Permute a legal coloring and 
color all vertices correctly.

4. If 𝑖, 𝑗 = (𝑖∗, 𝑗∗), output the commitments and openings 𝑟+ 
and 𝑟, as the simulated transcript.



Why is this zero-knowledge?

{𝐶𝑜𝑚 𝜌 𝑘 ; 𝑟! }!"#$

edge (𝑖, 𝑗)

send openings 𝑟% and 𝑟& 

Here is the real view of V* (Hybrid 2)

1. First pick a random edge (𝑖∗, 𝑗∗)  

2. Feed the commitments of the colors 
to 𝑉∗ and get edge (𝑖, 𝑗)  

3. If 𝑖, 𝑗 ≠ (𝑖∗, 𝑗∗), go back and 
repeat.

Permute a legal coloring and 
color all edges correctly.

4. If 𝑖, 𝑗 = (𝑖∗, 𝑗∗), output the commitments and openings 𝑟+ 
and 𝑟, as the transcript.



Why is this zero-knowledge?

Claim: Hybrids 1 and 2 are identical.

Hybrid 1 merely samples from the same distribution as 
Hybrid 2 and, with probability 1 − 1/|𝐸|, decides to 
throw it away and resample.



Put together:

Theorem: The 3COL protocol is zero knowledge.



Examples of NP Assertions
• My public key is well-formed (e.g. in RSA, the public 

key is 𝑁, a product of two primes together with an e 
that is relatively prime to 𝜑 𝑁 .)

• Encrypted bitcoin (or Zcash):  “I have enough 
money to pay you.” (e.g. I will publish an encryption 
of my bank account and prove to you that my 
balance is ≥ $𝑋. )

• Running programs on encrypted inputs: Given 
Enc(x) and y, prove that y = PROG(x).



Examples of NP Assertions

• Running programs on encrypted inputs: Given 
Enc(x) and y, prove that y = PROG(x).

More generally: A tool to enforce honest 
behavior without revealing information.



Interaction is Necessary for ZK

𝜋

Suppose there were a non-interactive ZK proof 
system for 3COL.

Graph G Graph G

Step 1. When G is in 3COL, V accepts the proof 𝜋.
(Completeness)



"𝜋 

Step 2. PPT Simulator S, given only G in 3COL, produces 
an indistinguishable proof 𝜋̂  (Zero Knowledge).

In particular, V accepts _𝝅. 

Interaction is Necessary for ZK

Graph G Graph G

Suppose there were a non-interactive ZK proof 
system for 3COL.



"𝜋 

Step 3. Imagine running the Simulator S on a 𝐺 ∉	3COL. 
It produces a proof 𝜋̂ which the verifier still accepts!

(WHY?! Because S and V are PPT. They together 
cannot tell if  the input graph is 3COL or not)

Interaction is Necessary for ZK
Suppose there were a non-interactive ZK proof 
system for 3COL.

Graph G Graph G



𝜋

Step 4. Therefore, S is a cheating prover! 
Produces a proof for a 𝐺 ∉	3COL that the verifier 
nevertheless accepts.

Ergo, the proof system is NOT SOUND!

Interaction is Necessary for ZK
Suppose there were a non-interactive ZK proof 
system for 3COL.

Graph G Graph G



THE END

Or, is it?



Two Roads to Non-Interactive ZK (NIZK)
1. Random Oracle Model & Fiat-Shamir Transform.

2. Common Random String Model.

𝜋
Graph G Graph G

Random Oracle



Proofs of Knowledge

Topic 1:



So far: Decision Problems
𝑦 ∈ 𝐿 or 𝑦 ∉ 𝐿

(e.g. 𝑦 is a quadratic residue mod 𝑁 or it is not)

Here is a different scenario:

𝑦 = 𝑔-	(mod	𝑝)𝑥

Alice wants to convince Bob that she knows a solution to a 
problem, e.g. that she knows the discrete log of 𝑦

Discrete log of 𝑦 always exists (assuming 𝑔 is a generator)…



So far: Decision Problems

𝑦 = 𝑔-	(mod	𝑝)𝑥

Completeness: When Alice and Bob run the protocol where 
Alice has input 𝑥, Bob outputs accept. 

Acc/Rej

Zero Knowledge: There is a simulator that, given only 𝑦, 
outputs a view of Bob that is indistinguishable from his view in 
an interaction with Alice. 

Soundness? How to define it? 



Proof of Knowledge

𝑦 = 𝑔-	(mod	𝑝)𝑥 Acc/Rej

If Alice knows 𝒙, there must be a way to “extract it from her”. 

I will not define an extractor formally but will show you an 
example (see Goldreich’s book for more)



ZK Proof of Knowledge of Discrete Log

𝑦 = 𝑔-	(mod	𝑝)𝑥 Acc/Rej

𝑧 = 𝑔.	(mod	𝑝)

𝑐 ← {0,1}

𝑠 = 𝑟 + 𝑐𝑥	(mod	𝑞)

𝑝 = 2𝑞 + 1

Completeness and Zero Knowledge: Exercise.

Accept iff 𝑔/ = 𝑧 e 𝑦0  



Proof of Knowledge: Extractor

𝑦 = 𝑔-	(mod	𝑝)

𝑧 = 𝑔.	(mod	𝑝)

𝑐 = 0

𝑠1

Assume 𝑃∗ convinces the verifier 
with prob. > (

2
+ 1/𝑝𝑜𝑙𝑦

𝑃∗ 

Extractor runs 𝑃∗ to get a 𝑧.

𝑐 = 1

𝑠(

Runs 𝑃∗ with 𝑐 = 0 and gets 𝑠1 

Rewinds 𝑃∗ to the first message.

Runs 𝑃∗ with 𝑐 = 1 and gets 𝑠( 

𝑔/! = 𝑧  and 𝑔/" = 𝑧𝑦 w.p. 1/𝑝𝑜𝑙𝑦 

𝑔/"%/! = 𝑦. 
So, 𝑠( − 𝑠1 is the discrete log of 𝑦.



Zero Knowledge vs. Proof of Knowledge

Zero knowledge is a property of the prover 
against malicious verifiers. A prover P reveals zero 
knowledge if for all 𝑉∗ …

Soundness and Proof of knowledge are properties 
of the verifier against malicious provers. A verifier V 
is sound (resp. satisfied PoK) if for all 𝑃∗ …



Zero Knowledge Proofs of Knowledge

Theorem [Goldreich-Micali-Wigderson’87] Assuming 
one-way functions exist, all of NP has computational 
zero-knowledge proofs of knowledge.



The Round-Complexity of ZK

Topic 2:



Reducing Soundness Error

The 3COL protocol has a large soundness error of 1 − 1/|𝐸|
(probability that 𝑉 accepts even though 𝐺 ∉ 3𝐶𝑂𝐿)

Theorem: Sequential Repetition reduces soundness error for 
interactive proofs (and preserves the ZK property.)

Theorem: Parallel Repetition reduces soundness error for 
interactive proofs. It is also honest-verifier ZK.

Problem: Lots of rounds



Theorem [Goldreich-Krawczyk’90] There exist ZK proofs whose 
parallel repetition is NOT (malicious verifier) zero knowledge.

But the GK 90 counterexample is quite contrived. How about 
“natural protocols”, e.g. the GMW 3-coloring protocol from 
the last lecture?  



Theorem [Goldreich-Krawczyk’90] There exist ZK proofs whose 
parallel repetition is NOT (malicious verifier) zero knowledge.

Theorem [Holmgren-Lombardi-Rothblum’21] Parallel Repetition 
of the (Goldreich-Micali-Wigderson) 3COL protocol is not zero-
knowledge.



Reducing Soundness Error

Theorem [Goldreich-Kahan’95] There is a constant-round ZK 
proof system for 3COL (with exponentially small soundness 
error), assuming discrete logarithms are hard (more generally, 
assuming the existence of collision-resistant hash functions).

Fortunately, we have:



Topic 3:

The Power of Interactive Proofs

What can we prove with interaction?



Prover Verifier

Interactive Proof for Graph Non-Isomorphism

Graph 𝑮𝟎 Graph 𝑮𝟏

𝜌(𝐺?)

𝑏′

≇

Pick a random bit 𝑏 and a 
random permutation 𝜌

Accept if 𝑏 = 𝑏@.

Completely unclear 
how to prove in NP.



A window into a promised land…



The Power of Interactive Proofs

Theorem [Nisan’90, Lund-Fornow-Karloff-Nisan’90] 
There is an interactive proof for the statement that 
the number of satisfying assignments to a formula is a 
given number (this complexity class is called #𝑃).

Theorem [Shamir’90] 𝐼𝑃 = 𝑃𝑆𝑃𝐴𝐶𝐸.



The Power of Interactive Proofs

Theorem [Babai-Fornow-Lund’90] M𝐼𝑃 = 𝑁𝐸𝑋𝑃.

Definition of multi-prover interactive proofs [BenOr-
Goldwasser-Kilian-Wigderson’88] 

V MIP



The Power of Interactive Proofs

Theorem [Arora-Lund-Motwani-Sudan-Szegedy’92] 
 PCP(3) = 𝑁𝑃.

Definition of probabilistically checkable proofs [Arora-
Safra’92, Feige-Goldwasser-Lovasz-Safra-Szegedy’91] 

V

𝜋( 𝜋2 𝜋3 𝜋4 𝜋5 𝜋6 𝜋)… … …





By Ryan O’Donnell


