MIT 6.875/6.5620/18.425

Foundations of Cryptography
Lecture 1

Course website: https://mit6875.github.io/



Neekon Vafa
(nvafa@mit)

Course Staff

Instructor:

Vinod Vaikuntanathan
(vinodv@mit)

TAs:

Hanshen Xiao
(hsxiao@mit)

Chirag Falor
(cfalor@mit)



Course Website

https://mit6875.github.io/

MIT 6.5620/6.875/18.425 (Fall 2023)
Foundations of Cryptography

Course Description

The field of cryptography gives us a technical language to define important real-world problems such as security, privacy and integrity, a mathematical toolkit to construct
mechanisms such as encryption, digital signatures, zero-knowledge proofs, homomorphic encryption and secure multiparty computation, and a complexity-theoretic
framework to prove security using reductions. Together, they help us enforce the rules of the road in digital interactions.

The last few years have witnessed dramatic developments in the foundations of cryptography, as well as its applications to real-world privacy and security problems. For
example, cryptography is abuzz with solutions to long-standing open problems such as fully homomorphic encryption and software obfuscation that use an abundance of data
for public good without compromising security.

The course will explore the rich theory of cryptography all the way from the basics to the recent developments.

Prerequisites: This is an introductory, but fast-paced, graduate course, intended for beginning graduate students and upper level undergraduates in CS and Math. We will

assume fluency in algorithms (equivalent to 6.046), complexity theory (equivalent to 6.045) and discrete probability (equivalent to 6.042). Mathematical maturity and an ease
with writing mathematical proofs will be assumed starting from the first lecture.

Course Information

INSTRUCTOR Vinod Vaikuntanathan

Email: vinodyv at csail dot mit dot edu
LOCATION AND TIME Monday and Wednesday 1:00-2:30pm in 1-190
TAs Chirag Falor

Email: cfalor at mit dot edu
Office hours: TBD.

Neekon Vafa
Email: nvafa at mit dot edu
Office hours: TBD.

Hanshen Xiao

Email: hsxiao at mit dot edu
faY:: . TR




Crypto # Cryptocurrencies

6.5620 is not about \\__,3_7
\\.\ .



Crypto # Cryptocurrencies

Carh
)

- lVﬂ ——

- ".' -
‘ — S i
* Zero-knowledge
-~ Proofs ‘ i

~ —.
pas P ;z f,'

@ =~
Threshold -- |
|
Homomorphlc w ryptography =
Encryptlon - ’:- il




Crypto # Cryptocurrencies

Blockchains/
- \ Cryptocurrencies

Ve

“Trustworthy”
machine learning

B —

Lt
- - v” -

-~

-

5, Zero-knowledge N
- Proofs ‘ ic-
"‘ “ N

e
F:
=

@ =~
Threshold -- |
|
Homomorphlc w ryptography =
Encryptlon - ’:- il




The Intellectual Origins

“Communication Theory of Secrecy Systems” (1945)
preceded
“A Mathematical Theory of Communication” (1948)

which founded Information Theory

Claude E. Shannon



The Intellectual Origins

“Communication Theory of Secrecy Systems” (1945)
preceded
“A Mathematical Theory of Communication” (1948)

which founded Information Theory

Claude E. Shannon

Cryptanalysis of the Enigma Machine (~1938-39)

“On Computable Numbers, with an Application to
the Entscheidungsproblem” (1936)

which gave birth to Computer Science R
Alan M. Turing



Modern Cryptography:

Practice to Theory and Back

Problems
Security,

>
Privacy,
Integrity




Modern Cryptography:

Practice to Theory and Back

Problems

Security,
CRYPTO

Privacy,
Integrity




Modern Cryptography:

Practice to Theory and Back

Problems
>

Security,

Math and
Theoretical CS

CRYPTO

Privacy,
Integrity




Modern Cryptography:

Practice to Theory and Back

Problems
>

Security,

Math and
Theoretical CS

CRYPTO

Privacy,
Integrity

<
Solutions




Modern Cryptography:

Practice to Theory and Back

Problems
Security, > Math and
Privacy, CRYPTO Theoretical CS
Integrity
<
Solutions
Encryption

Digital Signatures

Pseudorandom Functions



Modern Cryptography:

Practice to Theory and Back

Problems
>

Security, Math and
Privacy, Theoretical CS
Integrity
< >
Solutions
Encryption Interactive Proofs
Digital Signatures Probabilistically checkable Proofs

Pseudorandom Functions Locally decodable Codes



6.875/6.5620 Themes

1. The Omnipresent, Worst-case, Adversary. “@5

Central idea. model the adversary: what they know, what
they can do, and what their goals are.

Definitions will be our friend.
If you cannot define something, you cannot achieve it.



6.875/6.5620 Themes

1. The Omnipresent, Worst-case, Adversary. “@5

Central idea. model the adversary: what they know, what
they can do, and what their goals are.

Definitions will be our friend.
If you cannot define something, you cannot achieve it.

A key takeaway from 6.875:
Cryptographic (or, adversarial) thinking.



6.875/6.5620 Themes

2. Computational Hardness will be our enabler.
(starting lecture 2)

Central theme: the cryptographic leash. Use
computational hardness to “tame” the adversary.



6.875/6.5620 Themes

2. Computational Hardness will be our enabler.
(starting lecture 2)

Central theme: the cryptographic leash. Use
computational hardness to “tame” the adversary.

A classical source of hard problems: number theory.

“Both Gauss and lesser mathematicians may be justified in rejoicing that
there is one such science [number theory] at any rate, whose very
remoteness from ordinary human activities should keep it gentle and clean”

[G. H. Hardy, “A Mathematician’s Apology”]



6.875/6.5620 Themes

2. Computational Hardness will be our enabler.
(starting lecture 2)

Central theme: the cryptographic leash. Use
computational hardness to “tame” the adversary.

A classical source of hard problems: number theory.

“Both Gauss and lesser mathematicians may be justified in rejoicing that
there is one such science [number theory] at any rate, whose very
remoteness from ordinary human activities should keep it gentle and clean”

[G. H. Hardy, “A Mathematician’s Apology”]

More recently: geometry, coding theory, combinatorics.



6.875/6.5620 Themes

2. Computational Hardness will be our enabler.
(starting lecture 2)

Central theme: the cryptographic leash. Use
computational hardness to “tame” the adversary.

A classical source of hard problems: number theory.

“Both Gauss and lesser mathematicians may be justified in rejoicing that
there is one such science [number theory] at any rate, whose very
remoteness from ordinary human activities should keep it gentle and clean”

[G. H. Hardy, “A Mathematician’s Apology”]

More recently: geometry, coding theory, combinatorics.

Cryptography is the science of useful hardness.



6.875 Themes

3. Security Proofs via Reductions.

“If there is an (efficient) adversary that breaks scheme A
w.r.t. definition D, then there is an (efficient) adversary
that factors large numbers.”



6.875 Themes

3. Security Proofs via Reductions.
“If there is an (efficient) adversary that breaks scheme A

w.r.t. definition D, then there is an (efficient) adversary
that factors large numbers.”

“Science wins either way”




6.875 Themes

3. Security Proofs via Reductions.

“If there is an (efficient) adversary that breaks scheme A
w.r.t. definition D, then there is an (efficient) adversary
that factors large numbers.”

“Science wins either way”

Our reductions will be probabilistic and significantly more
involved than the NP-hardness reductions in, say, 6.045.



6.875 Topics

Pseudorandomness

Secret-key Encryption and Authentication
Public-key Encryption and Digital Signatures
Cryptographic Hashing

Zero-knowledge Proofs

Secure Multiparty Computation

Private Information Retrieval

Homomorphic Encryption

Advanced topics:
Threshold Cryptography, Program Obfuscation,
Quantum Crypto, ...



Administrivia

o Course website, the central point of reference.
https://mit6875.github.io

Piazza for questions, Gradescope for psets.

Piazza: https://piazza.com/class/Im5kwnurlj2573/

Gradescope code: B2BRD2


https://mit6875.github.io/

Administrivia

o Course website, the central point of reference.
https://mit6875.github.io

Piazza for questions, Gradescope for psets.

o Homework (75%): 6 psets, we will count your best 5.


https://mit6875.github.io/

Administrivia

o Course website, the central point of reference.
https://mit6875.github.io

Piazza for questions, Gradescope for psets.

o Homework (75%): 6 psets, we will count your best 5.

6.875 is on https://psetpartners.mit.edu



https://mit6875.github.io/
https://psetpartners.mit.edu/

Administrivia

o Course website, the central point of reference.
https://mit6875.github.io

Piazza for questions, Gradescope for psets.

o Homework (75%): 6 psets, we will count your best 5.

o Midterm (20%): Oct 25.


https://mit6875.github.io/

O

O

O

O

Administrivia

Course website, the central point of reference.
https://mit6875.github.io

Piazza for questions, Gradescope for psets.

Homework (75%): 6 psets, we will count your best 5.

Midterm (20%): Oct 25.

Class Participation (5%): Lecture, Piazza.


https://mit6875.github.io/

Administrivia

Course website, the central point of reference.
https://mit6875.github.io

Piazza for questions, Gradescope for psets.

Homework (75%): 6 psets, we will count your best 5.

Midterm (20%): Oct 25.

Class Participation (5%): Lecture, Piazza.

Prereqs: Algorithms, Probability & Discrete Math, but most
of all, “mathematical maturity”.

(Optional) special recitations: 1. probability (this Friday), 2.
basic complexity theory, 3. number theory.


https://mit6875.github.io/

Secure Communication

) - 8

Bob

Eavesdropper “Eve”

Alice wants to send a message m to Bob without revealing it to Eve.



Secure Communication

o
X - 8

7 Key k

)

Eavesdropper “Eve”

SETUP: Alice and Bob meet beforehand to agree on a secret key k.



Key Notion: Secret-key Encryption

(or Symmetric-key Encryption)

= - 8

Key k Key k




Key Notion: Secret-key Encryption
(or Symmetric-key Encryption)
0

oy -

Key k Key k

Three (possibly probabilistic) polynomial-time algorithms:

o0 Key Generation Algorithm Gen: k < Gen(



Key Notion: Secret-key Encryption
(or Symmetric-key Encryption)
0

oy -

Key k Key k

Three (possibly probabilistic) polynomial-time algorithms:

o Key Generation Algorithm Gen: k < Gen(1")



Key Notion: Secret-key Encryption
(or Symmetric-key Encryption)
0

oy - 8

Key k Key k

Three (possibly probabilistic) polynomial-time algorithms:

o Key Generation Algorithm Gen: k < Gen(1")
Has to be probabilistic



Key Notion: Secret-key Encryption
(or Symmetric-key Encryption)
0

oy - 8

Key k Key k

Three (possibly probabilistic) polynomial-time algorithms:

o Key Generation Algorithm Gen: k < Gen(1")
Has to be probabilistic

O Encryption Algorithm Enc: ¢ < Enc(k, m)



Key Notion: Secret-key Encryption
(or Symmetric-key Encryption)
0

oy - &

Key k Key k

Three (possibly probabilistic) polynomial-time algorithms:

o Key Generation Algorithm Gen: k < Gen(1")
Has to be probabilistic

O Encryption Algorithm Enc: ¢ < Enc(k, m)

o Decryption Algorithm Dec: m < Dec(k, ¢)



Key Notion: Secret-key Encryption
(or Symmetric-key Encryption)
0

Ciphertext ¢ < Enc(k, m) ) Q m < Dec(k, ¢)

Key k Key k

Three (possibly probabilistic) polynomial-time algorithms:

o Key Generation Algorithm Gen: k < Gen(1")
Has to be probabilistic

O Encryption Algorithm Enc: ¢ < Enc(k, m)

o Decryption Algorithm Dec: m < Dec(k, ¢)



The Worst-case Adversary “@'

¢ An arbitrary computationally unbounded algorithm EVE.*



The Worst-case Adversary “@'

¢ An arbitrary computationally unbounded algorithm EVE.*

¢ Knows Alice and Bob’s algorithms Gen, Enc and Dec but
does not know the key nor their internal randomness.
(Kerckhoff’s principle or Shannon’s maxim)



The Worst-case Adversary “@'

¢ An arbitrary computationally unbounded algorithm EVE.*

¢ Knows Alice and Bob’s algorithms Gen, Enc and Dec but
does not know the key nor their internal randomness.
(Kerckhoff’s principle or Shannon’s maxim)

¢ Can see the ciphertexts going through the channel
(but cannot modify them... we will come to that later)



The Worst-case Adversary “@'

¢ An arbitrary computationally unbounded algorithm EVE.*

¢ Knows Alice and Bob’s algorithms Gen, Enc and Dec but
does not know the key nor their internal randomness.
(Kerckhoff’s principle or Shannon’s maxim)

¢ Can see the ciphertexts going through the channel
(but cannot modify them... we will come to that later)

Security Definition: What is she trying to learn?



Shannon’s Perfect Secrecy Definition

m «— M

A4

= - 8

Pr [.A



Shannon’s Perfect Secrecy Definition

m < M Message space (probability distribution) .#Z

A4

= - 8

Pr [.A



Shannon’s Perfect Secrecy Definition

m < M Message space (probability distribution) .#Z

A4

= - 8
Keyk « F Keyk « #
Key space #

Pr [.A



Shannon’s Perfect Secrecy Definition

m < M Message space (probability distribution) .#Z

~ ¢ < Enc(k, m)
= - R
— Ciphertext space €
Keyk « F Keyk « #
Key space #

Pr [.A



Shannon’s Perfect Secrecy Definition

m<— M
NV ¢ < Enc(k, m)
= — 8
Keyk « % v Keyk « %

@

Pr [.A



Shannon’s Perfect Secrecy Definition

m<— M
A4 ¢ < Enc(k, m)
= — 8
Keyk « % v Keyk « %

@

IDEA: A-posteriori = A-priori

Pr [.A



Shannon’s Perfect Secrecy Definition

m «— M
A4 ¢ < Enc(k, m)
= — K
Key k < % v Keyk « ¥

@

IDEA: A-posteriori = A-priori

Pr[/% = mlEnc(%,/ﬂ) = c] = Pr[/%

A-posteriori



Shannon’s Perfect Secrecy Definition

m <— M
Key k « X Keyk « %

@

IDEA: A-posteriori = A-priori

Pr[/% = mlEnc(%,/ﬂ) = c] = Pr[/% = m]

A-posteriori A-priori



Shannon’s Perfect Secrecy Definition

m <— M
Key k « X Keyk « %

@

IDEA: A-posteriori = A-priori

VAU Nm e Supp(AM), Ve € Supp(6),

Pr[/% = mlEnc(%,/ﬂ) = c] = Pr[/% = m]

A-posteriori A-priori



Shannon’s Perfect Secrecy Definition

m <— M
N
X - 2
Key k « X Keyk « %

@

IDEA: A-posteriori = A-priori

VAU Nm e Supp(AM), Ve € Supp(6),

Pr[/% = mlEnc(%,/%) = c] = Pr[/% = m]

A-posteriori A-priori




Perfect Indistinguishability Definition

Perfect indistinguishability: a Turing test

VA Nm, m"€ Supp(A),



Perfect Indistinguishability Definition

Perfect indistinguishability: a Turing test

VA Nm, m"€ Supp(A),

4 World O: A 4 World 1: A
k « K k « K
\C = E(k, m) ) \C, — E(ka m/) )




Perfect Indistinguishability Definition

Perfect indistinguishability: a Turing test

VA Nm, m"€ Supp(A),

4 World O: A 4 World 1: A
k « K k « K
\C = E(k, m) ) \C, — E(ka m/) )

is a, distinguisher (that gets ¢ and tries to
guess which world she’s in)

@




Perfect Indistinguishability Definition

Perfect indistinguishability: a Turing test

VYA Nm, m"€ Supp(A), c€ Supp(6):
Pr[E(K,m) = c] = Pr[E(K,m") = c]

g World O: A g World 1: )
k « K k « K
\C = E(k, m) ) \C, — E(k9 ml) )

is a, distinguisher (that gets ¢ and tries to
guess which world she’s in)

@




Perfect Indistinguishability Definition

Perfect indistinguishability: a Turing test

VYA Nm, m"€ Supp(A), c€ Supp(6):
Pr[E(K,m) = c] = Pr[E(K,m") = c]

4 World O: A 4 World 1: A
k « K k « K
\C = E(k, m) ) \C, — E(ka m/) )

is a, distinguisher (that gets ¢ and tries to
guess which world she’s in)

@




The Two Definitions are Equivalent

THEOREM: An encryption scheme (Gen, Enc, Dec)
satisfies perfect secrecy IFF it satisfies perfect
indistinguishability.




The Two Definitions are Equivalent

THEOREM: An encryption scheme (Gen, Enc, Dec)
satisfies perfect secrecy IFF it satisfies perfect
indistinguishability.

PROOF: Simple use of conditional probabilities.



A simple observation

(SEC): VA Nm € Supp(M), ¥c € Supp(6),

Pr[/% = m|Enc<%,/%) = c] = Pr[/% = m]



A simple observation

(SEC): VA Nm € Supp(M), ¥c € Supp(6),

Pr[/% = m|Enc(%, /%) = c] = Pr[/% = m]

Observation: SEC is equivalent to saying that the random
variables .Z and € := Enc(%, %) are independent.



Proof Part 1. Indistinguishability — Secrecy

WE KNOW (IND): VA Ym, m' € Supp(A), Vc € Supp(%),
Pr[Enc(%,m) = c] = Pr[Enc(%,m’) = c] =«
WE WANT (SEC): V. VYm € Supp(A), Vc € Supp(6),

Pr[/%=m|‘g=c] =Pr[%=m]



Proof Part 1. Indistinguishability — Secrecy

WE KNOW (IND): V. ¥Ym, m' € Supp(4), Yc € Supp(®),
Pr|Enc(H,m) = ¢| = Pr|Enc(F,m') = | =«
WE WANT (SEC): V. Ym € Supp(.4), Yc € Supp(%),
Pr|# =m|€ =c| =Pr|Ml = m|

Proof: By the observation from last slide, SEC is true if and only if
Pr|€ =c|.# = m| =Pr|€ = c| (byindependence of .# and %.)



Proof Part 1. Indistinguishability — Secrecy

WE KNOW (IND): VA Ym, m' € Supp(A), Vc € Supp(%),
Pr[Enc(%,m) = c] = Pr[Enc(%,m’) = c] =«
WE WANT (SEC): V. VYm € Supp(A), Vc € Supp(6),

Pr[/%=m|‘6=c] =Pr[%=m]

Proof: By the observation from last slide, SEC is true if and only if
Pr|€ =c|.# = m| =Pr|€ = c| (byindependence of .# and %.)

This means that Pr|€ = c|.# = m| = Pr|Enc(%,m) = c| is a number (say «a,)
that does not depend on m.



Proof Part 1. Indistinguishability — Secrecy

WE KNOW (IND): VA Ym, m' € Supp(A), Vc € Supp(%),
Pr[Enc(%,m) = c] = Pr[Enc(%,m’) = c] =«
WE WANT (SEC): V. VYm € Supp(A), Vc € Supp(6),

Pr[/%=m|‘6=c] =Pr[%=m]

Proof: By the observation from last slide, SEC is true if and only if
Pr|€ =c|.# = m| =Pr|€ = c| (byindependence of .# and %.)

This means that Pr|€ = c|.# = m| = Pr|Enc(%,m) = c| is a number (say «a,)
that does not depend on m.

So, Pr[Enc(%,m) = c] = Pr[Enc(J%’,m’) = c] ( = a,) for all m and m’, giving
us IND.



Proof Part 2. Secrecy — Indistinguishability

WE KNOW (SEC): V.Z Ym € Supp(A), Yc € Supp(%),
Pr[ﬂz m|6€ = c] =Pr[%= m]
WE WANT (IND): VA VYm, m' € Supp(A), Yc € Supp(6),

Pr[Enc(%, m) = c] = Pr[Enc(%, m’) = c]

Proof: As before, SEC is true if and only if Pr|€ = c¢| .4 = m| = Pr|€ = | for
all m and c.



Proof Part 2. Secrecy — Indistinguishability

WE KNOW (SEC): V.Z Ym € Supp(A), Yc € Supp(%),
Pr[ﬂz m|6€ = c] =Pr[%= m]
WE WANT (IND): VA VYm, m' € Supp(A), Yc € Supp(6),

Pr[Enc(%, m) = c] = Pr[Enc(%, m’) = c]

Proof: As before, SEC is true if and only if Pr|€ = c¢| .4 = m| = Pr|€ = | for
all m and c.

Pr[Enc(%,m) = c] = Pr[‘g = c‘/% = m]
=Pr[‘€=c‘/%=m’]
=Pr[Enc(%,m’) = c]



Perfect Secrecy is Achievable

The One-time Pad Construction:

Gen: Choose an n-bit string k at random, i.e. k < {0, 1}"
Enc(k, m), where M is an n-bit message: Output ¢ = m@k
Dec(k,c): Output m = c@k




Perfect Secrecy is Achievable

The One-time Pad Construction:

Gen: Choose an n-bit string k at random, i.e. k < {0, 1}"

Enc(k, m), where M is an n-bit message: Output ¢ = me

Dec(k,c): Output m = c@k

L

P : bitwise exclusive OR (or XOR)

0p0=16 1=0
0bl=1 0=1
adb=a+b(mod?2)




Perfect Secrecy is Achievable

The One-time Pad Construction:

Gen: Choose an n-bit string k at random, i.e. k < {0, 1}"
Enc(k, m), where M is an n-bit message: Output ¢ = m@k
Dec(k,c): Output m = c@k

I
S

Correctness: ¢ CD k = (m CD k) CD k




Perfect Secrecy is Achievable

The One-time Pad Construction:

Gen: Choose an n-bit string k at random, i.e. k < {0, 1}"

Enc(k, m), where M is an n-bit message: Output ¢ = meak

Dec(k,c): Output m = c@k

Claim: One-time Pad achieves Perfect Indistinguishability (and
therefore perfect secrecy).

Prog[f: For any m. c 0.1p" ]
r IlC(K, m) = c| = | D 22Y R vV — A
= Pr[ch@m] — y




Perfect Secrecy is Achievable

The One-time Pad Construction:

Gen: Choose an n-bit string k at random, i.e. k < {0, 1}"

Enc(k, m), where M is an n-bit message: Output ¢ = meak

Dec(k,c): Output m = c€9k

Claim: One-time Pad achieves Perfect Indistinguishability (and
therefore perfect secrecy).

Proof: For any m..c 0.13"
PrlEnc(K, n»f;) = c| = Pr‘m(@K = c]
= Pr[K=c€Bm] = 1/2"




Perfect Secrecy is Achievable

The One-time Pad Construction:

Gen: Choose an n-bit string k at random, i.e. k < {0, 1}"

Enc(k, m), where M is an n-bit message: Output ¢ = meak

Dec(k,c): Output m = c€9k

Claim: One-time Pad achieves Perfect Indistinguishability (and
therefore perfect secrecy).

Proof: For any m..c 0.13"
PrlEnc(K, n»f;) = c| = Pr‘m(@K = c]
= Pr[K=c€Bm] = 1/2"




Perfect Secrecy is Achievable

The One-time Pad Construction:

Gen: Choose an n-bit string k at random, i.e. k < {0, 1}"

Enc(k, m), where M is an n-bit message: Output ¢ = meak

Dec(k,c): Output m = c€9k

Claim: One-time Pad achieves Perfect Indistinguishability (and
therefore perfect secrecy).

Proof: For any m..c 0.13"
PrlEnc(K, n»f;) = c| = Pr‘m(@K = c]
= Pr[K=c€Bm] = 1/2"




Perfect Secrecy is Achievable

The One-time Pad Construction:

Gen: Choose an n-bit string k at random, i.e. k < {0, 1}"

Enc(k, m), where M is an n-bit message: Output ¢ = meak

Dec(k,c): Output m = c@k

Claim: One-time Pad achieves Perfect Indistinguishability (and
therefore perfect secrecy).

Proof: Forany m, m’.c € {0.1}",

So, Pr [EnC(K, m) = c] = Pr [EIIC(K, m') = c].
QED.




Reusing a One-time Pad?

Super-secure Whisper room




Reusing a One-time Pad?

Key_k Key E



Reusing a One-time Pad?

mO0 \
Key_k Key E



Reusing a One-time Pad?

mO\
cO=m0 Pk
X . 2

Key k Key k




Reusing a One-time Pad?

cO=m0 Pk
X . 2

A week later:



Reusing a One-time Pad?

cO=m0 Pk
X . 2




Reusing a One-time Pad?

Is this still perfectly secret?



Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).



Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: Perfect indistinguishability requires that for all pairs
(m0,m1), (m0, m1"), (c0.c1) € {0,1}>":




Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: Perfect indistinguishability requires that for all pairs
(m0,m1), (m0, m1"), (c0.c1) € {0,1}>":

Pr[Enc(k, m0) = c0 and Enc(k,m1) = c1]
= Pr[Enc(k,m0") = c0 and Enc(k,m1") = cl]



Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: We want to pick (m0,m1), (m0,m1"), (c0.cl) € {0,1}*"
S.t.

Pr[Enc(k, m0) = c0 and Enc(k,m1) = cl]
=+ Pr[EnC(k, m0") = c0 and Enc(k, ml’) = cl]



Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: We want to pick (m0,m1), (m0,m1"), (c0.cl) € {0,1}*"
S.t.

Pr[Enc(k, m0) = c0 and Enc(k,m1) = cl]
=+ Pr[EnC(k, m0") = c0 and Enc(k, ml’) = cl]

Pickm0=ml=m,m0 +#ml’and c0 =cl =c.



Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: We want to pick (m0,m1), (m0,m1"), (c0.cl) € {0,1}*"
S.t.

Pr[Enc(k, m0) = c0 and Enc(k,m1) = cl]
=+ Pr[EnC(k, m0") = c0 and Enc(k, ml’) = cl]

Pick m0 = m1 =m,m0’;é ml and c0 =cl = c.

Pr[Enc(k, mQ0) = c0 and Enc(k, ml) = cl]



Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: We want to pick (m0,m1), (m0,m1"), (c0.cl) € {0,1}*"
S.t.

Pr[Enc(k, m0) = c0 and Enc(k,m1) = cl]
=+ Pr[EnC(k, m0") = c0 and Enc(k, ml’) = cl]

Pick m0 = m1 = m,mO’ “ml'and c)=cl =c.
Pr[Enc(k, mQ0) = c0 and Enc(k, ml) = cl]
= Pr|Enc(k,m) = c| = 1/2"



Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: We want to pick (m0,m1), (m0,m1"), (c0.cl) € {0,1}*"
S.t.

Pr[Enc(k, m0) = c0 and Enc(k,m1) = cl]
=+ Pr[EnC(k, m0") = c0 and Enc(k, ml’) = cl]

Pick m0 = m1 =m,m0’;é ml and c0 =cl = c.

Pr[Enc(k, m0) = ¢ = Enc(k,m1)] = 1/2"



Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: We want to pick (m0,m1), (m0,m1"), (c0.cl) € {0,1}*"
S.t.

Pr[Enc(k, m0) = c0 and Enc(k,m1) = cl]
=+ Pr[EnC(k, m0") = c0 and Enc(k, ml’) = cl]

Pick m0 = m1 = m,mO’ “ml'and c)=cl =c.
Pr[Enc(k, m0) = ¢ = Enc(k,m1)] =1/2"
Pr[Enc(k, mQ0") = ¢ = Enc(k, ml’)] =0



Reusing a One-time Pad?

Claim: Two-time Pad does not achieve Perfect
Indistinguishability (and therefore not perfect secrecy).

Proof: We want to pick (m0,m1), (m0,m1"), (c0.cl) € {0,1}*"
S.t.

Pr[Enc(k, m0) = c0 and Enc(k,m1) = cl]
=+ Pr[EnC(k, m0") = c0 and Enc(k, ml’) = cl]

Pick m0 = m1 = m,mO’ “ml'and c)=cl =c.
Pr[Enc(k, m0) = ¢ = Enc(k,m1)] =1/2"
Pr[Enc(k, mQ0") = ¢ = Enc(k, ml’)] =0



Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,

L ]

PROOF (by picture): Assume for contradiction that




Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,
| =]

PROOF (by picture): Assume for contradiction that

Pickanyc e €




Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,

L ]

PROOF (by picture): Assume for contradiction that

Pickanyc € €

Look at the set of
possible msgs

(m = Dec(k, c) etc.)



Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,

PROOF (by picture): Assume for contradiction that
k

Pickanyc € €

Look at the set of
possible msgs

(m = Dec(k, c) etc.)




Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,

PROOF (by picture): Assume for contradiction that
k

Pickanyc € €

Look at the set of
possible msgs

(m = Dec(k, c) etc.)

Distinct keys!



Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,

PROOF (by picture): Assume for contradiction that
k

Pickanyc € €

Look at the set of
possible msgs

(m = Dec(k, c) etc.)

Distinct keys!



Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,

PROOF (by picture): Assume for contradiction that
k

Pickanyc € €

Look at the set of
possible msgs

(m = Dec(k, c) etc.)

Distinct keys!



Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption
scheme,

PROOF (by picture): Assume for contradiction that
k

Pickanyc € €

Look at the set of
possible msgs

(m = Dec(k, c) etc.)

Distinct keys!



Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption

scheme,
E AN/
PROOF (by picture): Assume for contradiction that
k
K Pr _Enc(%,m
Pr _Enc(%,m
OED.

> 0



So, what are we to do?



So, what are we to do?

RELAX the definition:
EVE is an arbitrary computationally bounded algorithm.



So, what are we to do?

RELAX the definition:
EVE is an arbitrary computationally bounded algorithm.

‘ + number theory/geometry/combinatorics




So, what are we to do?

RELAX the definition:
EVE is an arbitrary computationally bounded algorithm.

‘ + number theory/geometry/combinatorics

the proml crypto land &

N :

) FuIIy homomorphic encryption ‘

\_-ﬂ("-tk s



To Summarize...

Secure Communication: a quintessential problem in
cryptography.

We saw two equivalent definitions of security:
Shannon’s perfect indistinguishability and perfect secrecy

One-time pad achieves perfect secrecy.

A Serious Limitation: Any perfectly secure encryption scheme
needs keys that are at least as long as the messages.

Next Lecture: Overcoming the limitation with Computationally
Bounded Adversaries.



