MIT 6.875

Foundations of Cryptography
Lecture 14

Beyond Secure Communication

L5
g - 2

Alice - Bob |

Much more than communicating securely.

Complex Interactions: proofs, computations, games.

Complex Adversaries: Alice or Bob, adaptively chosen.

Complex Properties: Correctness, Privacy, Fairness.

Many Parties: this class, MIT, the internet.

Classical Proofs

| : i & :
Steve Cook Leonid Levin

Prover writes down a string (proof); Verifier checks.

xiom 1

\yaqbz L xiom 2

d xiom 1=A
=B

ED

Proofs

‘ Claim/Theorem

proof »

Prover Verifier

Efficiently Verifiable Proofs: NP

‘ Claim/Theorem

)

proof

>

Prover Verifier

Works hard Polynomial-time

Theorem: N is a product of two prime numbers

. Proof = (P, Q) »

Verifier

Prover

Accept iff N = PQ and P, Q prime

Efficiently Verifiable Proofs: NP

‘CIaim/Theorem ‘

g \

proof

Prover Verifier

Works hard Polynomial-time

Def: A language/decision procedure L is simply a set
of strings. So, L € {0,1}".

Efficiently Verifiable Proofs: NP

Claim/Theorem

/ \ ITept/ [
‘ _reject T
] -~ 3

Prover Verifier

Works hard Polynomial-time

Def: L is an N P-language if there is a poly-time verifier V
where
 Completeness: True theorems have (short) proofs.
for all x € L, there is a poly(|x|)-long witness
(proof) w € {0,1}" s.t. V(x,w) = 1.
* Soundness: False theorems have no short proofs.
for all x € L, there is no witness. That is, for all
polynomially longw € {0,1}*, V(x,w) = 0.

Theorem: N is a product of two prime numbers

Proof = (P, Q) Q

Verifier

Prover

Accept iff N = PQ.

After interaction, Bob the Verifier knows:

1) N is a product of two primes.

2) Also, the two factors of N.

Theorem: yis a quadratic residue mod N

Proof = x € Z) Q

Verifier

Prover

Accept iff
y = x° (mod N).

After interaction, Bob the Verifier knows:

1) y is a quadratic residue mod N.

2) Also, the square root of y.

Theorem: Graphs Gy and G4 are isomorphic.

Proof = m: [N] — [N], Q

the isomorphism Verifier

Prover

Check Vi, J:
(r (i), ®(j)) € E; iff (i,) € E,.

Theorem: Graphs Gy and G4 are isomorphic.

Proof = m: [N] — [N], Q

the isomorphism Verifier

Prover
After interaction, Bob the Verifier knows:

1) G, and G4 are isomorphic.

2) Also, the isomorphism.

Theorem: Graphs G has a Hamiltonian cycle.

Proof = Hamiltonian cycle Q
>

(Vo) ..., Vn—-1) Verifier

Prover

Check Vi:
(vi' Vi+1 mod N) Sy

Theorem: Graphs G has a Hamiltonian cycle.

Proof = Hamiltonian cycle Q

(170, e vN—1) Verifier

Prover
After interaction, Bob the Verifier knows:

1) G has a Hamiltonian cycle.

2) Also, the Hamiltonian cycle itself.

Theorem: Graphs G has a Hamiltonian cycle.

Proof = Hamiltonian cycle Q

(Vo) ..., Vn—-1) Verifier

Prover

NP-Complete Problem:

Every one of the other problems can be reduced to it

Theorem: yis a quadratic residue mod N

Proof = x € Z) Q

Verifier

Prover

Accept iff
y = x° (mod N).

After interaction, Bob the Verifier knows:

1) y is a quadratic residue mod N.

2) Also, the square root of y.

Is there any other way?

Zero Knowledge Proofs

“I will prove to you that |
could’ve sent you a proof

if | felt like it.”

Prover

" (A 1]
’ At 11}
/ '1" ’ f 1) g
/ /
/ "
i AR
[/

Micali Goldwasser Rackoff

Zero Knowledge Proofs

“I will not give you the square
root, but | will prove to you that |
could provide one if | wanted to.”

Two (Necessary) New Ingredients

1. Interaction: Rather than passively reading the proof,
the verifier engages in a conversation with the prover.

2. Randomness: The verifier is randomized and can
make a mistake with a (exponentially small) probability.

Here is the idea.

THEOREM: “thereis an <k
move solution to this cube”

Here is the idea.

K i
-93

>
“Random” config

Challenge (0 or 1)

Verifier

Here is the idea.

W
l@

>

“Random” config

Challenge (0 or 1)

L

1: Show k/2 moves Verifier

Prover

POINT IS THIS: If the prover can do both consistently,
then there exist k moves that map & to &

Interactive Proofs for a Language L

a;

‘ Claim/Theorem
' . accept/
q, reject
o
. 2

q, Verifier

Prover <

Probabilistic

Comp. Unbounded oy e
Polynomial-time

Interactive Proofs for a Language L

‘ Claim/Theorem
a
1 . accept/
g4 reject
<
N Q

a;

Verifier

Prover

Def: L is an JP-language if there is a unbounded P and

probabilistic poly-time verifier V where

* Completeness: If x € L, V always accepts.

* Soundness: If x & L, regardless of the cheating prover
strategy, V accepts with negligible probability.

Interactive Proofs for a Language L

Claim/Theorem

Def: L is an JP-language if there is a probabilistic poly-time
verifier V where
e Completeness: If x € L,
Pr|(P,V)(x) = accept] = 1.
 Soundness: If x & L, there is a negligible function negl s.t.

for every P~,
Pr|(P*,V)(x) = accept] = negl(1).

Interactive Proofs for a Language L

Claim/Theorem

Def: L is an JP-language if there is a probabilistic poly-time
verifier V where
e Completeness: If x € L,
Pr[(P,V)(x) = accept] = c.
 Soundness: If x & L, there is a negligible function negl s.t.

for every P~,
Pr[(P*,V)(x) = accept] < s.

Equivalent aslongas ¢ — s = 1/poly(A)

Interactive Proof for QR

L ={(N,y):vyis aquadratic residue mod N}.

s =1r? (mod N)

(N,y)
b « {0,1} Q
fb=0:z =1 Check:

Ifb=1: z = rx z% = sy®? (mod N)

Completeness

Claim: If (N,y) € L, then the verifier accepts the proof
with probability 1.

Proof:
z? = (rx?)?=r2(x?)’= sy® (mod N)

So, the verifier’s check passes and he accepts.

Soundness

Claim: If (N,y) & L, then for every cheating prover P,
the verifier accepts with probability at most 1/2.

Proof: Suppose the verifier accepts with probability > 1/2.

Then, there is some s € Zy s.t. the prover produces
Zy : z& = s (mod N)

z, + z& = sy (mod N)

This means (z;/z,)* = y (mod N), which tells us that
(N,y) € L.

Interactive Proof for QR
L ={(N,y):vyis aquadratic residue mod N}.
s; = r# (mod N)

N, :
(N,y) b, < (0.1} (N,y)

= Q

If b;=0: z; = i |Check forall i:
If b;=1:z; = xr; zi = s;y” (mod N)

REPEAT sequentially A times.

Soundness

Claim: If (N,y) & L, then for every cheating prover P,

the verifier accepts with probability at most (%)’1.

Proof: Exercise.

This is Zero-Knowledge.

But what does that mean?

s =1r? (mod N)

N, N
2 seon B
o Ifb=0:z =1 Check:

If b=1:z =rx z? = sy (mod N)

How to Define Zero-Knowledge?

After the interaction, V knows:
e The theorem is true; and

e Aview of the interaction
(= transcript + coins of V)

P gives zero knowledge to V:

When the theorem is true, the view gives V
nothing that he couldn’t have obtained on
his own without interacting with P.

How to Define Zero-Knowledge?

(P,V) is zero-knowledge if I/ can generate
his VIEW of the interaction all by himself in
probabilistic polynomial time.

How to Define Zero-Knowledge?

(P,V) is zero-knowledge if I/ can “simulate”
his VIEW of the interaction all by himself in
probabilistic polynomial time.

The Simulation Paradigm

PPT “simulator” S

C.

: Simgs:
N\ (5,b,7)

s =r? (mod N)
viewy (P,V): ey =
Transcriptb5zys, b, z), : 5
. _ If b=0:z =1r ‘ Check:
Coins = b fb=1:z=7rx |z*=sy” (modN)

Zero Knowledge: Definition

An Interactive Protocol (PV) is zero-knowledge
for a language L if there exists a PPT algorithm S
(a simulator) such that for every x € L, the
following two distributions are indistinguishable:

1. UieWV (P, V)

2. S(x,1%)

(PV) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Perfect Zero Knowledge: Definition

An Interactive Protocol (PV) is perfect zero-
knowledge for a language L if there exists a PPT
algorithm S (a simulator) such that for every x €
L, the following two distributions are identical:

1. UieWV (P, V)

2.S(x,1%)

(PV) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Statistical Zero Knowledge: Definition

An Interactive Protocol (PV) is statistical zero-
knowledge for a language L if there exists a PPT
algorithm S (a simulator) such that for every x €
L, the following two distributions are
statistically indistinguishable:

1. UieWV (P, V)
2.S(x,1%)

(PV) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Computational Zero Knowledge: Definition

An Interactive Protocol (PV) is computational
zero-knowledge for a language L if there exists a
PPT algorithm S (a simulator) such that for every
x € L, the following two distributions are
computationally indistinguishable:

1. UieWV (P, V)
2.S(x,1%)

(PV) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Zero Knowledge

Claim: The QR protocol is zero knowledge.

Simulator S works as follows:

s =r? (mod N)

b U\g 1. First pick a random bit b.
fb=0:z=7 [Check: 2. pick arandom z € Zy,.
fb=l:z=rx |z2=sy? (modN)

| 3. compute s = z% /yP.
viewy (P, V):
(s, b, 2) 4. output (s, b, z).

Exercise: The simulated transcript is identically
distributed as the real transcript in the interaction (PV).

« What if Vis NOT HONEST.

An Interactive Protocol (PV) is honest-verifier perfect
zero-knowledge for a language L if there exists a PPT
simulator S such that for every x € L, the following two
distributions are identical:

{ viewy (P,V) 2. S(x,1%)

\%
S
¢ An Interactive Protocol (PV) is perfect zero-knowledge
for a language L if for every PPT V", there exists a
(expected) poly time simulator S s.t. for every x € L, the

following two distributions are identical:

1. viewy+(P,V?*) 2.S(x,1%)

NOW: (Malicious Ver) Zero Knowledge

Theorem: The QR protocol is (malicious verifier) zero

Knowledge.
s =12 (mod N)
: b < {0,1} (N;'i)
fb=0:z=7 [Check:
If b=1: z = rx z? = sy? (mod N)
viewy+(P,V™*):

(s, b,z)

Simulator S works as follows:

1. First pick a random s and
“feed it to” V™.

2. Letb = V*(s).

Now what???

(Malicious Ver) Zero Knowledge

Theorem: The QR protocol is (malicious verifier) zero
knowledge.

Simulator S works as follows:
2

1. First set s = % for arandom z and b and feedsto V".

2. Letb’ = V*(s).
3.1f b’ = b, output (s, b, z) and stop.

4. Otherwise, go back to step 1 and repeat. (also
called “rewinding”).

Simulator S works as follows:
2

1. First set s = % for arandom z and feed sto VV'*.

2. Letb’ = V*(s).
3.1f b’ = b, output (s, b, z) and stop.

4. Otherwise, go back to step 1 and repeat. (also
called “rewinding”).

Lemma:

(1) S runs in expected polynomial-time.

(2) When S outputs a view, it is identically
distributed to the view of V™ in a real execution.

What Made it Possible?

1. Each statement had multiple proofs of which the
prover chooses one at random.

2. Each such proof is made of two parts: seeing either
one on its own gives the verifier no knowledge; seeing
both imply 100% correctness.

3. Verifier chooses to see either part, at random.
The prover’s ability to provide either part on
demand convinces the verifier.

