MIT 6.875

Foundations of Cryptography Lecture 11

TODAY: Digital Signatures

Authenticity: Bob wants to ensure that the message came from Alice.

Needs Bob and Alice to share a secret key beforehand.

(Public) verification keys are stored in a "directory".

Only Alice can produce signatures; but Bob (or indeed, anyone else) can verify them.

Digital Signatures vs. MACs

Signatures

n users require *n* key-pairs

Publicly Verifiable

Transferable

Provides Non-Repudiation

(is this a good thing or a bad thing?)

MACs

n users require n^2 keys

Privately Verifiable

Not Transferable

Does not provide Non-Rep.

Other Applications

1. Certificates, or a public-key directory in practice:

Trusted Certificate Authority, e.g. Verisign, Let's Encrypt.

When Alice (=www.google.com) wants to register her public (encryption and signing) keys pk and vk, first check that she *is* Alice.

Issue a "certificate" $\sigma \leftarrow Sign(SK_{Verisign}, Alice||pk||vk)$

Alice can later produce this certificate to prove that she "owns" pk and vk.

Browsers store $VK_{Verisign}$ and check the certificate.

Other Applications

2. Bitcoin and other cryptocurrencies:
I am identified by my verification key vk.
When I pay you (= vk'), I sign "\$x paid to vk'" with my sk.

Digital Signatures: Definition

A triple of PPT algorithms (Gen, Sign, Verify) s.t.

• $(vk, sk) \leftarrow Gen(1^n)$.

PPT Key generation algorithm generates a public-private key pair.

- $\sigma \leftarrow Sign(sk, m)$. (possibly probabilistic) Signing algorithm uses the secret signing key to produce a signature σ .
- $Acc(1)/Rej(0) \leftarrow Verif(vk, m, \sigma)$. Verification algorithm uses the public verification key to check the signature σ against a message m.

Correctness: For all vk, sk, m: Verify(vk, m, Sign(sk, m)) = accept.

Digital Signatures: Security

"The adversary after seeing signatures of many msgs, should not be able to produce a signature of any new msg."

1. What are the adversary's powers? Request for, and obtain, signatures of (poly many) messages $m_1, m_2, ...$ Chosen-message attack

2. What is her goal? She wins if she produces a signature of any message $m^* \notin \{m_1, m_2, \dots\}$.

Existential Forgery

EUF-CMA Security

(Existentially Unforgeable against a Chosen Message Attack)

Eve wins if Verify $(vk, m^*, \sigma^*) = 1$ and $m^* \notin \{m_1, m_2, ...\}$. The signature scheme is EUF-CMA-secure if no PPT Eve can win with probability better than negl(n).

Strong EUF-CMA Security

(Existentially Unforgeable against a Chosen Message Attack)

Eve wins if Verify $(vk, m^*, \sigma^*) = 1$ and $(m^*, \sigma^*) \notin \{(m_1, \sigma_1), (m_2, \sigma_2), ...\}$ The signature scheme is EUF-CMA-secure if no PPT Eve can win with probability better than negl(n).

Lamport (One-time) Signatures How to sign a bit

Signing Key SK: $[x_0, x_1]$

Verification Key *VK*: $[y_0 = f(x_0), y_1 = f(x_1)]$

Signing a bit b: The signature is $\sigma = x_b$ Verifying (b, σ): Check if $f(\sigma) \stackrel{?}{=} y_b$

<u>Claim</u>: Assuming f is a OWF, no PPT adversary can produce a signature of \overline{b} given a signature of b.

Lamport (One-time) Signatures

How to sign n bits

where $y_{i,c} = f(x_{i,c})$.

Signing an n-bit message $(m_1, ..., m_n)$: The signature is $(x_{1,m_1}, ..., x_{n,m_n})$.

Verifying $(\vec{m}, \vec{\sigma})$: Check if $\forall i: f(\sigma_i) \stackrel{?}{=} y_{i,m_i}$