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Digital Signatures

We showed:

Theorem: Assuming the existence of one-way functions
and collision-resistant hash function families, there are
digital signature schemes.




Digital Signatures

It turns out that collision-resistant hashing is not necessary.

Theorem: Digital Signature schemes exist if and only if
one-way functions exist.




Digital Signature Construction

Start from (OT. Gen, OT.Sign,OT.Ver), a one-time
signature scheme that can sign arbitrarily long messages.
(Lamport + collision-resistant hashing)

Build a (virtual) tree of depth A = security param.

Let K be a PRF key, r; = PRF (K, i) fori € {0,1}*4,
and (VK;,SK;) « OT.Gen(1%;17).
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Digital Signature Construction
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Signature keys: SK = K and VK = OTVK..

Signing Algorithm:

Pick a random leaf r € {0,1}4,

Generate the authentication path o, o, , 0y, ..., 07 & 0~

o, < OT.Sign(SK,,VK,,||VK,1)
o <« OT.Sign(SK,,m)

The signature is (1, o, 0y, Oy, ..., Oy, 07).



Digital Signature Construction

Historically regarded as inefficient; therefore, never
used in practice.

However, this signature scheme (or variants thereof)
are now called “hash-based signatures” and seeing a
re-emergence as a candidate post-quantum secure
signature scheme. E.g. https://sphincs.org/



Direct Constructions

“Hash-and-Sign”: Secure in the “random oracle model”.



“Vanilla” RSA Signatures

Start with any trapdoor permutation, e.g. RSA.

Gen(1%): Pick primes (P, Q) and let N = PQ. Pick e
relatively prime to @(N) and let d = e~ (mod @(N)).

SK=(N,d) and VK= (N,e)
Sign(SK, m): Output signature ¢ = m® (mod N).
Verify(VK, m, g): Check if ¢ = m (mod N).

Problem: Existentially forgeable!



“Vanilla” RSA Signatures

Sign(SK, m): Output signature ¢ = m® (mod N).

Verify(VK, m, g): Check if ¢ = m (mod N).

Problem: Existentially forgeable!

Attack: Pick a random o and output (m = o€, o) as
the forgery.

Problem: Malleable!

Attack: Given a signature of m, you can produce a

sighature of 2¢ xm,3¢* 3 ..




“Vanilla” RSA Signatures

Sign(SK, m): Output signature ¢ = m® (mod N).

Verify(VK, m, g): Check if ¢ = m (mod N).

Fundamental Issues:

1. Can “reverse-engineer” the message starting from
the signature (Attack 1)

2. Algebraic structure allows malleability (Attack 2)




How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1%): Pick primes (P, Q) and let N = PQ. Pick e
relatively prime to @(N) and let d = e~ (mod @(N)).

SK=(N,d) and VK=(N,e, H)
Sign(SK, m): Output signature 0 = H(m)% (mod N).
Verify(VK, m, 0): Check if ¢ = H(m) (mod N).

So, what is H? Some very complicated “hash” function.



How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1%): Pick primes (P, Q) and let N = PQ. Pick e
relatively prime to @(N) and let d = e~ (mod @(N)).

SK=(N,d) and VK=(N,e, H)
Sign(SK, m): Output signature 0 = H(m)% (mod N).
Verify(VK, m, 0): Check if ¢ = H(m) (mod N).

H should be at least one-way to prevent Attack #1.



How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1%): Pick primes (P, Q) and let N = PQ. Pick e
relatively prime to @(N) and let d = e~ (mod @(N)).

SK=(N,d) and VK=(N,e, H)
Sign(SK, m): Output signature 0 = H(m)% (mod N).
Verify(VK, m, 0): Check if ¢ = H(m) (mod N).

Hard to “algebraically manipulate” H(m) into H(related m’).
(to prevent Attack #2.)



How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1%): Pick primes (P, Q) and let N = PQ. Pick e
relatively prime to @(N) and let d = e~ (mod @(N)).

SK=(N,d) and VK=(N,e, H)
Sign(SK, m): Output signature 0 = H(m)% (mod N).
Verify(VK, m, 0): Check if ¢ = H(m) (mod N).

Collision-resistance does not seem to be enough. (Given a
CRHF h(m), you may be able to produce h(m’) for related m’.)



The Random Oracle Heuristic

Want: A public H that is “non-malleable”.

Given H(m), it is hard to produce H(m’]%7any non-
trivially related m’. 4°

For every PPT adv A4 and “every non-trivial relation” R,
Pr[A(H(m)) =H(m'):R(m,m') = 1] = negl(1)

How about the relation R where
R(x,y) = 1ifand onlyif y = H(x)?




The Random Oracle Heuristic

Proxy: A public H that “behaves like a random function”

(A PRF also behaves like a random function,
but PRF} is not publicly computable.)

Reality: Random Oracle Heuristic:
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Proof

Assume there is a PPT adversary A that breaks the EUF-
CMA security of hashed RSA in the random oracle model.

VK

“Give me H(m)”

“Give me a signature of m” ch’
Then, there is an

algorithm B that ~ (m' o)
solves the RSA
problem.




Proof

Assume there is a (Q-query) PPT adversary A that

breaks the EUF-CMA security of hashed RSA in the
random oracle model.

B VK = (N, e)

(N,e,y)

Hash Query: m

Pick random 1 trap” H(m) =y dq

“normal” o.w., H(m) = x®

Sign Query: m

m = m? labort!

OW., 0 =X

- Forgery: m~,o”




Proof

Claim: To produce a successful forgery, <A must have
queried the hash oracle on m*. W.p. 1/Q, m” is the trap.

B VK = (N, e)

N, e,
( }:) Hash Query: m

Hm)=y CA

ow., H(m) = x¢

Sign Query: m

m = m? labort!

1/e O.W., O = X
/ I(trap”

If m* = fi,yay!  Forgery:m’, o~




Bottomline: Hashed RSA
(PKCS Standard, used everywhere)

In practice, we let H be the SHA-3 hash function.
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... and believe that SHA-3 "acts like a random function”.
That’s the heuristic. On the one hand, it doesn’t make
any sense, but on the other, it has served us well so far.
No attacks against RSA + SHA-3, for example.



Yet another sighature scheme

Gennaro-Halevi-Rabin’99



Many Variants of Signatures

Aggregate Signatures: Compressing many signatures into one

Boneh-Lynn-Shacham (BLS) Signatures from “Bilinear maps”

Ring Signatures: Protection for Whistleblowers

Threshold Signatures: Protecting against loss of secret key

(won’t show in this class)



