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Digital Signatures

Theorem: Assuming the existence of one-way functions 
and collision-resistant hash function families, there are 
digital signature schemes.  

We showed:



Digital Signatures

Theorem: Digital Signature schemes exist if and only if 
one-way functions exist.

It turns out that collision-resistant hashing is not necessary.



Digital Signature Construction 
Start from 𝑂𝑇. 𝐺𝑒𝑛, 𝑂𝑇. 𝑆𝑖𝑔𝑛, 𝑂𝑇. 𝑉𝑒𝑟 , a one-time 
signature scheme that can sign arbitrarily long messages.  
       (Lamport + collision-resistant hashing)

Build a (virtual) tree of depth 𝜆 = security param.

Let 𝐾 be a PRF key, 𝑟! = 𝑃𝑅𝐹(𝐾, 𝑖) for 𝑖 ∈ 0,1 "# , 
and 𝑉𝐾! , 𝑆𝐾! ← 𝑂𝑇. 𝐺𝑒𝑛(1#; 𝑟!).



Digital Signature Construction 

Signature keys:  𝑆𝐾 = 𝐾 and 𝑉𝐾 = 𝑂𝑇𝑉𝐾$.
Signing Algorithm:  
Pick a random leaf r ∈ 0,1 # ,
Generate the authentication path 𝜎$, 𝜎%! , 𝜎%" , … , 𝜎%  & 𝜎∗

𝜎∗ ← 𝑂𝑇. 𝑆𝑖𝑔𝑛 𝑆𝐾% , 𝑚
𝜎' ← 𝑂𝑇. 𝑆𝑖𝑔𝑛 𝑆𝐾' , 𝑉𝐾'(||𝑉𝐾')

The signature is (r, 𝜎$, 𝜎%! , 𝜎%" , … , 𝜎% , 𝜎
∗).



Digital Signature Construction 

• Historically regarded as inefficient; therefore, never 
used in practice. 

• However, this signature scheme (or variants thereof) 
are now called “hash-based signatures” and seeing a 
re-emergence as a candidate post-quantum secure 
signature scheme.  E.g. https://sphincs.org/



Direct Constructions
“Hash-and-Sign”: Secure in the “random oracle model”.  



“Vanilla” RSA Signatures

Start with any trapdoor permutation, e.g. RSA.

Gen(1#): Pick primes 𝑃, 𝑄  and let 𝑁 = 𝑃𝑄. Pick 𝑒 
relatively prime to 𝜑 𝑁  and let 𝑑 = 𝑒*)	(mod 𝜑 𝑁 ). 

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑚+ mod	𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎, = 𝑚 mod	𝑁 .

SK = 𝑁, 𝑑    and   VK = 𝑁, 𝑒  

Problem: Existentially forgeable! 



“Vanilla” RSA Signatures

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑚+ mod	𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎, = 𝑚 mod	𝑁 .

Problem: Existentially forgeable! 

Attack: Pick a random 𝜎  and output (𝑚 = 𝜎,, 𝜎) as 
the forgery.  

Problem: Malleable! 
Attack: Given a signature of 𝑚, you can produce a 
signature of 2, ∗ 𝑚, 3, ∗ 𝑚,… ,𝑚-, 𝑚., …



“Vanilla” RSA Signatures

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑚+ mod	𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎, = 𝑚 mod	𝑁 .

Fundamental Issues:

1. Can ”reverse-engineer” the message starting from 
the signature  (Attack 1)

2. Algebraic structure allows malleability (Attack 2)  



How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1#): Pick primes 𝑃, 𝑄  and let 𝑁 = 𝑃𝑄. Pick 𝑒 
relatively prime to 𝜑 𝑁  and let 𝑑 = 𝑒*)	(mod 𝜑 𝑁 ). 

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑯(𝒎)+ mod	𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎, = 𝑯(𝒎) mod	𝑁 .

SK = 𝑁, 𝑑    and   VK = 𝑁, 𝑒,𝑯  

So, what is H? Some very complicated “hash” function. 



How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1#): Pick primes 𝑃, 𝑄  and let 𝑁 = 𝑃𝑄. Pick 𝑒 
relatively prime to 𝜑 𝑁  and let 𝑑 = 𝑒*)	(mod 𝜑 𝑁 ). 

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑯(𝒎)+ mod	𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎, = 𝑯(𝒎) mod	𝑁 .

SK = 𝑁, 𝑑    and   VK = 𝑁, 𝑒,𝑯  

H should be at least one-way to prevent Attack #1.



How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1#): Pick primes 𝑃, 𝑄  and let 𝑁 = 𝑃𝑄. Pick 𝑒 
relatively prime to 𝜑 𝑁  and let 𝑑 = 𝑒*)	(mod 𝜑 𝑁 ). 

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑯(𝒎)+ mod	𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎, = 𝑯(𝒎) mod	𝑁 .

SK = 𝑁, 𝑑    and   VK = 𝑁, 𝑒,𝑯  

Hard to “algebraically manipulate” H(m) into H(related m’).
(to prevent Attack #2.)



How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1#): Pick primes 𝑃, 𝑄  and let 𝑁 = 𝑃𝑄. Pick 𝑒 
relatively prime to 𝜑 𝑁  and let 𝑑 = 𝑒*)	(mod 𝜑 𝑁 ). 

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑯(𝒎)+ mod	𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎, = 𝑯(𝒎) mod	𝑁 .

SK = 𝑁, 𝑑    and   VK = 𝑁, 𝑒,𝑯  

Collision-resistance does not seem to be enough.  (Given a 
CRHF h(m), you may be able to produce h(m’) for related m’.)



The Random Oracle Heuristic 

Want: A public H that is “non-malleable”. 

Given H(m), it is hard to produce H(m’) for any non-
trivially related m’.

For every PPT adv 𝐴	and “every non-trivial relation” 𝑅,
 Pr 𝐴 𝐻 𝑚 = 𝐻 𝑚/ : 𝑅 𝑚,𝑚/ = 1 = negl(𝜆) 

How about the relation 𝑅 where 
𝑅 𝑥, 𝑦 = 1 if and only if 𝑦 = H x ?



The Random Oracle Heuristic 

Proxy: A public H that “behaves like a random function”

𝒜( )

(A PRF also behaves like a random function, 
but 𝑃𝑅𝐹0  is not publicly computable.)

Reality: Random Oracle Heuristic:

𝒜 (1!)H
H

H is virtually a black box.The only way to compute H 
is by calling the oracle.



Proof
Assume there is a PPT adversary 𝒜	that breaks the EUF-
CMA security of hashed RSA in the random oracle model.

𝒜“Give me a signature of m”

“Give me H(m)”

𝑉𝐾

(𝑚∗, 𝜎∗)
Then, there is an 
algorithm ℬ that 
solves the RSA 
problem.



Proof
Assume there is a (𝑄-query) PPT adversary 𝒜	that 
breaks the EUF-CMA security of hashed RSA in the 
random oracle model.

𝒜

ℬ 𝑉𝐾 = (𝑁, 𝑒)
(𝑁, 𝑒, 𝑦)

Hash Query: m

𝐻 +𝑚 = 𝑦 

o.w., 𝐻 𝑚 = 𝑥! 

Sign Query: m

“trap”

“normal”

𝑚 = +𝑚? !abort!
o.w., 𝜎 = 𝑥 

Pick random +𝑚 

Forgery: 𝑚∗, 𝜎∗



Proof
Claim: To produce a successful forgery, 𝒜 must have 
queried the hash oracle on 𝑚∗. W.p. 1/𝑄, 𝑚∗ is the trap.

𝒜

ℬ 𝑉𝐾 = (𝑁, 𝑒)
(𝑁, 𝑒, 𝑦)

Hash Query: m

𝐻 +𝑚 = 𝑦 

o.w., 𝐻 𝑚 = 𝑥! 

Sign Query: m

𝑚 = +𝑚? !abort!
o.w., 𝜎 = 𝑥 

Forgery: 𝑚∗, 𝜎∗If 𝑚∗ = +𝑚, yay!
𝑦#/! “trap”



Bottomline: Hashed RSA

In practice, we let 𝐻 be the SHA-3 hash function.

… and believe that SHA-3 ”acts like a random function”. 
That’s the heuristic. On the one hand, it doesn’t make 
any sense, but on the other, it has served us well so far. 
No attacks against RSA + SHA-3, for example.

(PKCS Standard, used everywhere)



Yet another signature scheme
Gennaro-Halevi-Rabin’99



Many Variants of Signatures

Ring Signatures: Protection for Whistleblowers 

Threshold Signatures: Protecting against loss of secret key

Aggregate Signatures: Compressing many signatures into one

Boneh-Lynn-Shacham (BLS) Signatures from “Bilinear maps”

(won’t show in this class)


