MIT 6.875

Foundations of Cryptography
Lecture 10

Lectures 7-10

Constructions of Public-key Encryption

Diffie-Hellman/El Gamal

Trapdoor Permutations (RSA)
Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security & Lattice-based Encryption

Why Lattice-based Crypto?

[1 Exponentially Hard (so far)

While factoring and discrete log can be solved in time

3
2V for problems of size n, the best algorithms for
lattice-based crypto run in time nearly 2™.

Why Lattice-based Crypto?

[1 Exponentially Hard (so far)

[1 Quantum-Resistant (so far)

(Very large scale) (if they exist)
' Y
Quantum Computers Break Crypto

Shor’s Algorithm for Factoring and Discrete Logarithms.

“Cryptographers seldom sleep well”.
[Silvio Micali, 1988]

Post-Quantum Cryptography

Cryptography that is (believed to be) secure against quantum attacks.

NIST Announces First Four Quantum-Resistant Cryptographic
Algorithms

Federal agency reveals the first group of winners from its six-year competition.

July 05, 2022

3 out of 4: Lattice-based Cryptography

Why Lattice-based Crypto?

[1 Exponentially Hard (so far)

[1 Quantum-Resistant (so far)

Worst-case hardness

(unique feature of lattice-based crypto)

I Simple and Efficient

Enabler of Surprising Capabilities

(Fully Homomorphic Encryption)

Solving Linear Equations

551 + 1182 — 2

251"‘ 52:6

751 + Sz —_ 26

_ /

where all equations are over Z, the integers

Solving Linear Equations

Given: A and A

GOAL: Finds.

More generally, n variables and m > n equations.

Solving Linear Equations

Given: A and A

GOAL: Finds.

EASY! ror example, by Gaussian Elimination @

Solving Linear Equations

s| modg

Given: A and A

GOAL: Finds.

How to make it hard: Chop the head?
That is, work modulo some g. (1121 mod 100 = 21)

Still EASY! Gaussian Elimination mod g

Solving Linear Equations

Given: A and A +

GOAL: Finds.

How to make it hard: Chop the tail?

Add a small error to each equation.

Still EASY! Linear regression.

Solving Linear Equations

Given: A and A

GOAL: Finds.

How to make it hard: Chop the head and the tail?

Add a small error to each equation and work mod g.

Turns out to be very HARD! (**

SobgamriiagvvithaE trens {(dWMDNs

Given: A and A

GOAL: Finds.

Parameters: dimensions n and m, modulus g, error
distribution y = uniform in some interval [—B, ..., B].

A is chosen at random from Zg**", s from Zg
and e from y™.

Learning with Errors (LWE)

€ Decoding Random Linear Codes

(over Z, with £, errors)

€ Learning Noisy Linear Functions

€ Worst-case hard Lattice Problems
[Regev’05, Peikert'09]

Attack 1: Linearization

Given A, As + e, find s.

Idea (a) Each noisy linear equation is an exact polynomial eqgn.

Consider b = {(a,s) + e =)i, a;S; + e.

Imagine for now that the error bound B = 1. So, e €
{—1,0,1}. In other words, b — }.7*; a;s; € {—1,0,1}.

So, here is a noiseless polynomial equation on s;:

(b —2ic1aisi — 1) (b— it as)(b— Xy a5,+1) =0

Attack 1: Linearization

Given A, As + e, find s.

BUT: Solving (even degree 2) polynomial equations is NP-hard.

(b Zl 14iS; — 1) b Zl 1a51)(b Zl 1a51+1):O

Attack 1: Linearization

(b—ic1a;si — 1) (b — Xz a;s)(b — Xi1 a5, +1) =0

Idea (b) Easy to solve given sufficiently many equations.

(using a technique called

z AijkSiSjSk + z a;;jS;iSj T Z aQ &

Treat each “monomial”, e.g. s;s
variable, e.g. tjjx.

Now, you have a noiseless linear equation in tj;!!!

Attack 1: Linearization

z aijktijk + z al-jtl-j + z Cliti + (b — 1)b(b + 1) =0

The real solution

Attack 1: Linearization

z aijktijk + z al-jtl-j + z Cliti + (b — 1)b(b + 1) =0

The real solution

Attack 1: Linearization

z aijktijk + z al-jtij + z Cliti + (b — 1)b(b + 1) =0

The real solution

Attack 1: Linearization

z aijktijk + z al-jtij + z Cliti + (b — 1)b(b + 1) =0

The real solution

Attack 1: Linearization

z Aijklijr T z ajjtij + z a;t; +(b—1b(b+1) =0

\

When #egns = #vars = 0(n?)
the only surviving solutionto t
real solution.

he linear system is the

Attack 1: Linearization

Given A, As + e, find s.

Can solve/break as long as

m >> nZB-I-l

We will set B = n®(in other words polynomial in
n so as to blunt this attack.

Attack 2: Lattice Reduction

Lenstra-Lenstra-Lovasz (LLL) Algorithm

Say g/B = 2™ for a constant € > 0. LLL solves
LWE in time 29" . poly(n, log q).

This is polynomial in n and log g when % = 28,

Setting Parameters

Cryptanalysis over three decades suggests
we are safe with the following parameters:

n = security parameter (= 1 — 10K)
m = arbitrary poly in n
B = small poly in n, say \n

g = polyinn, larger than B, and could be

. 0.99
as large as sub-exponential, say 2™

even from quantum computers, AFAWK! %

Decisional LWE

Can you distinguish between:

and

Theorem: “Decisional LWE is as hard as LWE".

Information-Computation Gap

Fixn, q,B.

(Search) LWE:

easy
m =20 N n L
m= log2B + 1 m ~ 21°8GED)
(1 _ |)
084
\ J \ J
| |

. . s uniquely determined given
Information-theoretically quely 5

. . (A, As + e). computationally
impossible to recover s.
hard to recover.

OWF and PRG

[ga(s,e) = As+e J

nxXm
(A€ Z
S E ZZ; random “small” secret vector

e € Zg: random “small” error vector)

ga IS a one-way function (assuming LWE)

ga IS a pseudo-random generator (decisional LWE)
ga IS also a trapdoor function... (this is not obvious
and we won't see how in this class)

Basic (Secret-key) Encryption

[Regev095]

n = security parameter, q = “small” modulus

 Secret key sk = Uniformly random vector s € Z7

« Encryption Encg(u): // u e {0,1}

— Sample uniformly random a € Z7, "small” noise e € Z

— The ciphertext c = (a, b =(a, s) + e +)

« Decryption Decg(c): Output (b —(a, s) mod q)

// correctness as long as |e| < g/4

Basic (Secret-key) Encryption

[Regev095]

This scheme is additively homomorphic.

c=(ab=(as)+erulg/2]) ~A—— Enaim

c'=(d",b'=@,s)+e' +u'lqg/2]) - Ency(m’)

c+c'=(ata’, b+b)=(a+a’,s)+(e+e’) +(u+u") lq/2])

In words: ¢ + ¢’ is an encryption of u + ' (mod 2)

Basic (Secret-key) Encryption

[Regev095]

You can also negate the encrypted bit easily.

We will see how to make this scheme into a fully
homomorphic scheme.

For now, note that the error increases when you add
two ciphertexts. Thatis, |e g4~ |e1| + |lez| < 2B.

Setting ¢ = n'°8™ and B = +/n (for example) lets us
support any polynomial number of additions.

NEXT UP:
Public-key Encryption from LWE

Public-key Encryption

[Regev095]

Here is a crazy idea. Public key has an encryption of O

(call it ¢g) and an encryption of 1 (call it ¢).
If you want to encrypt 0, output ¢, and if you want to

encrypt 1, output ¢;.

Well, turns out to be a crazy bad idea.

If only we could produce fresh encryptions of O or 1 given
just the pk...

Public-key Encryption

[Regev095]

Here is another crazy idea.
Public key has many encryptions of 0 and an encryption
of 1 (call it ¢q).

If you want to encrypt O, output a random linear
combination of the 0-encryptions.

If you want to encrypt 1, output a random linear
combination of the 0-encryptions plus ¢;.

This one turns out to be a crazy good idea.

Regev’s Public-key Encryption

e Secret key sk = Uniformly random vector s € Z]

e Public key pk: fori from 1 tom = poly(n)

(Ci — (ai' <ai1 S> + ei))

e Encrypting a bit u: pick m random bits rq, ..., 1,

m

zTiCi Tu- E‘

=1

Correctness: as long as |), r;e;| < g/4 is small enough.

Security: Leftover Hash Lemma
[Impagliazzo-Levin-Luby’90]

We want to understand how r4,rb = r|A |b] is
distributed when A4, b is random (and public).

(L], <@

If r is truly random, so is r|A4 |b].

But 7 is NOT truly random! It has small entries.

Nevertheless, 1 has entropy. Leftover hash lemma tells
us that matrix multiplication turns (sufficient) entropy
into true randomness. We needm >» (n + 1) logg.

Security Proof

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

pk = (A,b),¢ = Enc(pk,u) =rA, b + 11 |q/2))

Hybrids O and 1 are comp. indist. by decisional LWE.

Security Proof

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

Hybrid 2. Change rA, rb to random (using Leftover hash
lemma or LHL).

pk = (A b),¢ = Enc(pk 1) = wu' + p1q/2])

Hybrids 1 and 2 are stat. indist. by LHL.

Security Proof

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

Hybrid 3. Change u’ + 1 |q/2] to a random bit.

pk = (A,b),¢ = Enc(pk,u) = u,u")

Hybrids 1 and 2 are perfectly indist.

NEXT UP:
Public-key Encryption from LWE

LWE with Small Secrets

Given: A and A n

GOAL: Finds.

Parameters: dimensions n and m, modulus g, error
distribution y = uniform in some interval [—B, ..., B].

A is chosen at random from Zg**", S from
Xn and e from y™.

LWE with Small Secrets

Given: A and A n

GOAL: Find (the small secret) s.

Theorem: LWE with small secrets is as hard as LWE.

Proof on the board.

Public-key Encryption

[Lyubashevsky-Peikert-Regev’'10]

e Secret key sk = Small secret s from y"
e Public key pk: fori from1ton

c; = (a;(a;s) + e;)

Public-key Encryption

[Lyubashevsky-Peikert-Regev’'10]

Secret key sk = Small secret s from y™

Public key pk: fori from 1 ton

Encrypting a message bit u: pick a random vector r from y™

(rA+e’,rb+e" +ulq/2))

Decryption: compute
(rb+e”" +ulq/2]) — (rA+e')s

and round to nearest multiple of q/2.

,,,,,,

Correctness

e Encrypting a message bit u: pick a random vector r from y"

(rA+e',rb+e" +ulq/2))
e Decryption:
(rb+e"”" +ulq/2]) — (rA+e')s
=r(As+e)+e" +ulq/2] —(rAd+e')s

=re+e’' —e's+ulq/2]

Decryption works as long as |[re — e's + e''| < %.

Security

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

We show this by a hybrid argument.

Let’s stare at a public key, ciphertext pair.

pk = (A,b=As+e),c = Enc(pk,u) =rA+e',rb+e" +ulq/2]

Call this distribution Hybrid 0.

Security

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).
pk = (A,b),¢ = Enc(pk,u) =rA+e',rb+e" + p|q/2))

= r|A|b] + [e'|e] + [O|u {—‘
Hybrids O and 1 are comp. indist. by decisional LWE.

Security

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

Hybrid 2. Change r4 + e’,rb + e'’ into random.

pk = (A b),¢ = Enc(pk, 1) = a',b" + 1 q/2])

Hybrids 1 and 2 are comp. indist. by LWE.

Security

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

Hybrid 2. Change r4 + e’,rb + e'’ into random.

pk = (A b),¢ = Enc(pk, 1) = a',b" + 1 q/2])

Now, we have the message u encrypted with a one-time
pad which perfectly hides u.

Public-key Encryption

[Regev05, Micciancio’10, Lyubashevsky-Peikert-Regev'10]

Secret key sk = Small secret s from y™
Public key pk: fori from 1 ton
(A,b = As + e)
Encrypting a message bit u: pick a random vector r from y™

(rA+e’,rb+e" +ulq/2))

Decryption: compute
(rb+e”" +ulq/2]) — (rA+e')s

and round to nearest multiple of q/2.

Epilogue

A Big Open Question
Public-key Encryption from One-way Functions?
Impagliazzo-Rudich: Black-box separations.
Roughly speaking, says that any construction of a
public-key encryption scheme in a “OWF-oracle-
model” can be broken with 0(Q?) queries if the
honest parties make at most () queries.

[Barak-Mahmoody’09]

This is tight w.r.t. Merkle puzzles!

Practical Considerations

| want to encrypt to Bob. How do | know his public key?

Public-key Infrastructure: a directory of identities
together with their public keys.

Needs to be “authenticated”:

otherwise Eve could replace Bob’s pk with her own.

Practical Considerations

Public-key encryption is orders of magnitude slower
than secret-key encryption.

1. We mostly showed “how to
encrypt bit-by-bit! Super-duper inefficient.

2. Exponentiation takes O(n?) time as opposed to
typically linear time for secret key encryption (AES).

3. The n itselfis large for PKE (RSA: n = 2048)
compared to SKE (AES: n = 128).

(For Elliptic Curve El-Gamal, it’s 320 bits)

Can solve problem 1 and minimize problems 2&3 using
hybrid encryption.

Hybrid Encryption

To encrypt a long message m (think 1 GB):

Pick a random key K (think 128 bits) for a secret-
key encryption

Encrypt K with the PKE: PKE. Enc(pk, K)

Encrypt m with the SKE: SKE. Enc(K, m)

To decrypt: recover K using sk. Then using K, recover m

