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Beyond Secure Communication

Alice Bob

x y

Much more than communicating securely.

• Complex Interactions: proofs, computations, games. 

• Complex Adversaries: Alice or Bob, adaptively chosen.

• Complex Properties: Correctness, Privacy, Fairness.

• Many Parties: this class, MIT, the internet.



Classical Proofs

Prover writes down a string (proof); Verifier checks. 
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Proofs

Prover Verifier

Claim/Theorem

proof

accept/
reject



Prover Verifier

Claim/Theorem

proof

accept/
reject

Efficiently Verifiable Proofs: 𝓝𝓟

Works hard Polynomial-time



Theorem: 𝑵 is a product of two prime numbers

Prover
Verifier

Proof = (𝑷,𝑸)

Accept iff N = 𝑃𝑄	𝑎𝑛𝑑	𝑃, 𝑄	𝑝𝑟𝑖𝑚𝑒 



Prover Verifier

Claim/Theorem

proof

accept/
reject

Efficiently Verifiable Proofs: 𝓝𝓟

Works hard Polynomial-time

Def: A language/decision procedure ℒ is simply a set 
of strings. So, ℒ ⊆ 0,1 ∗.



Efficiently Verifiable Proofs: 𝓝𝓟

Def: ℒ is an 𝓝𝓟-language if there is a poly-time verifier 𝑉 
where
• Completeness: True theorems have (short) proofs. 

 for all x ∈ ℒ, there is a poly(|𝐱|)-long witness
 (proof) w ∈ 0,1 ∗ s.t. 𝑉 𝑥,𝑤 = 1.

• Soundness: False theorems have no short proofs. 
 for all x ∉ ℒ,	there is no witness. That is, for all 

polynomially long w ∈ 0,1 ∗, 𝑉 𝑥,𝑤 = 0.



Theorem: 𝑵 is a product of two prime numbers

Prover
Verifier

Proof = (𝑷,𝑸)

Accept iff N = 𝑃𝑄. 

After interaction, Bob the Verifier knows:
1) N is a product of two primes. 

2) Also, the two factors of N. 



Theorem: 𝒚 is a quadratic residue mod 𝑵 

Prover
Verifier

Proof = 𝒙 ∈ 𝒁𝑵∗

Accept iff 
𝑦 = 𝑥#	(mod	𝑁). 

After interaction, Bob the Verifier knows:
1) y is a quadratic residue mod 𝑁. 

2) Also, the square root of 𝑦. 



Theorem: Graphs 𝑮𝟎 and 𝑮𝟏 are isomorphic. 

Prover
Verifier

Proof = 𝝅: 𝑵 → [𝑵], 
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the isomorphism

Check ∀𝑖, 𝑗:
𝜋 𝑖 , 𝜋 𝑗 ∈ 𝐸$ iff 𝑖, 𝑗 ∈ 𝐸%.



Theorem: Graphs 𝑮𝟎 and 𝑮𝟏 are isomorphic. 

Prover
Verifier

Proof = 𝝅: 𝑵 → [𝑵], 
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the isomorphism

After interaction, Bob the Verifier knows:
1) 𝐺% and 𝐺$ are isomorphic. 

2) Also, the isomorphism. 



Theorem: Graphs 𝑮 has a Hamiltonian cycle. 

Prover
Verifier

Proof = Hamiltonian cycle

(𝒗𝟎, … , 𝒗𝑵'𝟏)

Check ∀𝑖:
(𝑣) , 𝑣)*$	,-.	/) ∈ 𝐸



Theorem: Graphs 𝑮 has a Hamiltonian cycle. 

Prover
Verifier

Proof = Hamiltonian cycle

After interaction, Bob the Verifier knows:
1) 𝐺 has a Hamiltonian cycle. 

2) Also, the Hamiltonian cycle itself. 

(𝒗𝟎, … , 𝒗𝑵'𝟏)



Theorem: Graphs 𝑮 has a Hamiltonian cycle. 

Prover
Verifier

Proof = Hamiltonian cycle

NP-Complete Problem:
Every one of the other problems can be reduced to it

(𝒗𝟎, … , 𝒗𝑵'𝟏)



Theorem: 𝒚 is a quadratic residue mod 𝑵 

Prover
Verifier

Proof = 𝒙 ∈ 𝒁𝑵∗

Accept iff 
𝑦 = 𝑥#	(mod	𝑁). 

After interaction, Bob the Verifier knows:
1) y is a quadratic residue mod 𝑁. 

2) Also, the square root of 𝑦. 



Is there any other way?



Zero Knowledge Proofs

Prover

“I will prove to you that I 
could’ve sent you a proof 

if I felt like it.”



Zero Knowledge Proofs

Prover

“I will not give you the square 
root, but I will prove to you that I 
could provide one if I wanted to.”



Two (Necessary) New Ingredients

1. Interaction: Rather than passively reading the proof, 
the verifier engages in a conversation with the prover.

2. Randomness: The verifier is randomized and can 
make a mistake with a (exponentially small) probability.



Here is the idea.

Prover

THEOREM: “there is an ≤	k 
move solution to this cube”



Here is the idea.

Prover
Verifier

“Random” config

Challenge (0 or 1)

0: Show 𝑘/2 moves



Here is the idea.

Prover
Verifier

“Random” config

Challenge (0 or 1)

1: Show 𝑘/2 moves

POINT IS THIS: If the prover can do both consistently, 
then there exist 𝑘 moves that map        to  



Prover
Verifier

Claim/Theorem

𝑎$ accept/
reject

Interactive Proofs for a Language ℒ 

Probabilistic 
Polynomial-timeComp. Unbounded

𝑞$
𝑎#
𝑞#

…



Prover
Verifier

Claim/Theorem

𝑎$ accept/
reject

Interactive Proofs for a Language ℒ 

𝑞$
𝑎#
…

Def: ℒ is an 𝓘𝓟-language if there is a unbounded P and  
probabilistic poly-time verifier 𝑉 where
• Completeness: If x ∈ ℒ, V always accepts.
• Soundness: If x ∉ ℒ, regardless of the cheating prover 

strategy, V accepts with negligible probability. 



Interactive Proofs for a Language ℒ 

Def: ℒ is an 𝓘𝓟-language if there is a probabilistic poly-time 
verifier 𝑉 where
• Completeness: If x ∈ ℒ, 
  Pr P, 𝑉 𝑥 = 𝑎𝑐𝑐𝑒𝑝𝑡 = 1.
• Soundness: If x ∉ ℒ, there is a negligible function negl s.t. 

for every 𝑷∗, 
  Pr 𝑃∗, 𝑉 𝑥 = 𝑎𝑐𝑐𝑒𝑝𝑡 = negl(𝜆).



Interactive Proofs for a Language ℒ 

Def: ℒ is an 𝓘𝓟-language if there is a probabilistic poly-time 
verifier 𝑉 where
• Completeness: If x ∈ ℒ, 
  Pr P, 𝑉 𝑥 = 𝑎𝑐𝑐𝑒𝑝𝑡 ≥ 𝒄.
• Soundness: If x ∉ ℒ, there is a negligible function negl s.t. 

for every 𝑷∗, 
  Pr 𝑃∗, 𝑉 𝑥 = 𝑎𝑐𝑐𝑒𝑝𝑡 ≤ 𝐬.

Equivalent as long as 𝒄 − 𝐬 ≥ 1/poly(λ)



Interactive Proof for QR

𝑠 = 𝑟#	(mod	𝑁)

𝑏 ← {0,1}

If b=0: 𝑧 = 𝑟 Check: 
𝑧# = 𝑠𝑦0 	(mod	𝑁)If b=1: 𝑧 = 𝑟𝑥

ℒ = { 𝑁, 𝑦 : 𝑦	is	a	quadratic	residue	mod	𝑁}.

𝑁, 𝑦 𝑁, 𝑦



Completeness
Claim: If 𝑁, 𝑦 ∈ 𝐿, then the verifier accepts the proof 
with probability 1.

𝑧# = (𝑟𝑥0)#= 𝑟#(𝑥#)0= 𝑠𝑦0 	(mod	𝑁)

So, the verifier’s check passes and he accepts.

Proof:



Soundness
Claim: If 𝑁, 𝑦 ∉ 𝐿, then for every cheating prover 𝑃∗, 
the verifier accepts with probability at most 1/2.

Suppose the verifier accepts with probability > 1/2.Proof:

Then, there is some 𝑠 ∈ 𝑍/∗  s.t. the prover produces  

𝑧% ∶ 𝑧%# = 𝑠	(mod	𝑁)

𝑧$ ∶ 𝑧$# = 𝑠𝑦	(mod	𝑁)

This means	(𝑧$/𝑧%)# = 𝑦 mod	𝑁 , which tells us that 
𝑁, 𝑦 ∈ 𝐿.



Interactive Proof for QR

𝑠) = 𝑟)#	(mod	𝑁)

𝑏) ← {0,1}

If 𝑏)=0: 𝑧) = 𝑟) Check for all i: 
𝑧)# = 𝑠)𝑦0 	(mod	𝑁)If 𝑏)=1:𝑧) = 𝑥𝑟)

ℒ = { 𝑁, 𝑦 : 𝑦	is	a	quadratic	residue	mod	𝑁}.

𝑁, 𝑦 𝑁, 𝑦

REPEAT sequentially 𝜆 times.



Soundness
Claim: If 𝑁, 𝑦 ∉ 𝐿, then for every cheating prover 𝑃∗, 
the verifier accepts with probability at most ($

#
)1.

Exercise.Proof:



This is Zero-Knowledge.

𝑠 = 𝑟#	(mod	𝑁)

𝑏 ← {0,1}

If b=0: 𝑧 = 𝑟 Check: 
𝑧# = 𝑠𝑦0 	(mod	𝑁)If b=1: 𝑧 = 𝑟𝑥

But what does that mean?

𝑁, 𝑦 𝑁, 𝑦



How to Define Zero-Knowledge?

After the interaction, 𝑽 knows:
• The theorem is true; and

• A view of the interaction 
 (= transcript + coins of V)

𝑷 gives zero knowledge to 𝑽:

When the theorem is true, the view gives V 
nothing that he couldn’t have obtained on 
his own without interacting with P.



How to Define Zero-Knowledge?

(𝑃, 𝑉) is zero-knowledge if 𝑉 can generate 
his VIEW of the interaction all by himself in 
probabilistic polynomial time.   



How to Define Zero-Knowledge?

(𝑃, 𝑉) is zero-knowledge if 𝑉 can “simulate” 
his VIEW of the interaction all by himself in 
probabilistic polynomial time.   



The Simulation Paradigm

𝑣𝑖𝑒𝑤! 𝑃, 𝑉 :
Transcript = 𝑠, 𝑏, 𝑧 , 

Coins = 𝑏

PPT “simulator” 𝑺

𝑁, 𝑦𝑠𝑖𝑚":
𝑠, 𝑏, 𝑧

𝑣𝑖𝑒𝑤! 𝑃, 𝑉 :
𝑠, 𝑏, 𝑧



Zero Knowledge: Definition

An Interactive Protocol (P,V) is zero-knowledge 
for a language 𝐿	if there exists a PPT algorithm S 
(a simulator) such that for every 𝒙 ∈ 𝑳, the 
following two distributions are indistinguishable:

1. 𝑣𝑖𝑒𝑤!(𝑃, 𝑉)

2. 𝑆(𝑥, 1#)

(P,V) is a zero-knowledge interactive protocol if it 
is complete, sound and zero-knowledge.



Perfect Zero Knowledge: Definition

An Interactive Protocol (P,V) is perfect zero-
knowledge for a language 𝐿	if there exists a PPT 
algorithm S (a simulator) such that for every 𝑥 ∈
𝐿, the following two distributions are identical:

1. 𝑣𝑖𝑒𝑤!(𝑃, 𝑉)

2. 𝑆(𝑥, 1#)

(P,V) is a zero-knowledge interactive protocol if it 
is complete, sound and zero-knowledge.



Statistical Zero Knowledge: Definition

An Interactive Protocol (P,V) is statistical zero-
knowledge for a language 𝐿	if there exists a PPT 
algorithm S (a simulator) such that for every 𝑥 ∈
𝐿, the following two distributions are 
statistically indistinguishable:

1. 𝑣𝑖𝑒𝑤!(𝑃, 𝑉)

2. 𝑆(𝑥, 1#)

(P,V) is a zero-knowledge interactive protocol if it 
is complete, sound and zero-knowledge.



Computational Zero Knowledge: Definition

An Interactive Protocol (P,V) is computational 
zero-knowledge for a language 𝐿	if there exists a 
PPT algorithm S (a simulator) such that for every 
𝑥 ∈ 𝐿, the following two distributions are 
computationally indistinguishable:

1. 𝑣𝑖𝑒𝑤!(𝑃, 𝑉)

2. 𝑆(𝑥, 1#)

(P,V) is a zero-knowledge interactive protocol if it 
is complete, sound and zero-knowledge.



Zero Knowledge
Claim: The QR protocol is zero knowledge.

𝑣𝑖𝑒𝑤! 𝑃, 𝑉 :
𝑠, 𝑏, 𝑧

Simulator S works as follows:

1. First pick a random bit b.

2. pick a random 𝑧 ∈ 𝑍/∗ .

3. compute s = 𝑧#/𝑦0.

Exercise: The simulated transcript is identically 
distributed as the real transcript in the interaction (P,V).

4. output (s, b, z).



What if V is NOT HONEST.

An Interactive Protocol (P,V) is honest-verifier perfect 
zero-knowledge for a language 𝐿	if there exists a PPT 
simulator S such that for every 𝑥 ∈ 𝐿, the following two 
distributions are identical:

1. 𝑣𝑖𝑒𝑤!(𝑃, 𝑉) 2. 𝑆(𝑥, 1#)

An Interactive Protocol (P,V) is perfect zero-knowledge 
for a language 𝐿	if for every PPT 𝑽∗, there exists a 
(expected) poly time simulator S s.t. for every 𝑥 ∈ 𝐿, the 
following two distributions are identical:

1. 𝑣𝑖𝑒𝑤!∗(𝑃, 𝑉∗) 2. 𝑆(𝑥, 1#)

OLD DEF

REAL DEF



NOW: (Malicious Ver) Zero Knowledge
Theorem: The QR protocol is (malicious verifier) zero 
knowledge.

Simulator S works as follows:

1. First pick a random s and 
“feed it to” 𝑉∗.
2. Let b = 𝑉∗(𝑠).

Now what???𝑣𝑖𝑒𝑤!∗ 𝑃, 𝑉∗ :
𝑠, 𝑏, 𝑧



(Malicious Ver) Zero Knowledge
Theorem: The QR protocol is (malicious verifier) zero 
knowledge.

Simulator S works as follows:

1. First set 𝑠 = 2!

3"
 for a random z and b and feed s to 𝑉∗.

2. Let b′ = 𝑉∗(𝑠).

3. If 𝑏4 = 𝑏, output (s, b, z) and stop.  

4. Otherwise, go back to step 1 and repeat. (also 
called “rewinding”).



Simulator S works as follows:

1. First set 𝑠 = 2!

3"
 for a random z and feed s to 𝑉∗.

2. Let b′ = 𝑉∗(𝑠).

3. If 𝑏4 = 𝑏, output (s, b, z) and stop.  

4. Otherwise, go back to step 1 and repeat. (also 
called “rewinding”).

Lemma: 
(1) S runs in expected polynomial-time. 
(2) When S outputs a view, it is identically 

distributed to the view of 𝑉∗ in a real execution. 



What Made it Possible?

1. Each statement had multiple proofs of which the 
prover chooses one at random.

2. Each such proof is made of two parts: seeing either 
one on its own gives the verifier no knowledge; seeing 
both imply 100% correctness.

3. Verifier chooses to see either part, at random. 
The prover’s ability to provide either part on 
demand convinces the verifier. 


