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Lecture 10
Foundations of Cryptography



Lectures 7-10

Constructions of Public-key Encryption

✅ Trapdoor Permutations (RSA)

✅ Quadratic Residuosity/Goldwasser-Micali

✅ Diffie-Hellman/El Gamal

4: Post-Quantum Security & Lattice-based Encryption



Why Lattice-based Crypto?

o Exponentially Hard (so far)

While factoring and discrete log can be solved in time 
2
! ! for problems of size 𝑛, the best algorithms for 

lattice-based crypto run in time nearly 2!.



Why Lattice-based Crypto?

o Quantum-Resistant (so far)

o Exponentially Hard (so far)



Quantum Computers Break Crypto

Shor’s Algorithm for Factoring and Discrete Logarithms.

(if they exist)(Very large scale)



“Cryptographers seldom sleep well”.
[Silvio Micali, 1988]



Post-Quantum Cryptography

3 out of 4: Lattice-based Cryptography

Cryptography that is (believed to be) secure against quantum attacks. 



Why Lattice-based Crypto?

o Quantum-Resistant (so far)

o Worst-case hardness

o Exponentially Hard

o Simple and Efficient

(unique feature of lattice-based crypto)

o Enabler of Surprising Capabilities
(Fully Homomorphic Encryption)

(so far)



Solving Linear Equations

5𝑠! + 11𝑠" = 2

2𝑠! +	 𝑠" = 6

7𝑠! +	 𝑠" = 26

where all equations are over ℤ, the integers



Solving Linear Equations

More generally, 𝑛 variables and 𝑚 ≫ 𝑛 equations.

andA A
s

Given:

GOAL:  Find s.



Solving Linear Equations

GOAL:  Find s.

EASY!  For example, by Gaussian Elimination

andA A
s

Given:



Solving Linear Equations

GOAL:  Find s.

How to make it hard:
That is, work modulo some 𝑞. (1121	𝑚𝑜𝑑	100 = 21) 

Still EASY! Gaussian Elimination mod 𝑞 

andA A
s

Given:

Chop the head?

mod 𝑞 



Solving Linear Equations

GOAL:  Find s.

How to make it hard:  Chop the tail?
Add a small error to each equation. 

Still EASY! Linear regression.

andA A
s

Given: + e



Solving Linear Equations

GOAL:  Find s.

How to make it hard:  Chop the head and the tail?
Add a small error to each equation and work mod 𝑞. 

Turns out to be very HARD!

andA A
s

Given: + e
mod 𝑞 



Solving Noisy Modular Linear Equations

GOAL:  Find s.

A is chosen at random from ℤ#$×&, s from ℤ#& 
and e from 𝜒$.

andA A
s

Given: + e

Parameters: dimensions 𝒏 and 𝑚, modulus 𝒒, error 
distribution 𝜒 = uniform in some interval [−𝑩,… ,𝑩].     

Learning with Errors (LWE)



Learning with Errors (LWE)

u Decoding Random Linear Codes
 (over ℤ! with ℓ" errors) 

u Learning Noisy Linear Functions 

u Worst-case hard Lattice Problems 
 [Regev’05, Peikert’09]



Attack 1: Linearization

Given 𝑨, 𝑨𝒔 + 𝒆, find 𝒔.  

Idea (a) Each noisy linear equation is an exact polynomial eqn.

Consider 𝑏 = 𝒂, 𝒔 + 𝑒 = ∑𝒊*𝟏𝒏 𝑎-𝑠- + 𝑒.

Imagine for now that the error bound 𝐵 = 1. So, 𝑒 ∈
−1,0,1 . In other words, b − ∑𝒊*𝟏𝒏 𝑎-𝑠-  ∈ −1,0,1 .  

So, here is a noiseless polynomial equation on 𝑠-:

(b − ∑𝒊*𝟏𝒏 𝑎-𝑠- − 1) (b − ∑𝒊*𝟏𝒏 𝑎-𝑠-)(b − ∑𝒊*𝟏𝒏 𝑎-𝑠- + 1) = 0



Attack 1: Linearization

Given 𝑨, 𝑨𝒔 + 𝒆, find 𝒔.  

BUT: Solving (even degree 2) polynomial equations is NP-hard.

(b − ∑𝒊*𝟏𝒏 𝑎-𝑠- − 1) (b − ∑𝒊*𝟏𝒏 𝑎-𝑠-)(b − ∑𝒊*𝟏𝒏 𝑎-𝑠- + 1) = 0



Attack 1: Linearization
(b − ∑𝒊*𝟏𝒏 𝑎-𝑠- − 1) (b − ∑𝒊*𝟏𝒏 𝑎-𝑠-)(b − ∑𝒊*𝟏𝒏 𝑎-𝑠- + 1) = 0

Idea (b) Easy to solve given sufficiently many equations. 
(using a technique called “linearization”)

,𝑎"#$𝑠"𝑠#𝑠$ +,𝑎"#𝑠"𝑠# +,𝑎"𝑠" + 𝑏 − 1 𝑏(𝑏 + 1) = 0

Treat each “monomial”, e.g. s.s/s0	as an independent 
variable, e.g. t./0.

Now, you have a noiseless linear equation in t./0!!!



Attack 1: Linearization

,𝑎"#$𝑡"#$ +,𝑎"#𝑡"# +,𝑎"𝑡" + 𝑏 − 1 𝑏(𝑏 + 1) = 0

Solutio
n sp

ace 

(with
 so

me eqns):

The real solution

𝑡-12 = 𝑠-𝑠1𝑠2 etc.



Attack 1: Linearization

,𝑎"#$𝑡"#$ +,𝑎"#𝑡"# +,𝑎"𝑡" + 𝑏 − 1 𝑏(𝑏 + 1) = 0

Solutio
n sp

ace 

(with
 more eqns):

The real solution

𝑡-12 = 𝑠-𝑠1𝑠2 etc.



Attack 1: Linearization

,𝑎"#$𝑡"#$ +,𝑎"#𝑡"# +,𝑎"𝑡" + 𝑏 − 1 𝑏(𝑏 + 1) = 0

Solutio
n sp

ace 

(with
 even more eqns):

The real solution

𝑡-12 = 𝑠-𝑠1𝑠2 etc.



Attack 1: Linearization

,𝑎"#$𝑡"#$ +,𝑎"#𝑡"# +,𝑎"𝑡" + 𝑏 − 1 𝑏(𝑏 + 1) = 0

Solutio
n sp

ace 

(keep going):

The real solution

𝑡-12 = 𝑠-𝑠1𝑠2 etc.



Attack 1: Linearization

,𝑎"#$𝑡"#$ +,𝑎"#𝑡"# +,𝑎"𝑡" + 𝑏 − 1 𝑏(𝑏 + 1) = 0

When #eqns = #vars ≈ 𝑂(𝑛3)

the only surviving solution to the linear system is the 

real solution.



Attack 1: Linearization

Given 𝑨, 𝑨𝒔 + 𝒆, find 𝒔.  

Can solve/break as long as 

𝒎 ≫ 𝒏𝟐𝑩6𝟏

We will set 𝐵 = 𝑛7(!), in other words polynomial in 
𝑛 so as to blunt this attack.



a1

O

a2

LWE and Lattices
a1*s1+a2*s2

a1*s1+a2*s2+e

A lattice is a discrete, additive subgroup of ℝ$



Attack 2: Lattice Reduction
Lenstra-Lenstra-Lovasz (LLL) Algorithm

Say 𝑞/𝐵 = 	2&!  for a constant 𝜀 > 0. LLL solves 
LWE in time 2 :;(&"#!) R poly 𝑛, log 𝑞 .	

This is polynomial in 𝑛 and log 𝑞 when #
<
= 27(&).



Setting Parameters
Cryptanalysis over three decades suggests 
we are safe with the following parameters: 

𝑛 = security	parameter	(≈ 1 − 10K)

𝑚 = arbitrary	poly	in	𝑛

𝐵 = small	poly	in	𝑛, say 𝑛	

𝑞 = 	poly	in	𝑛, larger than 𝐵, and could be 
 as large as sub-exponential, say 2&$.&&

even from quantum computers, AFAWK!



Decisional LWE

Theorem: “Decisional LWE is as hard as LWE”. 

Can you distinguish between:

,A A s
+ e and

,A b



Information-Computation Gap
Fix 𝑛, 𝑞, 𝐵.

(Search) LWE:

𝑚 = 0

Information-theoretically 
impossible to recover 𝑠.

𝑚 ≈
𝒏	

(1 − log 2𝐵 + 1log 𝑞 )

𝑠	uniquely determined given 
(𝐴, 𝐴𝑠 + 𝑒). computationally 
hard to recover.

𝑚 ≈ 𝟐
𝒏

&'(( *
+,-.)

easy



OWF and PRG

gA(s,e) = As+e

• gA is a one-way function (assuming LWE)
• gA is a pseudo-random generator (decisional LWE)
• gA is also a trapdoor function… (this is not obvious 

and we won’t see how in this class)

𝒆 ∈ 	𝑍!": random “small” error vector)

(A ∈ 𝑍!"#$
s ∈ 	𝑍!" random “small” secret vector   



Basic (Secret-key) Encryption

• Secret key sk = Uniformly random vector s Î 𝑍*!

• Encryption Encs(𝜇):   // 𝜇	Î {0,1} 
 
– Sample uniformly random a Î 𝑍*!, “small” noise e Î 𝑍

 
– The ciphertext c = (a, b = áa, sñ + e +𝜇 𝑞/2 )

n = security parameter, q = “small” modulus
[Regev05]

• Decryption Decsk(c): Output Roundq/2(b − áa, sñ mod q)

// correctness as long as |e| < q/4



Basic (Secret-key) Encryption
[Regev05]

This scheme is additively homomorphic.

𝒄 = (a, b = áa, sñ + e + 𝜇 𝑞/2 )

𝒄′ = (a′ , b′ = áa′, sñ + e′ + 𝜇	′ 𝑞/2 )

𝒄 + 𝒄′ = (a+a′ , b+ b′)

+

In words: 𝑐 + 𝑐′ is an encryption of 𝜇	+ 𝜇	′ (mod 2) 

Encs(m) 

Encs(m’) 

𝒄 + 𝒄′ = (a+a′ , b+ b′ = á a +a′, sñ + (e+e′) + (𝜇	+ 𝜇	′) 𝑞/2 )



Basic (Secret-key) Encryption
[Regev05]

We will see how to make this scheme into a fully 
homomorphic scheme.

Setting 𝑞 = 𝑛?@A & and 𝐵 = 𝑛 (for example) lets us 
support any polynomial number of additions.

For now, note that the error increases when you add 
two ciphertexts. That is,  |𝑒BCC ≈ |𝑒! + 𝑒" ≤ 2𝐵.

You can also negate the encrypted bit easily.



NEXT UP: 
Public-key Encryption from LWE



Public-key Encryption
[Regev05]

Here is a crazy idea.  Public key has an encryption of 0 
(call it 𝑐D) and an encryption of 1 (call it 𝑐!).  
If you want to encrypt 0, output 𝑐D	and if you want to 
encrypt 1, output 𝑐!. 

Well, turns out to be a crazy bad idea.

If only we could produce fresh encryptions of 0 or 1 given 
just the pk…



Public-key Encryption
[Regev05]

Here is another crazy idea.  
Public key has many encryptions of 0 and an encryption 
of 1 (call it 𝑐!).  

This one turns out to be a crazy good idea.

If you want to encrypt 0, output a random linear 
combination of the 0-encryptions.

If you want to encrypt 1, output a random linear 
combination of the 0-encryptions plus 𝑐!. 



Regev’s Public-key Encryption

• Secret key sk = Uniformly random vector s Î 𝑍*!

• Public key pk: for 𝑖	𝑓𝑟𝑜𝑚	1	𝑡𝑜	𝑚 = 𝑝𝑜𝑙𝑦(𝑛)

𝒄𝒊 = (𝒂𝒊, 𝒂𝒊, 𝒔 + 𝑒")

• Encrypting a bit 𝜇: pick m	random bits 𝑟., … , 𝑟1

,
"2.

1

𝑟"𝒄𝒊 + 𝜇 L
𝑞
2

Correctness: as long as ∑𝑟-𝑒- < 𝑞/4 is small enough.



Security: Leftover Hash Lemma
[Impagliazzo-Levin-Luby’90]

We want to understand how 𝒓𝑨, 𝒓𝒃 = 𝒓 𝑨	 𝒃] is 
distributed when 𝐴, 𝑏 is random (and public).

But 𝒓 is NOT truly random! It has small entries. 

𝑨 𝒃

If 𝒓 is truly random, so is 𝒓 𝑨	 𝒃].

𝒓

Nevertheless, 𝒓 has entropy. Leftover hash lemma tells 
us that matrix multiplication turns (sufficient) entropy 
into true randomness.  We need 𝑚 ≫ 𝑛 + 1 log 𝑞.

≈𝒄 𝒂′ 𝑏′



Security Proof
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

M𝒑𝒌 = 𝑨, 𝒃 , R𝒄 = 𝑬𝒏𝒄 M𝒑𝒌, 𝜇 = 𝒓𝑨, 𝒓𝒃 + 𝜇 𝑞/2 )

Hybrids 0 and 1 are comp. indist. by decisional LWE.



Security Proof
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

Hybrid 2. Change 𝒓𝑨, 𝒓𝒃	to random (using Leftover hash 
lemma or LHL).

M𝒑𝒌 = 𝑨, 𝒃 , R𝒄 = 𝑬𝒏𝒄 M𝒑𝒌, 𝜇 = 𝒖, 𝑢′ + 𝜇 𝑞/2 )

Hybrids 1 and 2 are stat. indist. by LHL.



Security Proof
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

Hybrid 3. Change 𝑢′ + 𝜇 𝑞/2 	to a random bit.

M𝒑𝒌 = 𝑨, 𝒃 , R𝒄 = 𝑬𝒏𝒄 M𝒑𝒌, 𝜇 = 𝒖, 𝑢′)

Hybrids 1 and 2 are perfectly indist.



NEXT UP: 
Public-key Encryption from LWE



LWE with Small Secrets

GOAL:  Find s.

A is chosen at random from ℤ#$×&, s from 
𝝌𝒏	and e from 𝜒$.

andA A
s

Given: + e

Parameters: dimensions 𝒏 and 𝑚, modulus 𝒒, error 
distribution 𝜒 = uniform in some interval [−𝑩,… ,𝑩].     



LWE with Small Secrets

GOAL:  Find (the small secret) s.

Theorem: LWE with small secrets is as hard as LWE.

andA A
s

Given: + e

Proof on the board.



Public-key Encryption

• Secret key sk = Small secret s from 𝜒!
[Lyubashevsky-Peikert-Regev’10]

• Public key pk: for 𝑖	𝑓𝑟𝑜𝑚	1	𝑡𝑜	𝑛

𝒄𝒊 = (𝒂𝒊, 𝒂𝒊, 𝒔 + 𝑒")



Public-key Encryption

• Secret key sk = Small secret s from 𝜒!

• Public key pk: for 𝑖	𝑓𝑟𝑜𝑚	1	𝑡𝑜	𝑛

(𝑨, 𝒃 = 𝑨𝒔 + 𝒆)

• Encrypting a message bit 𝜇: pick a random vector 𝒓 from 𝜒!

(𝒓𝑨 + 𝒆3, 𝒓𝒃 + 𝑒33 + 𝜇 𝑞/2 )

,A A s + e

• Decryption: compute 

(𝒓𝒃 + 𝑒33 + 𝜇 𝑞/2 ) − 𝒓𝑨 + 𝒆3 𝐬
 
    and round to nearest multiple of q/2.

[Lyubashevsky-Peikert-Regev’10]



Correctness
• Encrypting a message bit 𝜇: pick a random vector 𝒓 from 𝜒!

(𝒓𝑨 + 𝒆3, 𝒓𝒃 + 𝑒33 + 𝜇 𝑞/2 )

• Decryption:

(𝒓𝒃 + 𝑒33 + 𝜇 𝑞/2 ) − 𝒓𝑨 + 𝒆3 𝐬

= 𝒓(𝑨𝒔 + 𝒆) + 𝑒33 + 𝜇 𝑞/2 − 𝒓𝑨 + 𝒆3 𝐬

= 𝒓𝒆 + 𝑒33 − 𝒆3𝒔 + 𝜇 𝑞/2  

Decryption works as long as |𝒓𝒆 − 𝒆3𝒔 + 𝑒′′| < 𝒒
𝟒 . 



Security
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

We show this by a hybrid argument.

Let’s stare at a public key, ciphertext pair.

𝒑𝒌 = 𝑨, 𝒃 = 𝑨𝒔 + 𝒆 , 𝒄 = 𝑬𝒏𝒄 𝒑𝒌, 𝜇 = 𝒓𝑨 + 𝒆3, 𝒓𝒃 + 𝑒33 + 𝜇 𝑞/2

Call this distribution Hybrid 0.



Security
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).
M𝒑𝒌 = 𝑨, 𝒃 , R𝒄 = 𝑬𝒏𝒄 M𝒑𝒌, 𝜇 = 𝒓𝑨 + 𝒆3, 𝒓𝒃 + 𝑒33 + 𝜇 𝑞/2 )

Hybrids 0 and 1 are comp. indist. by decisional LWE.

= 𝒓 𝑨 𝒃] + [𝒆3 𝑒 + [0|𝜇
𝑞
2
]



Security
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

Hybrid 2. Change 𝒓𝑨 + 𝒆F, 𝒓𝒃 + 𝑒′′ into random.

M𝒑𝒌 = 𝑨, 𝒃 , R𝒄 = 𝑬𝒏𝒄 M𝒑𝒌, 𝜇 = 𝒂′, 𝑏′ + 𝜇 𝑞/2 )

Hybrids 1 and 2 are comp. indist. by LWE.



Security
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

Hybrid 2. Change 𝒓𝑨 + 𝒆F, 𝒓𝒃 + 𝑒′′ into random.

M𝒑𝒌 = 𝑨, 𝒃 , R𝒄 = 𝑬𝒏𝒄 M𝒑𝒌, 𝜇 = 𝒂′, 𝑏′ + 𝜇 𝑞/2 )

Now, we have the message 𝜇 encrypted with a one-time 
pad which perfectly hides 𝜇.



Public-key Encryption

• Secret key sk = Small secret s from 𝜒!

• Public key pk: for 𝑖	𝑓𝑟𝑜𝑚	1	𝑡𝑜	𝑛

(𝑨, 𝒃 = 𝑨𝒔 + 𝒆)

• Encrypting a message bit 𝜇: pick a random vector 𝒓 from 𝜒!

(𝒓𝑨 + 𝒆3, 𝒓𝒃 + 𝑒33 + 𝜇 𝑞/2 )

• Decryption: compute 

(𝒓𝒃 + 𝑒33 + 𝜇 𝑞/2 ) − 𝒓𝑨 + 𝒆3 𝐬
 
    and round to nearest multiple of q/2.

[Regev05, Micciancio’10, Lyubashevsky-Peikert-Regev’10]



Epilogue



A Big Open Question 

Public-key Encryption from One-way Functions?

Impagliazzo-Rudich: Black-box separations. 

Roughly speaking, says that any construction of a 
public-key encryption scheme in a “OWF-oracle-
model” can be broken with 𝑂(𝑄") queries if the 
honest parties make at most 𝑄 queries. 
    [Barak-Mahmoody’09]

This is tight w.r.t. Merkle puzzles!



Practical Considerations

I want to encrypt to Bob. How do I know his public key?

Public-key Infrastructure: a directory of identities 
together with their public keys.

Needs to be “authenticated”:
otherwise Eve could replace Bob’s pk with her own.



Practical Considerations
Public-key encryption is orders of magnitude slower 
than secret-key encryption.

1. We mostly showed (except El Gamal) how to 
encrypt bit-by-bit! Super-duper inefficient.

2. Exponentiation takes 𝑂(𝑛") time as opposed to 
typically linear time for secret key encryption (AES). 

3. The 𝑛 itself is large for PKE (RSA: 𝑛 ≥ 2048) 
compared to SKE (AES: 𝑛 = 128). 

Can solve problem 1 and minimize problems 2&3 using 
hybrid encryption.

(For Elliptic Curve El-Gamal, it’s 320 bits)



Hybrid Encryption

To encrypt a long message 𝑚 (think 1 GB): 

Pick a random key K (think 128 bits) for a secret-
key encryption

Encrypt K with the PKE: 𝑃𝐾𝐸. 𝐸𝑛𝑐(𝑝𝑘, 𝐾)

Encrypt m with the SKE: SKE. 𝐸𝑛𝑐(𝐾,𝑚)

To decrypt: recover 𝐾 using 𝑠𝑘. Then using 𝐾, recover 𝑚


