
MIT 6.875/6.5620/18.425

Lecture 1
Foundations of Cryptography

Course website: https://mit6875.github.io/

Course Staff
Instructor:

Neekon Vafa
(nvafa@mit)

Hanshen Xiao
(hsxiao@mit)

Vinod Vaikuntanathan
(vinodv@mit)

TAs:

Chirag Falor
(cfalor@mit)

Course Website
https://mit6875.github.io/

Crypto Cryptocurrencies≠

6.5620 is not about

Crypto Cryptocurrencies≠

6.5620 is not about

6.5620 is about foundations:

Digital Signatures Public-key Encryption

Pseudorandomness

Zero-knowledge
Proofs

Homomorphic
Encryption

Threshold
Cryptography

Crypto Cryptocurrencies≠

6.5620 is not about

6.5620 is about foundations:

Digital Signatures Public-key Encryption

Pseudorandomness

Zero-knowledge
Proofs

Homomorphic
Encryption

Threshold
Cryptography

“Trustworthy”
machine learning

Blockchains/
Cryptocurrencies

“A Mathematical Theory of Communication” (1948)

“Communication Theory of Secrecy Systems” (1945)

preceded

which founded Information Theory

Claude E. Shannon

The Intellectual Origins

“A Mathematical Theory of Communication” (1948)

“Communication Theory of Secrecy Systems” (1945)

preceded

which founded Information Theory

Claude E. Shannon

Alan M. Turing

Cryptanalysis of the Enigma Machine (~1938-39)

“On Computable Numbers, with an Application to
the Entscheidungsproblem” (1936)

which gave birth to Computer Science

The Intellectual Origins

CRYPTO
Security,
Privacy,
Integrity

Problems

Modern Cryptography:
Practice to Theory and Back

CRYPTO
Security,
Privacy,
Integrity

Problems

Definitions

Modern Cryptography:
Practice to Theory and Back

CRYPTO
Security,
Privacy,
Integrity

Math and
Theoretical CS

Problems Tools

Definitions

Modern Cryptography:
Practice to Theory and Back

CRYPTO
Security,
Privacy,
Integrity

Math and
Theoretical CS

Problems

Solutions

Tools

Definitions

Modern Cryptography:
Practice to Theory and Back

CRYPTO
Security,
Privacy,
Integrity

Math and
Theoretical CS

Problems

Solutions

Tools

Definitions

Encryption

Digital Signatures

Pseudorandom Functions

…

Modern Cryptography:
Practice to Theory and Back

CRYPTO
Security,
Privacy,
Integrity

Math and
Theoretical CS

Problems

Solutions

Tools

Ideas

Definitions

Encryption

Digital Signatures

Pseudorandom Functions

Interactive Proofs

Probabilistically checkable Proofs

Locally decodable Codes

… …

Modern Cryptography:
Practice to Theory and Back

6.875/6.5620 Themes

1. The Omnipresent, Worst-case, Adversary.

Central idea. model the adversary: what they know, what
they can do, and what their goals are.

Definitions will be our friend.
If you cannot define something, you cannot achieve it.

6.875/6.5620 Themes

1. The Omnipresent, Worst-case, Adversary.

Central idea. model the adversary: what they know, what
they can do, and what their goals are.

Definitions will be our friend.
If you cannot define something, you cannot achieve it.

A key takeaway from 6.875:
 Cryptographic (or, adversarial) thinking.

6.875/6.5620 Themes

2. Computational Hardness will be our enabler.
 (starting lecture 2)

Central theme: the cryptographic leash. Use
computational hardness to “tame” the adversary.

6.875/6.5620 Themes

2. Computational Hardness will be our enabler.
 (starting lecture 2)

Central theme: the cryptographic leash. Use
computational hardness to “tame” the adversary.

A classical source of hard problems: number theory.

“Both Gauss and lesser mathematicians may be justified in rejoicing that
there is one such science [number theory] at any rate, whose very
remoteness from ordinary human activities should keep it gentle and clean”

[G. H. Hardy, “A Mathematician’s Apology”]

6.875/6.5620 Themes

2. Computational Hardness will be our enabler.
 (starting lecture 2)

Central theme: the cryptographic leash. Use
computational hardness to “tame” the adversary.

A classical source of hard problems: number theory.

“Both Gauss and lesser mathematicians may be justified in rejoicing that
there is one such science [number theory] at any rate, whose very
remoteness from ordinary human activities should keep it gentle and clean”

[G. H. Hardy, “A Mathematician’s Apology”]

More recently: geometry, coding theory, combinatorics.

6.875/6.5620 Themes

2. Computational Hardness will be our enabler.
 (starting lecture 2)

Central theme: the cryptographic leash. Use
computational hardness to “tame” the adversary.

A classical source of hard problems: number theory.

“Both Gauss and lesser mathematicians may be justified in rejoicing that
there is one such science [number theory] at any rate, whose very
remoteness from ordinary human activities should keep it gentle and clean”

[G. H. Hardy, “A Mathematician’s Apology”]

More recently: geometry, coding theory, combinatorics.

Cryptography is the science of useful hardness.

6.875 Themes

3. Security Proofs via Reductions.

“If there is an (efficient) adversary that breaks scheme A
w.r.t. definition D, then there is an (efficient) adversary
that factors large numbers.”

6.875 Themes

3. Security Proofs via Reductions.

“If there is an (efficient) adversary that breaks scheme A
w.r.t. definition D, then there is an (efficient) adversary
that factors large numbers.”

“Science wins either way”

6.875 Themes

3. Security Proofs via Reductions.

“If there is an (efficient) adversary that breaks scheme A
w.r.t. definition D, then there is an (efficient) adversary
that factors large numbers.”

Our reductions will be probabilistic and significantly more
involved than the NP-hardness reductions in, say, 6.045.

“Science wins either way”

6.875 Topics
⧫ Pseudorandomness

⧫ Secret-key Encryption and Authentication

⧫ Public-key Encryption and Digital Signatures

⧫ Homomorphic Encryption

⧫ Private Information Retrieval

⧫ Zero-knowledge Proofs

⧫ Secure Multiparty Computation

⧫ Advanced topics:
Threshold Cryptography, Program Obfuscation,
Quantum Crypto, …

⧫ Cryptographic Hashing

Administrivia

o Course website, the central point of reference.
https://mit6875.github.io

Piazza: https://piazza.com/class/lm5kwnurlj2573/

Piazza for questions, Gradescope for psets.

Gradescope code: B2BRD2

https://mit6875.github.io/

Administrivia

o Course website, the central point of reference.
https://mit6875.github.io

o Homework (75%): 6 psets, we will count your best 5.

Piazza for questions, Gradescope for psets.

https://mit6875.github.io/

Administrivia

o Course website, the central point of reference.
https://mit6875.github.io

o Homework (75%): 6 psets, we will count your best 5.

Piazza for questions, Gradescope for psets.

6.875 is on https://psetpartners.mit.edu

https://mit6875.github.io/
https://psetpartners.mit.edu/

Administrivia

o Course website, the central point of reference.
https://mit6875.github.io

o Homework (75%): 6 psets, we will count your best 5.

Piazza for questions, Gradescope for psets.

o Midterm (20%): Oct 25.

https://mit6875.github.io/

Administrivia

o Course website, the central point of reference.
https://mit6875.github.io

o Homework (75%): 6 psets, we will count your best 5.

Piazza for questions, Gradescope for psets.

o Midterm (20%): Oct 25.

o Class Participation (5%): Lecture, Piazza.

https://mit6875.github.io/

Administrivia

o Course website, the central point of reference.
https://mit6875.github.io

o Homework (75%): 6 psets, we will count your best 5.

Piazza for questions, Gradescope for psets.

o Midterm (20%): Oct 25.

o Class Participation (5%): Lecture, Piazza.

o Prereqs: Algorithms, Probability & Discrete Math, but most
of all, “mathematical maturity”.

o (Optional) special recitations: 1. probability (this Friday), 2.
basic complexity theory, 3. number theory.

https://mit6875.github.io/

Secure Communication

Alice Bob

Eavesdropper “Eve”

m

Alice wants to send a message m to Bob without revealing it to Eve.

Secure Communication

Key k Key k

Eavesdropper “Eve”

m

SETUP: Alice and Bob meet beforehand to agree on a secret key k.

Key Notion: Secret-key Encryption
(or Symmetric-key Encryption)

Key k Key k

 𝑚

Key Notion: Secret-key Encryption
(or Symmetric-key Encryption)

Key k Key k

 𝑚

Three (possibly probabilistic) polynomial-time algorithms:

o Key Generation Algorithm Gen: 𝑘 ← Gen(1𝑛)

Key Notion: Secret-key Encryption
(or Symmetric-key Encryption)

Key k Key k

 𝑚

Three (possibly probabilistic) polynomial-time algorithms:

o Key Generation Algorithm Gen: 𝑘 ← Gen(1𝑛)

Key Notion: Secret-key Encryption
(or Symmetric-key Encryption)

Key k Key k

 𝑚

Three (possibly probabilistic) polynomial-time algorithms:

o Key Generation Algorithm Gen: 𝑘 ← Gen(1𝑛)
Has to be probabilistic

Key Notion: Secret-key Encryption
(or Symmetric-key Encryption)

Key k Key k

 𝑚

Three (possibly probabilistic) polynomial-time algorithms:

o Key Generation Algorithm Gen: 𝑘 ← Gen(1𝑛)

o Encryption Algorithm Enc: 𝑐 ← Enc(𝑘, 𝑚)

Has to be probabilistic

Key Notion: Secret-key Encryption
(or Symmetric-key Encryption)

Key k Key k

 𝑚

Three (possibly probabilistic) polynomial-time algorithms:

o Key Generation Algorithm Gen: 𝑘 ← Gen(1𝑛)

o Encryption Algorithm Enc: 𝑐 ← Enc(𝑘, 𝑚)

o Decryption Algorithm Dec: 𝑚 ← Dec(𝑘, 𝑐)

Has to be probabilistic

Key Notion: Secret-key Encryption
(or Symmetric-key Encryption)

Key k Key k

 𝑚

Three (possibly probabilistic) polynomial-time algorithms:

o Key Generation Algorithm Gen: 𝑘 ← Gen(1𝑛)

o Encryption Algorithm Enc: 𝑐 ← Enc(𝑘, 𝑚)

o Decryption Algorithm Dec: 𝑚 ← Dec(𝑘, 𝑐)

Ciphertext 𝑐 ← Enc(𝑘, 𝑚) 𝑚 ← Dec(𝑘, 𝑐)

Has to be probabilistic

The Worst-case Adversary

⧫ An arbitrary computationally unbounded algorithm EVE.*

The Worst-case Adversary

⧫ An arbitrary computationally unbounded algorithm EVE.*

⧫ Knows Alice and Bob’s algorithms and but
does not know the key nor their internal randomness.
 (Kerckhoff’s principle or Shannon’s maxim)

𝐺𝑒𝑛, 𝐸𝑛𝑐 𝐷𝑒𝑐

The Worst-case Adversary

⧫ An arbitrary computationally unbounded algorithm EVE.*

⧫ Knows Alice and Bob’s algorithms and but
does not know the key nor their internal randomness.
 (Kerckhoff’s principle or Shannon’s maxim)

𝐺𝑒𝑛, 𝐸𝑛𝑐 𝐷𝑒𝑐

⧫ Can see the ciphertexts going through the channel
(but cannot modify them… we will come to that later)

The Worst-case Adversary

⧫ An arbitrary computationally unbounded algorithm EVE.*

⧫ Knows Alice and Bob’s algorithms and but
does not know the key nor their internal randomness.
 (Kerckhoff’s principle or Shannon’s maxim)

𝐺𝑒𝑛, 𝐸𝑛𝑐 𝐷𝑒𝑐

⧫ Can see the ciphertexts going through the channel
(but cannot modify them… we will come to that later)

Security Definition: What is she trying to learn?

A-prioriA-posteriori

Shannon’s Perfect Secrecy Definition

 𝑚 ← ℳ

 , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝐸𝑛𝑐(𝒦, ℳ) = 𝑐] = Pr[ℳ = 𝑚]

A-prioriA-posteriori

Shannon’s Perfect Secrecy Definition

 𝑚 ← ℳ Message space (probability distribution) ℳ

 , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝐸𝑛𝑐(𝒦, ℳ) = 𝑐] = Pr[ℳ = 𝑚]

A-prioriA-posteriori

Shannon’s Perfect Secrecy Definition

Key k ← 𝒦 Key k ← 𝒦

 𝑚 ← ℳ Message space (probability distribution) ℳ

Key space 𝒦

 , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝐸𝑛𝑐(𝒦, ℳ) = 𝑐] = Pr[ℳ = 𝑚]

A-prioriA-posteriori

Shannon’s Perfect Secrecy Definition

Key k ← 𝒦 Key k ← 𝒦

 𝑚 ← ℳ
𝑐 ← Enc(𝑘, 𝑚)

Message space (probability distribution) ℳ

Key space 𝒦

Ciphertext space 𝒞

 , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝐸𝑛𝑐(𝒦, ℳ) = 𝑐] = Pr[ℳ = 𝑚]

A-prioriA-posteriori

Shannon’s Perfect Secrecy Definition

Key k ← 𝒦 Key k ← 𝒦

 𝑚 ← ℳ
𝑐 ← Enc(𝑘, 𝑚)

 , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝐸𝑛𝑐(𝒦, ℳ) = 𝑐] = Pr[ℳ = 𝑚]

A-prioriA-posteriori

Shannon’s Perfect Secrecy Definition

Key k ← 𝒦 Key k ← 𝒦

 𝑚 ← ℳ
𝑐 ← Enc(𝑘, 𝑚)

 , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝐸𝑛𝑐(𝒦, ℳ) = 𝑐] = Pr[ℳ = 𝑚]

IDEA: A-posteriori = A-priori

A-prioriA-posteriori

Shannon’s Perfect Secrecy Definition

Key k ← 𝒦 Key k ← 𝒦

 𝑚 ← ℳ
𝑐 ← Enc(𝑘, 𝑚)

 , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝐸𝑛𝑐(𝒦, ℳ) = 𝑐] = Pr[ℳ = 𝑚]

IDEA: A-posteriori = A-priori

A-prioriA-posteriori

Shannon’s Perfect Secrecy Definition

Key k ← 𝒦 Key k ← 𝒦

 𝑚 ← ℳ

 , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝐸𝑛𝑐(𝒦, ℳ) = 𝑐] = Pr[ℳ = 𝑚]

IDEA: A-posteriori = A-priori

A-prioriA-posteriori

Shannon’s Perfect Secrecy Definition

Key k ← 𝒦 Key k ← 𝒦

 𝑚 ← ℳ

 , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝐸𝑛𝑐(𝒦, ℳ) = 𝑐] = Pr[ℳ = 𝑚]

IDEA: A-posteriori = A-priori

A-prioriA-posteriori

Shannon’s Perfect Secrecy Definition

Key k ← 𝒦 Key k ← 𝒦

 𝑚 ← ℳ

 , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝐸𝑛𝑐(𝒦, ℳ) = 𝑐] = Pr[ℳ = 𝑚]

IDEA: A-posteriori = A-priori

Perfect indistinguishability: a Turing test

 ,∀ℳ ∀𝑚, 𝑚′ ∈ Supp(ℳ) 𝑐 ∈ Supp(𝒞):

Perfect Indistinguishability Definition

Pr[𝐸(K, 𝑚) = 𝑐] = Pr[𝐸(K, 𝑚′) = 𝑐]

Perfect indistinguishability: a Turing test

 ,∀ℳ ∀𝑚, 𝑚′ ∈ Supp(ℳ) 𝑐 ∈ Supp(𝒞):

World 0: World 1:

𝑐 = 𝐸(𝑘, 𝑚) 𝑐′ = 𝐸(𝑘, 𝑚′)
k K ← k ← K

Perfect Indistinguishability Definition

Pr[𝐸(K, 𝑚) = 𝑐] = Pr[𝐸(K, 𝑚′) = 𝑐]

Perfect indistinguishability: a Turing test

 ,∀ℳ ∀𝑚, 𝑚′ ∈ Supp(ℳ) 𝑐 ∈ Supp(𝒞):

World 0: World 1:

𝑐 = 𝐸(𝑘, 𝑚) 𝑐′ = 𝐸(𝑘, 𝑚′)

is a distinguisher (that gets c and tries to
guess which world she’s in)

k K ← k ← K

Perfect Indistinguishability Definition

Pr[𝐸(K, 𝑚) = 𝑐] = Pr[𝐸(K, 𝑚′) = 𝑐]

Perfect indistinguishability: a Turing test

 ,∀ℳ ∀𝑚, 𝑚′ ∈ Supp(ℳ) 𝑐 ∈ Supp(𝒞):

World 0: World 1:

𝑐 = 𝐸(𝑘, 𝑚) 𝑐′ = 𝐸(𝑘, 𝑚′)

is a distinguisher (that gets c and tries to
guess which world she’s in)

k K ← k ← K

Perfect Indistinguishability Definition

Pr[𝐸(K, 𝑚) = 𝑐] = Pr[𝐸(K, 𝑚′) = 𝑐]

Perfect indistinguishability: a Turing test

 ,∀ℳ ∀𝑚, 𝑚′ ∈ Supp(ℳ) 𝑐 ∈ Supp(𝒞):

World 0: World 1:

𝑐 = 𝐸(𝑘, 𝑚) 𝑐′ = 𝐸(𝑘, 𝑚′)

is a distinguisher (that gets c and tries to
guess which world she’s in)

k K ← k ← K

Perfect Indistinguishability Definition

Pr[𝐸(K, 𝑚) = 𝑐] = Pr[𝐸(K, 𝑚′) = 𝑐]

The Two Definitions are Equivalent

THEOREM: An encryption scheme
satisfies perfect secrecy IFF it satisfies perfect
indistinguishability.

(Gen, Enc, Dec)

The Two Definitions are Equivalent

THEOREM: An encryption scheme
satisfies perfect secrecy IFF it satisfies perfect
indistinguishability.

(Gen, Enc, Dec)

PROOF: Simple use of conditional probabilities.

A simple observation

(SEC): , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝐸𝑛𝑐(𝒦, ℳ) = 𝑐] = Pr[ℳ = 𝑚]

A simple observation

(SEC): , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝐸𝑛𝑐(𝒦, ℳ) = 𝑐] = Pr[ℳ = 𝑚]

Observation: SEC is equivalent to saying that the random
variables and are independent.ℳ 𝒞 ≔ 𝐸𝑛𝑐(𝒦, ℳ)

Proof Part 1. Indistinguishability Secrecy⟹

WE KNOW (IND): , , ∀ℳ ∀𝑚, 𝑚′ ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[𝐸𝑛𝑐(𝒦, 𝑚) = 𝑐] = Pr[𝐸𝑛𝑐(𝒦, 𝑚′) = 𝑐]
WE WANT (SEC): , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝒞 = 𝑐] = Pr[ℳ = 𝑚]

= 𝜶

Proof Part 1. Indistinguishability Secrecy⟹

WE KNOW (IND): , , ∀ℳ ∀𝑚, 𝑚′ ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[𝐸𝑛𝑐(𝒦, 𝑚) = 𝑐] = Pr[𝐸𝑛𝑐(𝒦, 𝑚′) = 𝑐]
WE WANT (SEC): , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝒞 = 𝑐] = Pr[ℳ = 𝑚]

= 𝜶

Proof: By the observation from last slide, SEC is true if and only if
 (by independence of and .)Pr[𝒞 = 𝑐 |ℳ = 𝑚] = Pr[𝒞 = 𝑐] ℳ 𝒞

Proof Part 1. Indistinguishability Secrecy⟹

WE KNOW (IND): , , ∀ℳ ∀𝑚, 𝑚′ ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[𝐸𝑛𝑐(𝒦, 𝑚) = 𝑐] = Pr[𝐸𝑛𝑐(𝒦, 𝑚′) = 𝑐]
WE WANT (SEC): , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝒞 = 𝑐] = Pr[ℳ = 𝑚]

= 𝜶

Proof: By the observation from last slide, SEC is true if and only if
 (by independence of and .)Pr[𝒞 = 𝑐 |ℳ = 𝑚] = Pr[𝒞 = 𝑐] ℳ 𝒞

This means that is a number (say)
that does not depend on m.

Pr[𝒞 = 𝑐 |ℳ = 𝑚] = Pr[𝐸𝑛𝑐(𝒦, 𝑚) = 𝑐] 𝛼𝑐

Proof Part 1. Indistinguishability Secrecy⟹

WE KNOW (IND): , , ∀ℳ ∀𝑚, 𝑚′ ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[𝐸𝑛𝑐(𝒦, 𝑚) = 𝑐] = Pr[𝐸𝑛𝑐(𝒦, 𝑚′) = 𝑐]
WE WANT (SEC): , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝒞 = 𝑐] = Pr[ℳ = 𝑚]

= 𝜶

Proof: By the observation from last slide, SEC is true if and only if
 (by independence of and .)Pr[𝒞 = 𝑐 |ℳ = 𝑚] = Pr[𝒞 = 𝑐] ℳ 𝒞

This means that is a number (say)
that does not depend on m.

Pr[𝒞 = 𝑐 |ℳ = 𝑚] = Pr[𝐸𝑛𝑐(𝒦, 𝑚) = 𝑐] 𝛼𝑐

So, for all and , giving
us IND.

Pr[𝐸𝑛𝑐(𝒦, 𝑚) = 𝑐] = Pr[𝐸𝑛𝑐(𝒦, 𝑚′) = 𝑐] (= 𝛼𝑐) 𝑚 𝑚′

Proof Part 2. Secrecy Indistinguishability ⟹

WE WANT (IND): , , ∀ℳ ∀𝑚, 𝑚′ ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[𝐸𝑛𝑐(𝒦, 𝑚) = 𝑐] = Pr[𝐸𝑛𝑐(𝒦, 𝑚′) = 𝑐]

WE KNOW (SEC): , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝒞 = 𝑐] = Pr[ℳ = 𝑚]

Proof: As before, SEC is true if and only if for
all and .

Pr[𝒞 = 𝑐 |ℳ = 𝑚] = Pr[𝒞 = 𝑐]
𝑚 𝑐

Proof Part 2. Secrecy Indistinguishability ⟹

WE WANT (IND): , , ∀ℳ ∀𝑚, 𝑚′ ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[𝐸𝑛𝑐(𝒦, 𝑚) = 𝑐] = Pr[𝐸𝑛𝑐(𝒦, 𝑚′) = 𝑐]

WE KNOW (SEC): , , ∀ℳ ∀𝑚 ∈ Supp(ℳ) ∀𝑐 ∈ Supp(𝒞)

Pr[ℳ = 𝑚 |𝒞 = 𝑐] = Pr[ℳ = 𝑚]

Proof: As before, SEC is true if and only if for
all and .

Pr[𝒞 = 𝑐 |ℳ = 𝑚] = Pr[𝒞 = 𝑐]
𝑚 𝑐

Pr[𝐸𝑛𝑐(𝒦, 𝑚) = 𝑐] = Pr[𝒞 = 𝑐 ℳ = 𝑚]
= Pr[𝒞 = 𝑐 ℳ = 𝑚′]

= Pr[𝐸𝑛𝑐(𝒦, 𝑚′) = 𝑐]

Perfect Secrecy is Achievable

The One-time Pad Construction:

 Choose an -bit string k at random, i.e. 𝐺𝑒𝑛: 𝑛 𝑘 ← {0, 1}𝑛

, where M is an n-bit message: Output 𝐸𝑛𝑐(𝑘, 𝑚) 𝑐 = 𝑚⨁𝑘

 Output 𝐷𝑒𝑐(𝑘, 𝑐): 𝑚 = 𝑐⨁𝑘

Perfect Secrecy is Achievable

The One-time Pad Construction:

 Choose an -bit string k at random, i.e. 𝐺𝑒𝑛: 𝑛 𝑘 ← {0, 1}𝑛

, where M is an n-bit message: Output 𝐸𝑛𝑐(𝑘, 𝑚) 𝑐 = 𝑚⨁𝑘

 Output 𝐷𝑒𝑐(𝑘, 𝑐): 𝑚 = 𝑐⨁𝑘

 bitwise exclusive OR (or XOR)
0 0 = 1 = 0
0 1 = 0 = 1

a b = a + b (mod 2)

⊕ :
⊕ 1 ⊕
⊕ 1 ⊕

⊕

Perfect Secrecy is Achievable

Correctness: 𝑐⨁𝑘 = (𝑚⨁𝑘)⨁𝑘 = 𝑚 .

The One-time Pad Construction:

 Choose an -bit string k at random, i.e. 𝐺𝑒𝑛: 𝑛 𝑘 ← {0, 1}𝑛

, where M is an n-bit message: Output 𝐸𝑛𝑐(𝑘, 𝑚) 𝑐 = 𝑚⨁𝑘

 Output 𝐷𝑒𝑐(𝑘, 𝑐): 𝑚 = 𝑐⨁𝑘

Perfect Secrecy is Achievable

Claim: One-time Pad achieves Perfect Indistinguishability (and
therefore perfect secrecy).

Proof: For any 𝑚, 𝑐 ∈ {0,1}𝑛,

Pr[Enc(K, 𝑚) = 𝑐] = Pr[𝑚⨁K = 𝑐]
= Pr[K = 𝑐⨁𝑚] = 1/2𝑛

The One-time Pad Construction:

 Choose an -bit string k at random, i.e. 𝐺𝑒𝑛: 𝑛 𝑘 ← {0, 1}𝑛

, where M is an n-bit message: Output 𝐸𝑛𝑐(𝑘, 𝑚) 𝑐 = 𝑚⨁𝑘

 Output 𝐷𝑒𝑐(𝑘, 𝑐): 𝑚 = 𝑐⨁𝑘

Perfect Secrecy is Achievable

Claim: One-time Pad achieves Perfect Indistinguishability (and
therefore perfect secrecy).

Proof: For any 𝑚, 𝑐 ∈ {0,1}𝑛,

Pr[Enc(K, 𝑚) = 𝑐] = Pr[𝑚⨁K = 𝑐]
= Pr[K = 𝑐⨁𝑚] = 1/2𝑛

The One-time Pad Construction:

 Choose an -bit string k at random, i.e. 𝐺𝑒𝑛: 𝑛 𝑘 ← {0, 1}𝑛

, where M is an n-bit message: Output 𝐸𝑛𝑐(𝑘, 𝑚) 𝑐 = 𝑚⨁𝑘

 Output 𝐷𝑒𝑐(𝑘, 𝑐): 𝑚 = 𝑐⨁𝑘

Perfect Secrecy is Achievable

Claim: One-time Pad achieves Perfect Indistinguishability (and
therefore perfect secrecy).

Proof: For any 𝑚, 𝑐 ∈ {0,1}𝑛,

Pr[Enc(K, 𝑚) = 𝑐] = Pr[𝑚⨁K = 𝑐]
= Pr[K = 𝑐⨁𝑚] = 1/2𝑛

The One-time Pad Construction:

 Choose an -bit string k at random, i.e. 𝐺𝑒𝑛: 𝑛 𝑘 ← {0, 1}𝑛

, where M is an n-bit message: Output 𝐸𝑛𝑐(𝑘, 𝑚) 𝑐 = 𝑚⨁𝑘

 Output 𝐷𝑒𝑐(𝑘, 𝑐): 𝑚 = 𝑐⨁𝑘

Perfect Secrecy is Achievable

Claim: One-time Pad achieves Perfect Indistinguishability (and
therefore perfect secrecy).

Proof: For any 𝑚, 𝑐 ∈ {0,1}𝑛,

Pr[Enc(K, 𝑚) = 𝑐] = Pr[𝑚⨁K = 𝑐]
= Pr[K = 𝑐⨁𝑚] = 1/2𝑛

The One-time Pad Construction:

 Choose an -bit string k at random, i.e. 𝐺𝑒𝑛: 𝑛 𝑘 ← {0, 1}𝑛

, where M is an n-bit message: Output 𝐸𝑛𝑐(𝑘, 𝑚) 𝑐 = 𝑚⨁𝑘

 Output 𝐷𝑒𝑐(𝑘, 𝑐): 𝑚 = 𝑐⨁𝑘

Perfect Secrecy is Achievable

Claim: One-time Pad achieves Perfect Indistinguishability (and
therefore perfect secrecy).

Proof: For any m , 𝑚′ , 𝑐 ∈ {0,1}𝑛,

So, .Pr[Enc(K, 𝑚) = 𝑐] = Pr[Enc(K, 𝑚′) = 𝑐]
QED.

The One-time Pad Construction:

 Choose an -bit string k at random, i.e. 𝐺𝑒𝑛: 𝑛 𝑘 ← {0, 1}𝑛

, where M is an n-bit message: Output 𝐸𝑛𝑐(𝑘, 𝑚) 𝑐 = 𝑚⨁𝑘

 Output 𝐷𝑒𝑐(𝑘, 𝑐): 𝑚 = 𝑐⨁𝑘

Reusing a One-time Pad?

Super-secure Whisper room

Reusing a One-time Pad?

Key k Key k

Reusing a One-time Pad?

Key k Key k

m0

Reusing a One-time Pad?

Key k Key k

m0

𝑐0 = 𝑚0 ⊕ 𝑘

Reusing a One-time Pad?

Key k Key k

m0

𝑐0 = 𝑚0 ⊕ 𝑘

A week later:

Reusing a One-time Pad?

Key k Key k

m0

𝑐0 = 𝑚0 ⊕ 𝑘

c1 = 𝑚1 ⊕ 𝑘
m1

A week later:

Reusing a One-time Pad?

Key k Key k

m0

𝑐0 = 𝑚0 ⊕ 𝑘

c1 = 𝑚1 ⊕ 𝑘
m1

A week later:

Is this still perfectly secret?

Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: Perfect indistinguishability requires that for all pairs
 (𝑚0,𝑚1), (𝑚0′ , 𝑚1′), (𝑐0,𝑐1) ∈ {0,1}2𝑛:

Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: Perfect indistinguishability requires that for all pairs
 (𝑚0,𝑚1), (𝑚0′ , 𝑚1′), (𝑐0,𝑐1) ∈ {0,1}2𝑛:

Pr[Enc(k, 𝑚0) = 𝑐0 𝑎𝑛𝑑 Enc(k, 𝑚1) = 𝑐1]
= Pr[Enc(k, 𝑚0′) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1′) = 𝑐1]

Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: We want to pick
s.t.

(𝑚0,𝑚1), (𝑚0′ , 𝑚1′), (𝑐0,𝑐1) ∈ {0,1}2𝑛

Pr[Enc(k, 𝑚0) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1) = 𝑐1]
≠ Pr[Enc(k, 𝑚0′) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1′) = 𝑐1]

Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: We want to pick
s.t.

(𝑚0,𝑚1), (𝑚0′ , 𝑚1′), (𝑐0,𝑐1) ∈ {0,1}2𝑛

Pr[Enc(k, 𝑚0) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1) = 𝑐1]
≠ Pr[Enc(k, 𝑚0′) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1′) = 𝑐1]

𝐏𝐢𝐜𝐤 𝒎𝟎 = 𝒎𝟏 = 𝒎, 𝒎𝟎′ ≠ 𝒎𝟏′ 𝐚𝐧𝐝 𝒄𝟎 = 𝒄𝟏 = 𝒄 .

Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: We want to pick
s.t.

(𝑚0,𝑚1), (𝑚0′ , 𝑚1′), (𝑐0,𝑐1) ∈ {0,1}2𝑛

Pr[Enc(k, 𝑚0) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1) = 𝑐1]
≠ Pr[Enc(k, 𝑚0′) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1′) = 𝑐1]

𝐏𝐢𝐜𝐤 𝒎𝟎 = 𝒎𝟏 = 𝒎, 𝒎𝟎′ ≠ 𝒎𝟏′ 𝐚𝐧𝐝 𝒄𝟎 = 𝒄𝟏 = 𝒄 .

Pr[Enc(k, 𝑚0) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1) = 𝑐1]

Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: We want to pick
s.t.

(𝑚0,𝑚1), (𝑚0′ , 𝑚1′), (𝑐0,𝑐1) ∈ {0,1}2𝑛

Pr[Enc(k, 𝑚0) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1) = 𝑐1]
≠ Pr[Enc(k, 𝑚0′) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1′) = 𝑐1]

𝐏𝐢𝐜𝐤 𝒎𝟎 = 𝒎𝟏 = 𝒎, 𝒎𝟎′ ≠ 𝒎𝟏′ 𝐚𝐧𝐝 𝒄𝟎 = 𝒄𝟏 = 𝒄 .

Pr[Enc(k, 𝑚0) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1) = 𝑐1]
= Pr[En𝑐(𝑘, 𝑚) = 𝑐] = 1/2𝑛

Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: We want to pick
s.t.

(𝑚0,𝑚1), (𝑚0′ , 𝑚1′), (𝑐0,𝑐1) ∈ {0,1}2𝑛

Pr[Enc(k, 𝑚0) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1) = 𝑐1]
≠ Pr[Enc(k, 𝑚0′) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1′) = 𝑐1]

𝐏𝐢𝐜𝐤 𝒎𝟎 = 𝒎𝟏 = 𝒎, 𝒎𝟎′ ≠ 𝒎𝟏′ 𝐚𝐧𝐝 𝒄𝟎 = 𝒄𝟏 = 𝒄 .

Pr[Enc(k, 𝑚0) = 𝑐 = Enc(𝑘, 𝑚1)] = 1/2𝑛

Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: We want to pick
s.t.

(𝑚0,𝑚1), (𝑚0′ , 𝑚1′), (𝑐0,𝑐1) ∈ {0,1}2𝑛

Pr[Enc(k, 𝑚0) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1) = 𝑐1]
≠ Pr[Enc(k, 𝑚0′) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1′) = 𝑐1]

𝐏𝐢𝐜𝐤 𝒎𝟎 = 𝒎𝟏 = 𝒎, 𝒎𝟎′ ≠ 𝒎𝟏′ 𝐚𝐧𝐝 𝒄𝟎 = 𝒄𝟏 = 𝒄 .

Pr[Enc(k, 𝑚0) = 𝑐 = Enc(𝑘, 𝑚1)] = 1/2𝑛

Pr[Enc(k, 𝑚0′) = c = Enc(𝑘, 𝑚1′)] = 0

Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: We want to pick
s.t.

(𝑚0,𝑚1), (𝑚0′ , 𝑚1′), (𝑐0,𝑐1) ∈ {0,1}2𝑛

Pr[Enc(k, 𝑚0) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1) = 𝑐1]
≠ Pr[Enc(k, 𝑚0′) = 𝑐0 𝑎𝑛𝑑 Enc(𝑘, 𝑚1′) = 𝑐1]

𝐏𝐢𝐜𝐤 𝒎𝟎 = 𝒎𝟏 = 𝒎, 𝒎𝟎′ ≠ 𝒎𝟏′ 𝐚𝐧𝐝 𝒄𝟎 = 𝒄𝟏 = 𝒄 .

Pr[Enc(k, 𝑚0) = 𝑐 = Enc(𝑘, 𝑚1)] = 1/2𝑛

Pr[Enc(k, 𝑚0′) = c = Enc(𝑘, 𝑚1′)] = 0

Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,
 |𝒦 | ≥ |ℳ |
PROOF (by picture): Assume for contradiction that

 𝒦 < ℳ .ℳ 𝒞

Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,
 |𝒦 | ≥ |ℳ |
PROOF (by picture): Assume for contradiction that

 𝒦 < ℳ .ℳ 𝒞

𝑐 Pick any 𝑐 ∈ 𝒞

Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,
 |𝒦 | ≥ |ℳ |
PROOF (by picture): Assume for contradiction that

 𝒦 < ℳ .ℳ 𝒞

𝑐 Pick any 𝑐 ∈ 𝒞
Look at the set of
possible msgs
(etc.)𝑚 = 𝐷𝑒𝑐(𝑘, 𝑐)

𝑚

𝑚′

𝑚′ ′

Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,
 |𝒦 | ≥ |ℳ |
PROOF (by picture): Assume for contradiction that

 𝒦 < ℳ .ℳ 𝒞

𝑐
𝑘

𝑘′

𝑘′ ′

Pick any 𝑐 ∈ 𝒞
Look at the set of
possible msgs
(etc.)𝑚 = 𝐷𝑒𝑐(𝑘, 𝑐)

𝑚

𝑚′

𝑚′ ′

Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,
 |𝒦 | ≥ |ℳ |
PROOF (by picture): Assume for contradiction that

 𝒦 < ℳ .ℳ 𝒞

𝑐
𝑘

𝑘′

𝑘′ ′

Pick any 𝑐 ∈ 𝒞
Look at the set of
possible msgs
(etc.)𝑚 = 𝐷𝑒𝑐(𝑘, 𝑐)

Distinct keys!

𝑚

𝑚′

𝑚′ ′

Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,
 |𝒦 | ≥ |ℳ |
PROOF (by picture): Assume for contradiction that

 𝒦 < ℳ .ℳ 𝒞

𝑐
𝑘

𝑘′

𝑘′ ′

Pick any 𝑐 ∈ 𝒞
Look at the set of
possible msgs
(etc.)𝑚 = 𝐷𝑒𝑐(𝑘, 𝑐)

Distinct keys!

𝑚

𝑚′

𝑚′ ′ 𝑘′ ′ ′

Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,
 |𝒦 | ≥ |ℳ |
PROOF (by picture): Assume for contradiction that

 𝒦 < ℳ .ℳ 𝒞

𝑐
𝑘

𝑘′

𝑘′ ′

Pick any 𝑐 ∈ 𝒞
Look at the set of
possible msgs
(etc.)𝑚 = 𝐷𝑒𝑐(𝑘, 𝑐)

Distinct keys!

≤ 𝓚 < |𝓜 |

𝑚

𝑚′

𝑚′ ′ 𝑘′ ′ ′

Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,
 |𝒦 | ≥ |ℳ |
PROOF (by picture): Assume for contradiction that

 𝒦 < ℳ .ℳ 𝒞

𝑐
𝑘

𝑘′

𝑘′ ′

Pick any 𝑐 ∈ 𝒞
Look at the set of
possible msgs
(etc.)𝑚 = 𝐷𝑒𝑐(𝑘, 𝑐)

Distinct keys!

≤ 𝓚 < |𝓜 |

𝑚

𝑚′

𝑚′ ′

~𝒎

𝑘′ ′ ′

Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,
 |𝒦 | ≥ |ℳ |
PROOF (by picture): Assume for contradiction that

 𝒦 < ℳ .ℳ 𝒞

𝑐
𝑘

𝑘′

𝑘′ ′

≤ 𝓚 < |𝓜 |

𝑚

𝑚′

𝑚′ ′

~𝒎

Pr[𝐸𝑛𝑐(𝒦, 𝑚) = 𝑐] > 0

Pr[𝐸𝑛𝑐(𝒦, ~𝑚) = 𝑐] = 0
𝑸𝑬𝑫 .

So, what are we to do?

So, what are we to do?
RELAX the definition:
 EVE is an arbitrary computationally bounded algorithm.

So, what are we to do?
RELAX the definition:
 EVE is an arbitrary computationally bounded algorithm.

+ number theory/geometry/combinatorics

So, what are we to do?
RELAX the definition:
 EVE is an arbitrary computationally bounded algorithm.

Pseudorandomness

ZK proofs
Public-key encryption

+ number theory/geometry/combinatorics

the promised crypto land

Fully homomorphic encryption

To Summarize…

• Secure Communication: a quintessential problem in
cryptography.

• We saw two equivalent definitions of security:
 Shannon’s perfect indistinguishability and perfect secrecy

• One-time pad achieves perfect secrecy.

• A Serious Limitation: Any perfectly secure encryption scheme
needs keys that are at least as long as the messages.

• Next Lecture: Overcoming the limitation with Computationally
Bounded Adversaries.

