
MIT 6.875

Lecture 14
Foundations of Cryptography

Beyond Secure Communication

Alice Bob

x y

Much more than communicating securely.

• Complex Interactions: proofs, computations, games.

• Complex Adversaries: Alice or Bob, adaptively chosen.

• Complex Properties: Correctness, Privacy, Fairness.

• Many Parties: this class, MIT, the internet.

Classical Proofs

Prover writes down a string (proof); Verifier checks.

a

b

a2+b2

Axiom 1
Axiom 2
Axiom 1⇒A
A⇒B
QED

Steve Cook Leonid Levin

Proofs

Prover Verifier

Claim/Theorem

proof

accept/
reject

Prover Verifier

Claim/Theorem

proof

accept/
reject

Efficiently Verifiable Proofs: 𝓝𝓟

Works hard Polynomial-time

Theorem: 𝑵 is a product of two prime numbers

Prover
Verifier

Proof = (𝑷,𝑸)

Accept iff N = 𝑃𝑄	𝑎𝑛𝑑	𝑃, 𝑄	𝑝𝑟𝑖𝑚𝑒

Prover Verifier

Claim/Theorem

proof

accept/
reject

Efficiently Verifiable Proofs: 𝓝𝓟

Works hard Polynomial-time

Def: A language/decision procedure ℒ is simply a set
of strings. So, ℒ ⊆ 0,1 ∗.

Efficiently Verifiable Proofs: 𝓝𝓟

Def: ℒ is an 𝓝𝓟-language if there is a poly-time verifier 𝑉
where
• Completeness: True theorems have (short) proofs.

 for all x ∈ ℒ, there is a poly(|𝐱|)-long witness
 (proof) w ∈ 0,1 ∗ s.t. 𝑉 𝑥,𝑤 = 1.

• Soundness: False theorems have no short proofs.
 for all x ∉ ℒ,	there is no witness. That is, for all

polynomially long w ∈ 0,1 ∗, 𝑉 𝑥,𝑤 = 0.

Theorem: 𝑵 is a product of two prime numbers

Prover
Verifier

Proof = (𝑷,𝑸)

Accept iff N = 𝑃𝑄.

After interaction, Bob the Verifier knows:
1) N is a product of two primes.

2) Also, the two factors of N.

Theorem: 𝒚 is a quadratic residue mod 𝑵

Prover
Verifier

Proof = 𝒙 ∈ 𝒁𝑵∗

Accept iff
𝑦 = 𝑥#	(mod	𝑁).

After interaction, Bob the Verifier knows:
1) y is a quadratic residue mod 𝑁.

2) Also, the square root of 𝑦.

Theorem: Graphs 𝑮𝟎 and 𝑮𝟏 are isomorphic.

Prover
Verifier

Proof = 𝝅: 𝑵 → [𝑵],

1

2 5

3 4

6
7

8 9

10

1
2

3

4

5

9

6

8

10

7

the isomorphism

Check ∀𝑖, 𝑗:
𝜋 𝑖 , 𝜋 𝑗 ∈ 𝐸$ iff 𝑖, 𝑗 ∈ 𝐸%.

Theorem: Graphs 𝑮𝟎 and 𝑮𝟏 are isomorphic.

Prover
Verifier

Proof = 𝝅: 𝑵 → [𝑵],

1

2 5

3 4

6
7

8 9

10

1
2

3

4

5

9

6

8

10

7

the isomorphism

After interaction, Bob the Verifier knows:
1) 𝐺% and 𝐺$ are isomorphic.

2) Also, the isomorphism.

Theorem: Graphs 𝑮 has a Hamiltonian cycle.

Prover
Verifier

Proof = Hamiltonian cycle

(𝒗𝟎, … , 𝒗𝑵'𝟏)

Check ∀𝑖:
(𝑣) , 𝑣)*$,-.	/) ∈ 𝐸

Theorem: Graphs 𝑮 has a Hamiltonian cycle.

Prover
Verifier

Proof = Hamiltonian cycle

After interaction, Bob the Verifier knows:
1) 𝐺 has a Hamiltonian cycle.

2) Also, the Hamiltonian cycle itself.

(𝒗𝟎, … , 𝒗𝑵'𝟏)

Theorem: Graphs 𝑮 has a Hamiltonian cycle.

Prover
Verifier

Proof = Hamiltonian cycle

NP-Complete Problem:
Every one of the other problems can be reduced to it

(𝒗𝟎, … , 𝒗𝑵'𝟏)

Theorem: 𝒚 is a quadratic residue mod 𝑵

Prover
Verifier

Proof = 𝒙 ∈ 𝒁𝑵∗

Accept iff
𝑦 = 𝑥#	(mod	𝑁).

After interaction, Bob the Verifier knows:
1) y is a quadratic residue mod 𝑁.

2) Also, the square root of 𝑦.

Is there any other way?

Zero Knowledge Proofs

Prover

“I will prove to you that I
could’ve sent you a proof

if I felt like it.”

Zero Knowledge Proofs

Prover

“I will not give you the square
root, but I will prove to you that I
could provide one if I wanted to.”

Two (Necessary) New Ingredients

1. Interaction: Rather than passively reading the proof,
the verifier engages in a conversation with the prover.

2. Randomness: The verifier is randomized and can
make a mistake with a (exponentially small) probability.

Here is the idea.

Prover

THEOREM: “there is an ≤	k
move solution to this cube”

Here is the idea.

Prover
Verifier

“Random” config

Challenge (0 or 1)

0: Show 𝑘/2 moves

Here is the idea.

Prover
Verifier

“Random” config

Challenge (0 or 1)

1: Show 𝑘/2 moves

POINT IS THIS: If the prover can do both consistently,
then there exist 𝑘 moves that map to

Prover
Verifier

Claim/Theorem

𝑎$ accept/
reject

Interactive Proofs for a Language ℒ

Probabilistic
Polynomial-timeComp. Unbounded

𝑞$
𝑎#
𝑞#

…

Prover
Verifier

Claim/Theorem

𝑎$ accept/
reject

Interactive Proofs for a Language ℒ

𝑞$
𝑎#
…

Def: ℒ is an 𝓘𝓟-language if there is a unbounded P and
probabilistic poly-time verifier 𝑉 where
• Completeness: If x ∈ ℒ, V always accepts.
• Soundness: If x ∉ ℒ, regardless of the cheating prover

strategy, V accepts with negligible probability.

Interactive Proofs for a Language ℒ

Def: ℒ is an 𝓘𝓟-language if there is a probabilistic poly-time
verifier 𝑉 where
• Completeness: If x ∈ ℒ,
 Pr P, 𝑉 𝑥 = 𝑎𝑐𝑐𝑒𝑝𝑡 = 1.
• Soundness: If x ∉ ℒ, there is a negligible function negl s.t.

for every 𝑷∗,
 Pr 𝑃∗, 𝑉 𝑥 = 𝑎𝑐𝑐𝑒𝑝𝑡 = negl(𝜆).

Interactive Proofs for a Language ℒ

Def: ℒ is an 𝓘𝓟-language if there is a probabilistic poly-time
verifier 𝑉 where
• Completeness: If x ∈ ℒ,
 Pr P, 𝑉 𝑥 = 𝑎𝑐𝑐𝑒𝑝𝑡 ≥ 𝒄.
• Soundness: If x ∉ ℒ, there is a negligible function negl s.t.

for every 𝑷∗,
 Pr 𝑃∗, 𝑉 𝑥 = 𝑎𝑐𝑐𝑒𝑝𝑡 ≤ 𝐬.

Equivalent as long as 𝒄 − 𝐬 ≥ 1/poly(λ)

Interactive Proof for QR

𝑠 = 𝑟#	(mod	𝑁)

𝑏 ← {0,1}

If b=0: 𝑧 = 𝑟 Check:
𝑧# = 𝑠𝑦0 	(mod	𝑁)If b=1: 𝑧 = 𝑟𝑥

ℒ = { 𝑁, 𝑦 : 𝑦	is	a	quadratic	residue	mod	𝑁}.

𝑁, 𝑦 𝑁, 𝑦

Completeness
Claim: If 𝑁, 𝑦 ∈ 𝐿, then the verifier accepts the proof
with probability 1.

𝑧# = (𝑟𝑥0)#= 𝑟#(𝑥#)0= 𝑠𝑦0 	(mod	𝑁)

So, the verifier’s check passes and he accepts.

Proof:

Soundness
Claim: If 𝑁, 𝑦 ∉ 𝐿, then for every cheating prover 𝑃∗,
the verifier accepts with probability at most 1/2.

Suppose the verifier accepts with probability > 1/2.Proof:

Then, there is some 𝑠 ∈ 𝑍/∗ s.t. the prover produces

𝑧% ∶ 𝑧%# = 𝑠	(mod	𝑁)

𝑧$ ∶ 𝑧$# = 𝑠𝑦	(mod	𝑁)

This means	(𝑧$/𝑧%)# = 𝑦 mod	𝑁 , which tells us that
𝑁, 𝑦 ∈ 𝐿.

Interactive Proof for QR

𝑠) = 𝑟)#	(mod	𝑁)

𝑏) ← {0,1}

If 𝑏)=0: 𝑧) = 𝑟) Check for all i:
𝑧)# = 𝑠)𝑦0 	(mod	𝑁)If 𝑏)=1:𝑧) = 𝑥𝑟)

ℒ = { 𝑁, 𝑦 : 𝑦	is	a	quadratic	residue	mod	𝑁}.

𝑁, 𝑦 𝑁, 𝑦

REPEAT sequentially 𝜆 times.

Soundness
Claim: If 𝑁, 𝑦 ∉ 𝐿, then for every cheating prover 𝑃∗,
the verifier accepts with probability at most ($

#
)1.

Exercise.Proof:

This is Zero-Knowledge.

𝑠 = 𝑟#	(mod	𝑁)

𝑏 ← {0,1}

If b=0: 𝑧 = 𝑟 Check:
𝑧# = 𝑠𝑦0 	(mod	𝑁)If b=1: 𝑧 = 𝑟𝑥

But what does that mean?

𝑁, 𝑦 𝑁, 𝑦

How to Define Zero-Knowledge?

After the interaction, 𝑽 knows:
• The theorem is true; and

• A view of the interaction
 (= transcript + coins of V)

𝑷 gives zero knowledge to 𝑽:

When the theorem is true, the view gives V
nothing that he couldn’t have obtained on
his own without interacting with P.

How to Define Zero-Knowledge?

(𝑃, 𝑉) is zero-knowledge if 𝑉 can generate
his VIEW of the interaction all by himself in
probabilistic polynomial time.

How to Define Zero-Knowledge?

(𝑃, 𝑉) is zero-knowledge if 𝑉 can “simulate”
his VIEW of the interaction all by himself in
probabilistic polynomial time.

The Simulation Paradigm

𝑣𝑖𝑒𝑤! 𝑃, 𝑉 :
Transcript = 𝑠, 𝑏, 𝑧 ,

Coins = 𝑏

PPT “simulator” 𝑺

𝑁, 𝑦𝑠𝑖𝑚":
𝑠, 𝑏, 𝑧

𝑣𝑖𝑒𝑤! 𝑃, 𝑉 :
𝑠, 𝑏, 𝑧

Zero Knowledge: Definition

An Interactive Protocol (P,V) is zero-knowledge
for a language 𝐿	if there exists a PPT algorithm S
(a simulator) such that for every 𝒙 ∈ 𝑳, the
following two distributions are indistinguishable:

1. 𝑣𝑖𝑒𝑤!(𝑃, 𝑉)

2. 𝑆(𝑥, 1#)

(P,V) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Perfect Zero Knowledge: Definition

An Interactive Protocol (P,V) is perfect zero-
knowledge for a language 𝐿	if there exists a PPT
algorithm S (a simulator) such that for every 𝑥 ∈
𝐿, the following two distributions are identical:

1. 𝑣𝑖𝑒𝑤!(𝑃, 𝑉)

2. 𝑆(𝑥, 1#)

(P,V) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Statistical Zero Knowledge: Definition

An Interactive Protocol (P,V) is statistical zero-
knowledge for a language 𝐿	if there exists a PPT
algorithm S (a simulator) such that for every 𝑥 ∈
𝐿, the following two distributions are
statistically indistinguishable:

1. 𝑣𝑖𝑒𝑤!(𝑃, 𝑉)

2. 𝑆(𝑥, 1#)

(P,V) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Computational Zero Knowledge: Definition

An Interactive Protocol (P,V) is computational
zero-knowledge for a language 𝐿	if there exists a
PPT algorithm S (a simulator) such that for every
𝑥 ∈ 𝐿, the following two distributions are
computationally indistinguishable:

1. 𝑣𝑖𝑒𝑤!(𝑃, 𝑉)

2. 𝑆(𝑥, 1#)

(P,V) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Zero Knowledge
Claim: The QR protocol is zero knowledge.

𝑣𝑖𝑒𝑤! 𝑃, 𝑉 :
𝑠, 𝑏, 𝑧

Simulator S works as follows:

1. First pick a random bit b.

2. pick a random 𝑧 ∈ 𝑍/∗ .

3. compute s = 𝑧#/𝑦0.

Exercise: The simulated transcript is identically
distributed as the real transcript in the interaction (P,V).

4. output (s, b, z).

What if V is NOT HONEST.

An Interactive Protocol (P,V) is honest-verifier perfect
zero-knowledge for a language 𝐿	if there exists a PPT
simulator S such that for every 𝑥 ∈ 𝐿, the following two
distributions are identical:

1. 𝑣𝑖𝑒𝑤!(𝑃, 𝑉) 2. 𝑆(𝑥, 1#)

An Interactive Protocol (P,V) is perfect zero-knowledge
for a language 𝐿	if for every PPT 𝑽∗, there exists a
(expected) poly time simulator S s.t. for every 𝑥 ∈ 𝐿, the
following two distributions are identical:

1. 𝑣𝑖𝑒𝑤!∗(𝑃, 𝑉∗) 2. 𝑆(𝑥, 1#)

OLD DEF

REAL DEF

NOW: (Malicious Ver) Zero Knowledge
Theorem: The QR protocol is (malicious verifier) zero
knowledge.

Simulator S works as follows:

1. First pick a random s and
“feed it to” 𝑉∗.
2. Let b = 𝑉∗(𝑠).

Now what???𝑣𝑖𝑒𝑤!∗ 𝑃, 𝑉∗ :
𝑠, 𝑏, 𝑧

(Malicious Ver) Zero Knowledge
Theorem: The QR protocol is (malicious verifier) zero
knowledge.

Simulator S works as follows:

1. First set 𝑠 = 2!

3"
 for a random z and b and feed s to 𝑉∗.

2. Let b′ = 𝑉∗(𝑠).

3. If 𝑏4 = 𝑏, output (s, b, z) and stop.

4. Otherwise, go back to step 1 and repeat. (also
called “rewinding”).

Simulator S works as follows:

1. First set 𝑠 = 2!

3"
 for a random z and feed s to 𝑉∗.

2. Let b′ = 𝑉∗(𝑠).

3. If 𝑏4 = 𝑏, output (s, b, z) and stop.

4. Otherwise, go back to step 1 and repeat. (also
called “rewinding”).

Lemma:
(1) S runs in expected polynomial-time.
(2) When S outputs a view, it is identically

distributed to the view of 𝑉∗ in a real execution.

What Made it Possible?

1. Each statement had multiple proofs of which the
prover chooses one at random.

2. Each such proof is made of two parts: seeing either
one on its own gives the verifier no knowledge; seeing
both imply 100% correctness.

3. Verifier chooses to see either part, at random.
The prover’s ability to provide either part on
demand convinces the verifier.

