
MIT 6.875

Lecture 13
Foundations of Cryptography

Digital Signatures

Theorem: Assuming the existence of one-way functions
and collision-resistant hash function families, there are
digital signature schemes.

We showed:

Digital Signatures

Theorem: Digital Signature schemes exist if and only if
one-way functions exist.

It turns out that collision-resistant hashing is not necessary.

Digital Signature Construction
Start from 𝑂𝑇. 𝐺𝑒𝑛, 𝑂𝑇. 𝑆𝑖𝑔𝑛, 𝑂𝑇. 𝑉𝑒𝑟 , a one-time
signature scheme that can sign arbitrarily long messages.
 (Lamport + collision-resistant hashing)

Build a (virtual) tree of depth 𝜆 = security param.

Let 𝐾 be a PRF key, 𝑟! = 𝑃𝑅𝐹(𝐾, 𝑖) for 𝑖 ∈ 0,1 "# ,
and 𝑉𝐾! , 𝑆𝐾! ← 𝑂𝑇. 𝐺𝑒𝑛(1#; 𝑟!).

Digital Signature Construction

Signature keys: 𝑆𝐾 = 𝐾 and 𝑉𝐾 = 𝑂𝑇𝑉𝐾$.
Signing Algorithm:
Pick a random leaf r ∈ 0,1 # ,
Generate the authentication path 𝜎$, 𝜎%! , 𝜎%" , … , 𝜎% & 𝜎∗

𝜎∗ ← 𝑂𝑇. 𝑆𝑖𝑔𝑛 𝑆𝐾% , 𝑚
𝜎' ← 𝑂𝑇. 𝑆𝑖𝑔𝑛 𝑆𝐾' , 𝑉𝐾'(||𝑉𝐾')

The signature is (r, 𝜎$, 𝜎%! , 𝜎%" , … , 𝜎% , 𝜎
∗).

Digital Signature Construction

• Historically regarded as inefficient; therefore, never
used in practice.

• However, this signature scheme (or variants thereof)
are now called “hash-based signatures” and seeing a
re-emergence as a candidate post-quantum secure
signature scheme. E.g. https://sphincs.org/

Direct Constructions
“Hash-and-Sign”: Secure in the “random oracle model”.

“Vanilla” RSA Signatures

Start with any trapdoor permutation, e.g. RSA.

Gen(1#): Pick primes 𝑃, 𝑄 and let 𝑁 = 𝑃𝑄. Pick 𝑒
relatively prime to 𝜑 𝑁 and let 𝑑 = 𝑒*)	(mod 𝜑 𝑁).

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑚+ mod	𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎, = 𝑚 mod	𝑁 .

SK = 𝑁, 𝑑 and VK = 𝑁, 𝑒

Problem: Existentially forgeable!

“Vanilla” RSA Signatures

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑚+ mod	𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎, = 𝑚 mod	𝑁 .

Problem: Existentially forgeable!

Attack: Pick a random 𝜎 and output (𝑚 = 𝜎,, 𝜎) as
the forgery.

Problem: Malleable!
Attack: Given a signature of 𝑚, you can produce a
signature of 2, ∗ 𝑚, 3, ∗ 𝑚,… ,𝑚-, 𝑚., …

“Vanilla” RSA Signatures

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑚+ mod	𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎, = 𝑚 mod	𝑁 .

Fundamental Issues:

1. Can ”reverse-engineer” the message starting from
the signature (Attack 1)

2. Algebraic structure allows malleability (Attack 2)

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1#): Pick primes 𝑃, 𝑄 and let 𝑁 = 𝑃𝑄. Pick 𝑒
relatively prime to 𝜑 𝑁 and let 𝑑 = 𝑒*)	(mod 𝜑 𝑁).

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑯(𝒎)+ mod	𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎, = 𝑯(𝒎) mod	𝑁 .

SK = 𝑁, 𝑑 and VK = 𝑁, 𝑒,𝑯

So, what is H? Some very complicated “hash” function.

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1#): Pick primes 𝑃, 𝑄 and let 𝑁 = 𝑃𝑄. Pick 𝑒
relatively prime to 𝜑 𝑁 and let 𝑑 = 𝑒*)	(mod 𝜑 𝑁).

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑯(𝒎)+ mod	𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎, = 𝑯(𝒎) mod	𝑁 .

SK = 𝑁, 𝑑 and VK = 𝑁, 𝑒,𝑯

H should be at least one-way to prevent Attack #1.

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1#): Pick primes 𝑃, 𝑄 and let 𝑁 = 𝑃𝑄. Pick 𝑒
relatively prime to 𝜑 𝑁 and let 𝑑 = 𝑒*)	(mod 𝜑 𝑁).

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑯(𝒎)+ mod	𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎, = 𝑯(𝒎) mod	𝑁 .

SK = 𝑁, 𝑑 and VK = 𝑁, 𝑒,𝑯

Hard to “algebraically manipulate” H(m) into H(related m’).
(to prevent Attack #2.)

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1#): Pick primes 𝑃, 𝑄 and let 𝑁 = 𝑃𝑄. Pick 𝑒
relatively prime to 𝜑 𝑁 and let 𝑑 = 𝑒*)	(mod 𝜑 𝑁).

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑯(𝒎)+ mod	𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎, = 𝑯(𝒎) mod	𝑁 .

SK = 𝑁, 𝑑 and VK = 𝑁, 𝑒,𝑯

Collision-resistance does not seem to be enough. (Given a
CRHF h(m), you may be able to produce h(m’) for related m’.)

The Random Oracle Heuristic

Want: A public H that is “non-malleable”.

Given H(m), it is hard to produce H(m’) for any non-
trivially related m’.

For every PPT adv 𝐴	and “every non-trivial relation” 𝑅,
 Pr 𝐴 𝐻 𝑚 = 𝐻 𝑚/ : 𝑅 𝑚,𝑚/ = 1 = negl(𝜆)

How about the relation 𝑅 where
𝑅 𝑥, 𝑦 = 1 if and only if 𝑦 = H x ?

The Random Oracle Heuristic

Proxy: A public H that “behaves like a random function”

𝒜()

(A PRF also behaves like a random function,
but 𝑃𝑅𝐹0 is not publicly computable.)

Reality: Random Oracle Heuristic:

𝒜 (1!)H
H

H is virtually a black box.The only way to compute H
is by calling the oracle.

Proof
Assume there is a PPT adversary 𝒜	that breaks the EUF-
CMA security of hashed RSA in the random oracle model.

𝒜“Give me a signature of m”

“Give me H(m)”

𝑉𝐾

(𝑚∗, 𝜎∗)
Then, there is an
algorithm ℬ that
solves the RSA
problem.

Proof
Assume there is a (𝑄-query) PPT adversary 𝒜	that
breaks the EUF-CMA security of hashed RSA in the
random oracle model.

𝒜

ℬ 𝑉𝐾 = (𝑁, 𝑒)
(𝑁, 𝑒, 𝑦)

Hash Query: m

𝐻 +𝑚 = 𝑦

o.w., 𝐻 𝑚 = 𝑥!

Sign Query: m

“trap”

“normal”

𝑚 = +𝑚? !abort!
o.w., 𝜎 = 𝑥

Pick random +𝑚

Forgery: 𝑚∗, 𝜎∗

Proof
Claim: To produce a successful forgery, 𝒜 must have
queried the hash oracle on 𝑚∗. W.p. 1/𝑄, 𝑚∗ is the trap.

𝒜

ℬ 𝑉𝐾 = (𝑁, 𝑒)
(𝑁, 𝑒, 𝑦)

Hash Query: m

𝐻 +𝑚 = 𝑦

o.w., 𝐻 𝑚 = 𝑥!

Sign Query: m

𝑚 = +𝑚? !abort!
o.w., 𝜎 = 𝑥

Forgery: 𝑚∗, 𝜎∗If 𝑚∗ = +𝑚, yay!
𝑦#/! “trap”

Bottomline: Hashed RSA

In practice, we let 𝐻 be the SHA-3 hash function.

… and believe that SHA-3 ”acts like a random function”.
That’s the heuristic. On the one hand, it doesn’t make
any sense, but on the other, it has served us well so far.
No attacks against RSA + SHA-3, for example.

(PKCS Standard, used everywhere)

Yet another signature scheme
Gennaro-Halevi-Rabin’99

Many Variants of Signatures

Ring Signatures: Protection for Whistleblowers

Threshold Signatures: Protecting against loss of secret key

Aggregate Signatures: Compressing many signatures into one

Boneh-Lynn-Shacham (BLS) Signatures from “Bilinear maps”

(won’t show in this class)

