
MIT 6.875

Lecture 11

Foundations of Cryptography

TODAY: Digital Signatures

Message Authentication Codes

sk sk

m

𝑚, 𝑡 = 𝑀𝐴𝐶(𝑠𝑘, 𝑚)

Authenticity: Bob wants to ensure that the message
came from Alice.

Needs Bob and Alice to share a secret key beforehand.

Verify(𝑠𝑘, 𝑚, 𝑡)

Digital Signatures:
Public-key Analog of MACs

sk

m

𝑚, σ ← Sign(𝑠𝑘, 𝑚)

Only Alice can produce signatures; but Bob (or indeed,
anyone else) can verify them.

Alice vk

Verify(𝑣𝑘, 𝑚, σ)

(Public) verification keys are stored in a “directory”.

Digital Signatures vs. MACs

Publicly Verifiable

𝑛 users require 𝑛 key-pairs

Privately Verifiable

Signatures MACs

𝑛 users require 𝑛2keys

Transferable Not Transferable

Provides Non-Repudiation Does not provide Non-Rep.
(is this a good thing or a bad thing?)

Other Applications

1. Certificates, or a public-key directory in practice:

Alice pk,vk

When Alice (=www.google.com) wants to register her
public (encryption and signing) keys 𝑝𝑘 and 𝑣𝑘, first check
that she is Alice.

Issue a “certificate” 𝜎 ← 𝑆𝑖𝑔𝑛(𝑆𝐾𝑉𝑒𝑟𝑖𝑠𝑖𝑔𝑛, 𝐴𝑙𝑖𝑐𝑒| 𝑝𝑘 |𝑣𝑘)

Trusted Certificate Authority, e.g. Verisign, Let’s Encrypt.

Alice can later produce this certificate to prove that she
“owns” 𝑝𝑘 and 𝑣𝑘.

Browsers store 𝑉𝐾𝑉𝑒𝑟𝑖𝑠𝑖𝑔𝑛 and check the certificate.

Other Applications

2. Bitcoin and other cryptocurrencies:
 I am identified by my verification key 𝑣𝑘.
 When I pay you (= 𝑣𝑘’), I sign “$x paid to 𝑣𝑘′” with my 𝑠𝑘.

Digital Signatures: Definition

• 𝑣𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛 1𝑛 .
PPT Key generation algorithm generates a public-private key pair.

• 𝜎 ← 𝑆𝑖𝑔𝑛 𝑠𝑘, 𝑚 .
(possibly probabilistic) Signing algorithm uses the secret signing
key to produce a signature 𝜎.

• A𝑐𝑐(1)/𝑅𝑒𝑗(0) ← 𝑉𝑒𝑟𝑖𝑓𝑦 𝑣𝑘, 𝑚, 𝜎 .
Verification algorithm uses the public verification key to check the
signature 𝜎 against a message 𝑚.

Correctness: For all vk, sk, m:

𝑉𝑒𝑟𝑖𝑓𝑦 𝑣𝑘, 𝑚, 𝑆𝑖𝑔𝑛 𝑠𝑘, 𝑚 = accept.

A triple of PPT algorithms (𝐺𝑒𝑛, 𝑆𝑖𝑔𝑛, 𝑉𝑒𝑟𝑖𝑓𝑦) s.t.

Digital Signatures: Security

“The adversary after seeing signatures of many msgs,
should not be able to produce a signature of any new msg.”

1. What are the adversary’s powers? Request for, and
obtain, signatures of (poly many) messages 𝑚1, 𝑚2, …

2. What is her goal? She wins if she produces a signature of
any message 𝑚∗ ∉ {𝑚1, 𝑚2, … }.

Chosen-message attack

Existential Forgery

EUF-CMA Security
(Existentially Unforgeable against a Chosen Message Attack)

EveChallenger

𝑣𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛 1𝑛 𝑣𝑘

𝑚𝑖

𝜎𝑖 ← 𝑆𝑖𝑔𝑛(𝑠𝑘, 𝑚𝑖)
𝜎𝑖

𝑚∗, 𝜎∗

Eve wins if Verify(𝑣𝑘, 𝑚∗, 𝜎∗)= 1 and 𝑚∗ ∉ {𝑚1, 𝑚2, … }.
The signature scheme is EUF-CMA-secure if no PPT Eve can win with
probability better than negl(𝑛).

poly many times

Strong EUF-CMA Security
(Existentially Unforgeable against a Chosen Message Attack)

EveChallenger

𝑣𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛 1𝑛 𝑣𝑘

𝑚𝑖

𝜎𝑖 ← 𝑆𝑖𝑔𝑛(𝑠𝑘, 𝑚𝑖)
𝜎𝑖

𝑚∗, 𝜎∗

Eve wins if Verify(𝑣𝑘, 𝑚∗, 𝜎∗)= 1 and (𝒎∗, 𝝈∗) ∉ (𝒎𝟏, 𝝈𝟏 , (𝒎𝟐, 𝝈𝟐), … }.
The signature scheme is EUF-CMA-secure if no PPT Eve can win with
probability better than negl(𝑛).

poly many times

Lamport (One-time) Signatures

Signing Key 𝑆𝐾: [𝑥0, 𝑥1]

Verification Key 𝑉𝐾: [𝑦0 = 𝑓(𝑥0), 𝑦1 = 𝑓(𝑥1)]

Signing a bit b: The signature is 𝜎 = 𝑥𝑏

Verifying (b, 𝜎): Check if 𝑓 𝜎 = 𝑦𝑏

?

Claim: Assuming 𝑓 is a OWF, no PPT adversary can
produce a signature of ത𝑏 given a signature of 𝑏.

How to sign a bit

Lamport (One-time) Signatures

Signing Key 𝑆𝐾:

Verification Key 𝑉𝐾:

Signing an n-bit message (𝑚1, … , 𝑚𝑛):

 The signature is 𝑥1,𝑚1
, … , 𝑥𝑛,𝑚𝑛

.

Verifying (𝑚, Ԧ𝜎): Check if ∀𝑖: 𝑓 𝜎𝑖 = 𝑦𝑖,𝑚𝑖

?

How to sign n bits

𝑥1,0

𝑥1,1

𝑥2,0

𝑥2,1

𝑥𝑛,0

𝑥𝑛,1

𝑦1,0

𝑦1,1

𝑦2,0

𝑦2,1

𝑦𝑛,0

𝑦𝑛,1

where 𝑦𝑖,𝑐 = 𝑓(𝑥𝑖,𝑐).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

