MIT 6.875

Foundations of Cryptography Lecture 14

Beyond Secure Communication

Much more than communicating securely.

- Complex Interactions: proofs, computations, games.
- Complex Adversaries: Alice or Bob, adaptively chosen.
- Complex Properties: Correctness, Privacy, Fairness.
- Many Parties: this class, MIT, the internet.

Classical Proofs

Prover writes down a string (proof); Verifier checks.

Proofs

Efficiently Verifiable Proofs: \mathcal{NP}

Works hard

Polynomial-time

Theorem: *N* is a product of two prime numbers

Accept *iff* N = PQ and P, Q prime

Efficiently Verifiable Proofs: \mathcal{NP}

Works hard

Polynomial-time

<u>**Def</u>: A language/decision procedure** \mathcal{L} is simply a set of strings. So, $\mathcal{L} \subseteq \{0,1\}^*$.</u>

Efficiently Verifiable Proofs: \mathcal{NP}

<u>Def</u>: \mathcal{L} is an \mathcal{NP} -language if there is a **poly-time** verifier V where

- Completeness: True theorems have (short) proofs.
 for all x ∈ L, there is a poly(|x|)-long witness
 (proof) w ∈ {0,1}* s.t. V(x,w) = 1.
- Soundness: False theorems have no short proofs.
 for all x ∉ L, there is no witness. That is, for all polynomially long w ∈ {0,1}*, V(x,w) = 0.

Theorem: *N* is a product of two prime numbers

Accept *iff* N = PQ.

After interaction, Bob the Verifier knows:

1) N is a product of two primes.

2) Also, the two factors of N.

Theorem: y is a quadratic residue mod N

After interaction, Bob the Verifier knows:

- 1) y is a quadratic residue mod N.
- 2) Also, the square root of y.

Theorem: Graphs G_0 and G_1 are isomorphic.

Proof = π : $[N] \rightarrow [N]$, the isomorphism

Prover

Check $\forall i, j$: $(\pi(i), \pi(j)) \in E_1 \text{ iff } (i, j) \in E_0.$

Theorem: Graphs G_0 and G_1 are isomorphic.

After interaction, Bob the Verifier knows:

- 1) G_0 and G_1 are isomorphic.
- 2) Also, the isomorphism.

Theorem: Graphs G has a Hamiltonian cycle.

Prover

Check $\forall i$: $(v_i, v_{i+1 \mod N}) \in E$

Theorem: Graphs G has a Hamiltonian cycle.

Prover

After interaction, Bob the Verifier knows:

1) G has a Hamiltonian cycle.

2) Also, the Hamiltonian cycle itself.

Theorem: Graphs G has a Hamiltonian cycle.

Prover

NP-Complete Problem:

Every one of the other problems can be reduced to it

Theorem: y is a quadratic residue mod N

After interaction, Bob the Verifier knows:

- 1) y is a quadratic residue mod N.
- 2) Also, the square root of y.

Is there any other way?

Zero Knowledge Proofs

"I will prove to you that I could've sent you a proof if I felt like it."

Prover

Micali

Goldwasser

Rackoff

Zero Knowledge Proofs

"I will not give you the square root, but I will prove to you that I could provide one if I wanted to."

Prover

Micali

Goldwasser

Rackoff

Two (Necessary) New Ingredients

1. Interaction: Rather than passively reading the proof, the verifier engages in a conversation with the prover.

2. Randomness: The verifier is randomized and can make a mistake with a (exponentially small) probability.

Here is the idea.

THEOREM: "there is an $\leq k$ move solution to this cube"

Here is the idea.

"Random" config

Prover

Challenge (0 or 1)

Here is the idea.

"Random" config

Chal	lenge	(0	or	1)

1: Show k/2 moves

POINT IS THIS: If the prover can do both consistently, then there exist k moves that map \bigotimes to \bigotimes

Interactive Proofs for a Language \mathcal{L}

Comp. Unbounded

Probabilistic Polynomial-time

Interactive Proofs for a Language \mathcal{L}

<u>**Def</u>:** \mathcal{L} is an \mathcal{JP} -language if there is a unbounded P and **probabilistic poly-time** verifier V where</u>

- **Completeness**: If $x \in \mathcal{L}$, V always accepts.
- Soundness: If x ∉ L, regardless of the cheating prover strategy, V accepts with negligible probability.

Interactive Proofs for a Language ${\cal L}$

<u>Def</u>: \mathcal{L} is an \mathcal{JP} -language if there is a **probabilistic poly-time** verifier V where

- **Completeness**: If $x \in \mathcal{L}$, $\Pr[(P, V)(x) = accept] = 1.$
- Soundness: If x ∉ L, there is a negligible function negl s.t. for every P*,

 $\Pr[(P^*, V)(x) = accept] = \operatorname{negl}(\lambda).$

Interactive Proofs for a Language ${\cal L}$

<u>Def</u>: \mathcal{L} is an \mathcal{JP} -language if there is a **probabilistic poly-time** verifier V where

- **Completeness**: If $x \in \mathcal{L}$, $\Pr[(P, V)(x) = accept] \ge c$.
- Soundness: If x ∉ L, there is a negligible function negl s.t. for every P*,

 $\Pr[(P^*, V)(x) = accept] \leq s.$

Equivalent as long as $c - s \ge 1/\text{poly}(\lambda)$

Interactive Proof for QR

 $\mathcal{L} = \{(N, y): y \text{ is a quadratic residue mod } N\}.$

$$(N, y)$$

$$b \leftarrow \{0,1\}$$

$$(N, y)$$

$$b \leftarrow \{0,1\}$$

$$(N, y)$$

$$(N,$$

Completeness

Claim: If $(N, y) \in L$, then the verifier accepts the proof with probability 1.

Proof:

$$z^{2} = (rx^{b})^{2} = r^{2}(x^{2})^{b} = sy^{b} \pmod{N}$$

So, the verifier's check passes and he accepts.

Soundness

Claim: If $(N, y) \notin L$, then for every cheating prover P^* , the verifier accepts with probability at most 1/2.

Proof: Suppose the verifier accepts with probability > 1/2.

Then, there is some $s \in Z_N^*$ s.t. the prover produces

$$z_0 : z_0^2 = s \pmod{N}$$
$$z_1 : z_1^2 = sy \pmod{N}$$

This means $(z_1/z_0)^2 = y \pmod{N}$, which tells us that $(N, y) \in L$.

Interactive Proof for QR

 $\mathcal{L} = \{(N, y): y \text{ is a quadratic residue mod } N\}.$

$$s_{i} = r_{i}^{2} \pmod{N}$$

$$(N, y)$$

$$b_{i} \leftarrow \{0, 1\}$$

$$(N, y)$$

$$b_{i} \leftarrow \{0, 1\}$$

$$(N, y)$$

$$(N, y$$

REPEAT sequentially λ times.

Soundness

Claim: If $(N, y) \notin L$, then for every cheating prover P^* , the verifier accepts with probability at most $(\frac{1}{2})^{\lambda}$.

Proof: Exercise.

This is Zero-Knowledge.

But what does that mean?

$$(N, y)$$

$$b \leftarrow \{0,1\}$$

$$(N, y)$$

$$b \leftarrow \{0,1\}$$

$$(N, y)$$

$$(N,$$

How to Define Zero-Knowledge?

After the interaction, V knows:

- The theorem is true; and
- A view of the interaction
 (= transcript + coins of V)

P gives zero knowledge to V:

When the theorem is true, the view gives V nothing that he couldn't have obtained on his own without interacting with P.

How to Define Zero-Knowledge?

(*P*, *V*) is zero-knowledge if *V* can generate his **VIEW** of the interaction **all by himself** in **probabilistic polynomial time**.

How to Define Zero-Knowledge?

(*P*, *V*) is zero-knowledge if *V* can "simulate" his **VIEW** of the interaction **all by himself** in **probabilistic polynomial time**.

The Simulation Paradigm

 sim_S : (s, b, z)

 $view_V(P,V)$: Transcr(pt b, z), Coins = b

$$s = r^{2} \pmod{N}$$

$$b \leftarrow \{0,1\}$$

$$(N, y)$$

Zero Knowledge: Definition

An Interactive Protocol (P,V) is zero-knowledge for a language L if there exists a **PPT** algorithm S (a simulator) such that for every $x \in L$, the following two distributions are indistinguishable:

1. $view_V(P,V)$

2. $S(x, 1^{\lambda})$

Perfect Zero Knowledge: Definition

An Interactive Protocol (P,V) is **perfect zeroknowledge** for a language L if there exists a PPT algorithm S (a simulator) such that for every $x \in$ L, the following two distributions are **identical**:

1.
$$view_V(P,V)$$

2. $S(x, 1^{\lambda})$

Statistical Zero Knowledge: Definition

An Interactive Protocol (P,V) is statistical zeroknowledge for a language L if there exists a PPT algorithm S (a simulator) such that for every $x \in$ L, the following two distributions are statistically indistinguishable:

1. $view_V(P,V)$

2. $S(x, 1^{\lambda})$

Computational Zero Knowledge: Definition

An Interactive Protocol (P,V) is **computational zero-knowledge** for a language L if there exists a PPT algorithm S (a simulator) such that for every $x \in L$, the following two distributions are **computationally indistinguishable**:

1. $view_V(P,V)$

2. $S(x, 1^{\lambda})$

Zero Knowledge

Claim: The QR protocol is zero knowledge.

$$view_V(P,V):$$

(s,b,z)

Simulator S works as follows:

- 1. First pick a random bit b.
- 2. pick a random $z \in Z_N^*$.
- 3. compute $s = z^2/y^b$.
- 4. output (s, b, z).

Exercise: The simulated transcript is identically distributed as the real transcript in the interaction (P,V).

What if V is NOT HONEST.

OLD DEF An Interactive Protocol (P,V) is **honest-verifier** perfect zero-knowledge for a language L if there exists a PPT simulator S such that for every $x \in L$, the following two distributions are identical:

> 2. $S(x, 1^{\lambda})$ $view_V(P,V)$

REAL DEF An Interactive Protocol (P,V) is **perfect zero-knowledge** for a language L if for every PPT V^* , there exists a (expected) poly time simulator S s.t. for every $x \in L$, the following two distributions are identical:

> 2. $S(x, 1^{\lambda})$ 1. $view_{V^*}(P, V^*)$

NOW: (Malicious Ver) Zero Knowledge

Theorem: The QR protocol is (malicious verifier) zero knowledge.

$$view_{V^*}(P,V^*):$$

(s, b, z)

Simulator S works as follows:

1. First pick a random s and "feed it to" V^* .

2. Let
$$b = V^*(s)$$
.

Now what???

(Malicious Ver) Zero Knowledge

Theorem: The QR protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:

1. First set $s = \frac{z^2}{y^b}$ for a random z and b and feed s to V^* . 2. Let b' = $V^*(s)$.

3. If b' = b, output (s, b, z) and stop.

4. Otherwise, go back to step 1 and repeat. (also called "rewinding").

Simulator S works as follows:

1. First set $s = \frac{z^2}{y^b}$ for a random z and feed s to V^* . 2. Let $b' = V^*(s)$.

3. If b' = b, output (s, b, z) and stop.

4. Otherwise, go back to step 1 and repeat. (also called "rewinding").

Lemma:

- (1) S runs in expected polynomial-time.
- (2) When S outputs a view, it is identically distributed to the view of V^* in a real execution.

What Made it Possible?

1. Each statement had multiple proofs of which the prover chooses one at random.

2. Each such proof is made of two parts: seeing either one on its own gives the verifier no knowledge; seeing both imply 100% correctness.

3. Verifier chooses to see either part, at random. The prover's ability to provide either part on demand convinces the verifier.