MIT 6.875

Foundations of Cryptography Lecture 10

Lectures 7-10

Constructions of Public-key Encryption
\checkmark Diffie-Hellman/El Gamal
\checkmark Trapdoor Permutations (RSA)
∇ Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security \& Lattice-based Encryption

Why Lattice-based Crypto?

\square Exponentially Hard

 (so far)While factoring and discrete log can be solved in time $2^{\sqrt[3]{n}}$ for problems of size n, the best algorithms for lattice-based crypto run in time nearly 2^{n}.

Why Lattice-based Crypto?

\square Exponentially Hard
\square Quantum-Resistant
(so far)
(so far)

(Very large scale)

(if they exist)

Quantum Computers ${ }^{\text {Break }}$ Crypto

Shor's Algorithm for Factoring and Discrete Logarithms.

"Cryptographers seldom sleep well".

[Silvio Micali, 1988]

Post-Quantum Cryptography

Cryptography that is (believed to be) secure against quantum attacks.

NEWS

NIST Announces First Four Quantum-Resistant Cryptographic Algorithms

Federal agency reveals the first group of winners from its six-year competition.

3 out of 4: Lattice-based Cryptography

Why Lattice-based Crypto?

\square Exponentially Hard (so far)
\square Quantum-Resistant (so far)
\square Worst-case hardness
(unique feature of lattice-based crypto)
\square Simple and Efficient
\square Enabler of Surprising Capabilities
(Fully Homomorphic Encryption)

Solving Linear Equations

$$
\begin{aligned}
& 5 s_{1}+11 s_{2}=2 \\
& 2 s_{1}+s_{2}=6 \\
& 7 s_{1}+s_{2}=26
\end{aligned}
$$

where all equations are over \mathbb{Z}, the integers

Solving Linear Equations

GOAL: Find s .

More generally, n variables and $m \gg n$ equations.

Solving Linear Equations

GOAL: Find s .

EASY! For example, by Gaussian Elimination

Solving Linear Equations

GOAL: Find s .
How to make it hard: Chop the head?
That is, work modulo some q. $(1121 \bmod 100=21)$
Still EASY! Gaussian Elimination $\bmod q$

Solving Linear Equations

Given:

GOAL: Find s .
How to make it hard: Chop the tail?
Add a small error to each equation.
Still EASY! Linear regression.

Solving Linear Equations

Given:

$\bmod q$

GOAL: Find s .
How to make it hard: Chop the head and the tail?
Add a small error to each equation and work $\bmod q$.
Turns out to be very HARD!
$\ddot{\ddot{O}}$

GOAL: Find s .
Parameters: dimensions \boldsymbol{n} and m, modulus \boldsymbol{q}, error distribution $\chi=$ uniform in some interval $[-\boldsymbol{B}, \ldots, \boldsymbol{B}]$.
\mathbf{A} is chosen at random from $\mathbb{Z}_{q}^{m \times n}, \mathbf{s}$ from \mathbb{Z}_{q}^{n} and \mathbf{e} from χ^{m}.

Learning with Errors (LWE)

Decoding Random Linear Codes

(over \mathbb{Z}_{q} with ℓ_{∞} errors)

Learning Noisy Linear Functions

Worst-case hard Lattice Problems
[Regev'05, Peikert'09]

Attack 1: Linearization

$\underline{\text { Given } \boldsymbol{A}, \boldsymbol{A} \boldsymbol{s}+\boldsymbol{e}, \text { find } \boldsymbol{s}}$.

Idea (a) Each noisy linear equation is an exact polynomial eqn.
Consider $b=\langle\boldsymbol{a}, \boldsymbol{s}\rangle+e=\sum_{i=1}^{n} a_{i} s_{i}+e$.
Imagine for now that the error bound $B=1$. So, $e \in$
$\{-1,0,1\}$. In other words, $\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i} \in\{-1,0,1\}$.
So, here is a noiseless polynomial equation on s_{i} :

$$
\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}-1\right)\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}\right)\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}+1\right)=0
$$

Attack 1: Linearization

Given $\boldsymbol{A}, \boldsymbol{A} \boldsymbol{s}+\boldsymbol{e}$, find \boldsymbol{s}.

BUT: Solving (even degree 2) polynomial equations is NP-hard.

$$
\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}-1\right)\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}\right)\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}+1\right)=0
$$

Attack 1: Linearization

$$
\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}-1\right)\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}\right)\left(\mathrm{b}-\sum_{i=1}^{n} a_{i} s_{i}+1\right)=0
$$

Idea (b) Easy to solve given sufficiently many equations. (using a technique called ‘

$$
\sum a_{i j k} s_{i} S_{j} s_{k}+\sum a_{i j} s_{i} s_{j}+\sum a_{i}
$$

Treat each "monomial", e.g. $\mathrm{s}_{\mathrm{i}} \mathrm{S}$ variable, e.g. $\mathrm{t}_{\mathrm{ijk}}$.

Now, you have a noiseless linear equation in $\mathrm{t}_{\mathrm{ijk}}$!!!

Attack 1: Linearization

$$
\sum a_{i j k} t_{i j k}+\sum a_{i j} t_{i j}+\sum a_{i} t_{i}+(b-1) b(b+1)=0
$$

 $t_{i j k}=s_{i} s_{j} s_{k}$ etc.

Attack 1: Linearization

$$
\sum a_{i j k} t_{i j k}+\sum a_{i j} t_{i j}+\sum a_{i} t_{i}+(b-1) b(b+1)=0
$$

 $t_{i j k}=s_{i} s_{j} s_{k}$ etc.

Attack 1: Linearization

$$
\sum a_{i j k} t_{i j k}+\sum a_{i j} t_{i j}+\sum a_{i} t_{i}+(b-1) b(b+1)=0
$$

The real solution $t_{i j k}=s_{i} s_{j} s_{k}$ etc.

Attack 1: Linearization

$$
\sum a_{i j k} t_{i j k}+\sum a_{i j} t_{i j}+\sum a_{i} t_{i}+(b-1) b(b+1)=0
$$

The real solution
 $t_{i j k}=s_{i} s_{j} s_{k}$ etc.

Attack 1: Linearization

$$
\sum a_{i j k} t_{i j k}+\sum a_{i j} t_{i j}+\sum a_{i} t_{i}+(b-1) b(b+1)=0
$$

When \#eqns = \#vars $\approx O\left(n^{3}\right)$
the only surviving solution to the linear system is the real solution.

Attack 1: Linearization

$\underline{\text { Given } \boldsymbol{A}, \boldsymbol{A} \boldsymbol{s}+\boldsymbol{e}, \text { find } \boldsymbol{s} .}$
Can solve/break as long as

$$
m \gg n^{2 B+1}
$$

We will set $B=n^{\Omega(1)}$, in other words polynomial in n so as to blunt this attack.

A lattice is a discrete, additive subgroup of \mathbb{R}^{m}

Attack 2: Lattice Reduction Lenstra-Lenstra-Lovasz (LLL) Algorithm

Say $q / B=2^{n^{\varepsilon}}$ for a constant $\varepsilon>0$. LLL solves LWE in time $2^{\tilde{o}\left(n^{1-\varepsilon}\right)} \cdot \operatorname{poly}(n, \log q)$.

This is polynomial in n and $\log q$ when $\frac{q}{B}=2^{\Omega(n)}$.

Setting Parameters

Cryptanalysis over three decades suggests we are safe with the following parameters:

$$
\begin{aligned}
& n=\text { security parameter }(\approx 1-10 \mathrm{~K}) \\
& m=\text { arbitrary poly in } n \\
& B=\text { small poly in } n, \text { say } \sqrt{n} \\
& q=\text { poly in } n, \text { larger than } B, \text { and could be } \\
& \quad \text { as large as sub-exponential, say } 2^{n^{0.99}}
\end{aligned}
$$

even from quantum computers, AFAWK!

Decisional LWE

Can you distinguish between:

Theorem: "Decisional LWE is as hard as LWE".

Information-Computation Gap

Fix n, q, B.
(Search) LWE:
easy

Information-theoretically impossible to recover s.
S uniquely determined given $(A, A s+e)$. computationally hard to recover.

OWF and PRG

$g_{A}(\mathrm{~s}, \mathrm{e})=\mathbf{A s}+e$

$$
\begin{aligned}
& \left(\mathbf{A} \in Z_{q}^{n X m}\right. \\
& \mathbf{s} \in Z_{q}^{n} \text { random "small" secret vector } \\
& \left.\boldsymbol{e} \in Z_{q}^{n}: \text { random "small" error vector }\right)
\end{aligned}
$$

- g_{A} is a one-way function (assuming LWE)
- g_{A} is a pseudo-random generator (decisional LWE)
- g_{A} is also a trapdoor function... (this is not obvious and we won't see how in this class)

Basic (Secret-key) Encryption

 [Regev05]$\mathrm{n}=$ security parameter, $\mathrm{q}=$ "small" modulus

- Secret key sk $=$ Uniformly random vector $\mathbf{s} \in Z_{q}^{n}$
- Encryption $\operatorname{Enc}_{\mathbf{s}}(\mu): / / \mu \in\{0,1\}$
- Sample uniformly random $\mathbf{a} \in Z_{q}^{n}$, "small" noise $\mathrm{e} \in Z$
- The ciphertext $\mathbf{c}=(\mathbf{a}, \mathrm{b}=\langle\mathrm{a}, \mathbf{s}\rangle+\mathrm{e}+\mu \quad)$
- Decryption $\operatorname{Dec}_{\text {sk }}(\mathbf{c}):$ Output
$(\mathrm{b}-\langle\mathrm{a}, \mathbf{s}\rangle \bmod \mathrm{q})$
// correctness as long as $|\mathrm{e}|<\mathrm{q} / 4$

Basic (Secret-key) Encryption

 [Regev05]This scheme is additively homomorphic.

$$
\begin{array}{ll}
\boldsymbol{c}=(\mathrm{a}, \mathrm{~b}=\langle\mathrm{a}, \mathbf{s}\rangle+\mathrm{e}+\mu\lfloor q / 2\rfloor) & \operatorname{Enc}_{s}(\mathrm{~m}) \\
\boldsymbol{c}^{\prime}=\left(\mathrm{a}^{\prime}, \mathrm{b}^{\prime}=\left\langle\mathrm{a}^{\prime}, \mathbf{s}\right\rangle+\mathrm{e}^{\prime}+\mu^{\prime}\lfloor q / 2\rfloor\right) & \operatorname{Enc}_{s}\left(\mathrm{~m}^{\prime}\right)
\end{array}
$$

$\left.\boldsymbol{c} \neq \boldsymbol{c}^{\prime} \equiv\left(\mathbf{a} \neq \mathbf{a}^{\prime}, \mathbf{b} \neq \mathbf{b}^{\prime}\right)=\left\langle\mathbf{a}+\mathbf{a}^{\prime}, \mathbf{s}\right\rangle+\left(\mathrm{e}+\mathrm{e}^{\prime}\right)+\left(\mu+\mu^{\prime}\right)\lfloor q / 2\rfloor\right)$

In words: $c+c^{\prime}$ is an encryption of $\mu+\mu^{\prime}(\bmod 2)$

Basic (Secret-key) Encryption

 [Regev05]You can also negate the encrypted bit easily.

We will see how to make this scheme into a fully homomorphic scheme.

For now, note that the error increases when you add two ciphertexts. That is, $\left|e_{a d d}\right| \approx\left|e_{1}\right|+\left|e_{2}\right| \leq 2 B$.

Setting $q=n^{\log n}$ and $B=\sqrt{n}$ (for example) lets us support any polynomial number of additions.

NEXT UP:

Public-key Encryption from LWE

Public-key Encryption

[Regev05]

Here is a crazy idea. Public key has an encryption of 0 (call it c_{0}) and an encryption of 1 (call it c_{1}). If you want to encrypt 0 , output c_{0} and if you want to encrypt 1, output c_{1}.

Well, turns out to be a crazy bad idea.

If only we could produce fresh encryptions of 0 or 1 given just the pk...

Public-key Encryption

[Regev05]
Here is another crazy idea.
Public key has many encryptions of 0 and an encryption of 1 (call it c_{1}).

If you want to encrypt 0 , output a random linear combination of the 0 -encryptions.

If you want to encrypt 1, output a random linear combination of the 0 -encryptions plus c_{1}.

This one turns out to be a crazy good idea.

Regev's Public-key Encryption

- Secret key sk = Uniformly random vector $\mathbf{s} \in Z_{q}^{n}$
- Public key pk: for i from 1 to $m=\operatorname{poly}(n)$

$$
\left(\boldsymbol{c}_{\boldsymbol{i}}=\left(\boldsymbol{a}_{\boldsymbol{i}},\left\langle\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{s}\right\rangle+e_{i}\right)\right)
$$

- Encrypting a bit μ : pick m random bits r_{1}, \ldots, r_{m}

$$
\sum_{i=1}^{m} r_{i} \boldsymbol{c}_{\boldsymbol{i}}+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor
$$

Correctness: as long as $\left|\sum r_{i} e_{i}\right|<q / 4$ is small enough.

Security: Leftover Hash Lemma [Impagliazzo-Levin-Luby'90]

We want to understand how $\boldsymbol{r} \boldsymbol{A}, \boldsymbol{r b}=\boldsymbol{r}[\boldsymbol{A} \mid \boldsymbol{b}]$ is distributed when A, b is random (and public).

If \boldsymbol{r} is truly random, so is $\boldsymbol{r}[\boldsymbol{A} \mid \boldsymbol{b}]$.
But r is NOT truly random! It has small entries.
Nevertheless, \boldsymbol{r} has entropy. Leftover hash lemma tells us that matrix multiplication turns (sufficient) entropy into true randomness. We need $m \gg(n+1) \log q$.

Security Proof

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

$$
\widetilde{\boldsymbol{p} \boldsymbol{k}}=(\boldsymbol{A}, \boldsymbol{b}), \tilde{\boldsymbol{c}}=\boldsymbol{E n c}(\widetilde{\boldsymbol{p} k}, \mu)=\boldsymbol{r} \boldsymbol{A}, \boldsymbol{r} \boldsymbol{b}+\mu\lfloor q / 2\rfloor)
$$

Hybrids 0 and 1 are comp. indist. by decisional LWE.

Security Proof

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 2. Change $\boldsymbol{r} \boldsymbol{A}, \boldsymbol{r} \boldsymbol{b}$ to random (using Leftover hash lemma or LHL).

$$
\left.\widetilde{\boldsymbol{p k}}=(\boldsymbol{A}, \boldsymbol{b}), \tilde{\boldsymbol{c}}=\boldsymbol{E n c}(\widetilde{\boldsymbol{p} \boldsymbol{k}}, \mu)=\boldsymbol{u}, u^{\prime}+\mu\lfloor q / 2\rfloor\right)
$$

Hybrids 1 and 2 are stat. indist. by LHL.

Security Proof

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 3. Change $u^{\prime}+\mu\lfloor q / 2\rfloor$ to a random bit.

$$
\left.\widetilde{p k}=(\boldsymbol{A}, \boldsymbol{b}), \tilde{c}=\boldsymbol{E n c}(\widetilde{\boldsymbol{p k}}, \mu)=\boldsymbol{u}, u^{\prime}\right)
$$

Hybrids 1 and 2 are perfectly indist.

NEXT UP:

Public-key Encryption from LWE

LWE with Small Secrets

GOAL: Find s.
Parameters: dimensions \boldsymbol{n} and m, modulus \boldsymbol{q}, error distribution $\chi=$ uniform in some interval $[-\boldsymbol{B}, \ldots, \boldsymbol{B}]$. \mathbf{A} is chosen at random from $\mathbb{Z}_{q}^{m \times n}, \mathbf{S}$ from χ^{n} and e from χ^{m}.

LWE with Small Secrets

GOAL: Find (the small secret) s.

Theorem: LWE with small secrets is as hard as LWE.
Proof on the board.

Public-key Encryption

[Lyubashevsky-Peikert-Regev'10]

- Secret key sk $=$ Small secret s from χ^{n}
- Public key pk: for i from 1 to n

$$
\boldsymbol{c}_{\boldsymbol{i}}=\left(\boldsymbol{a}_{\boldsymbol{i}},\left\langle\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{s}\right\rangle+e_{i}\right)
$$

Public-key Encryption

[Lyubashevsky-Peikert-Regev'10]

- Secret key sk = Small secret \mathbf{s} from χ^{n}
- Public key pk: for i from 1 to n

$$
(A, b=A s+e) \quad \mathrm{A}, \mathrm{~A}, \mathrm{~s}+\mathrm{e}
$$

- Encrypting a message bit μ : pick a random vector \boldsymbol{r} from χ^{n}

$$
\left(\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}, \boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right)
$$

- Decryption: compute

$$
\left(\boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right)-\left(\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}\right) \mathbf{s}
$$

and round to nearest multiple of $\mathrm{q} / 2$.

Correctness

- Encrypting a message bit μ : pick a random vector \boldsymbol{r} from χ^{n}

$$
\left(\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}, \boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right)
$$

- Decryption:

$$
\begin{gathered}
\left(\boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right)-\left(\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}\right) \mathbf{s} \\
=\boldsymbol{r}(\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e})+e^{\prime \prime}+\mu\lfloor q / 2\rfloor-\left(\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}\right) \mathbf{s} \\
=\boldsymbol{r} \boldsymbol{e}+e^{\prime \prime}-\boldsymbol{e}^{\prime} \boldsymbol{s}+\mu\lfloor q / 2\rfloor
\end{gathered}
$$

Decryption works as long as $\left|\boldsymbol{r} \boldsymbol{e}-\boldsymbol{e}^{\prime} \boldsymbol{s}+e^{\prime \prime}\right|<\frac{\boldsymbol{q}}{\mathbf{4}}$.

Security

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

We show this by a hybrid argument.

Let's stare at a public key, ciphertext pair.

$$
\boldsymbol{p} \boldsymbol{k}=(\boldsymbol{A}, \boldsymbol{b}=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e}), \boldsymbol{c}=\boldsymbol{E n c}(\boldsymbol{p} \boldsymbol{k}, \mu)=\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}, \boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor
$$

Call this distribution Hybrid 0 .

Security

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

$$
\begin{aligned}
\widetilde{\boldsymbol{p} \boldsymbol{k}}=(\boldsymbol{A}, \boldsymbol{b}), \tilde{\boldsymbol{c}} & \left.=\boldsymbol{E n c}(\widetilde{\boldsymbol{p}}, \mu)=\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}, \boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right) \\
& =\boldsymbol{r}[\boldsymbol{A} \mid \boldsymbol{b}]+\left[\boldsymbol{e}^{\prime} \mid e\right]+\left[\left.0|\mu| \frac{q}{2} \right\rvert\,\right]
\end{aligned}
$$

Hybrids 0 and 1 are comp. indist. by decisional LWE.

Security

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 2. Change $\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}, \boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}$ into random.

$$
\left.\widetilde{\boldsymbol{p k}}=(\boldsymbol{A}, \boldsymbol{b}), \tilde{\boldsymbol{c}}=\boldsymbol{E n c}(\widetilde{\boldsymbol{p k}}, \mu)=\boldsymbol{a}^{\prime}, b^{\prime}+\mu\lfloor q / 2\rfloor\right)
$$

Hybrids 1 and 2 are comp. indist. by LWE.

Security

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 2. Change $\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}, \boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}$ into random.

$$
\left.\widetilde{\boldsymbol{p k}}=(\boldsymbol{A}, \boldsymbol{b}), \tilde{\boldsymbol{c}}=\boldsymbol{E n c}(\widetilde{\boldsymbol{p k}}, \mu)=\boldsymbol{a}^{\prime}, b^{\prime}+\mu\lfloor q / 2\rfloor\right)
$$

Now, we have the message μ encrypted with a one-time pad which perfectly hides μ.

Public-key Encryption

[Regev05, Micciancio'10, Lyubashevsky-Peikert-Regev'10]

- Secret key sk $=$ Small secret \mathbf{s} from χ^{n}
- Public key pk: for i from 1 to n

$$
(A, b=A s+e)
$$

- Encrypting a message bit μ : pick a random vector \boldsymbol{r} from χ^{n}

$$
\left(\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}, \boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right)
$$

- Decryption: compute

$$
\left(\boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right)-\left(\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}\right) \mathbf{s}
$$

and round to nearest multiple of $\mathrm{q} / 2$.

Epilogue

A Big Open Question

Public-key Encryption from One-way Functions?

Impagliazzo-Rudich: Black-box separations.
Roughly speaking, says that any construction of a public-key encryption scheme in a "OWF-oraclemodel" can be broken with $O\left(Q^{2}\right)$ queries if the honest parties make at most Q queries.
[Barak-Mahmoody'09]

This is tight w.r.t. Merkle puzzles!

Practical Considerations

I want to encrypt to Bob. How do I know his public key?
Public-key Infrastructure: a directory of identities together with their public keys.

Needs to be "authenticated":
otherwise Eve could replace Bob's pk with her own.

Practical Considerations

Public-key encryption is orders of magnitude slower than secret-key encryption.

1. We mostly showed how to encrypt bit-by-bit! Super-duper inefficient.
2. Exponentiation takes $O\left(n^{2}\right)$ time as opposed to typically linear time for secret key encryption (AES).
3. The n itself is large for PKE (RSA: $n \geq 2048$) compared to SKE (AES: $n=128$).
(For Elliptic Curve El-Gamal, it's 320 bits)
Can solve problem 1 and minimize problems $2 \& 3$ using hybrid encryption.

Hybrid Encryption

To encrypt a long message m (think 1 GB):
Pick a random key K (think 128 bits) for a secretkey encryption

Encrypt K with the PKE: PKE.Enc $(p k, K)$
Encrypt m with the SKE: $\operatorname{SKE} . \operatorname{Enc}(K, m)$

To decrypt: recover K using $s k$. Then using K, recover m

