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“A Mathematical Theory of Communication” (1948)

“Communication Theory of Secrecy Systems” (1945)

preceded

which founded Information Theory

Claude E. Shannon

Alan M. Turing

Cryptanalysis of the Enigma Machine (~1938-39)

“On Computable Numbers, with an Application to 
the Entscheidungsproblem” (1936)

which gave birth to Computer Science

The Intellectual Origins
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Central idea. model the adversary: what they know, what 
they can do, and what their goals are.

Definitions will be our friend.  
If you cannot define something, you cannot achieve it.

A key takeaway from 6.875:  
 Cryptographic (or, adversarial) thinking.
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A classical source of hard problems: number theory. 

“Both Gauss and lesser mathematicians may be justified in rejoicing that 
there is one such science [number theory] at any rate, whose very 
remoteness from ordinary human activities should keep it gentle and clean” 

[G. H. Hardy, “A Mathematician’s Apology”]

More recently: geometry, coding theory, combinatorics. 

Cryptography is the science of useful hardness.
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3. Security Proofs via Reductions.

“If there is an (efficient) adversary that breaks scheme A 
w.r.t. definition D, then there is an (efficient) adversary 
that factors large numbers.”

Our reductions will be probabilistic and significantly more 
involved than the NP-hardness reductions in, say, 6.045.

“Science wins either way”



6.875 Topics
⧫ Pseudorandomness

⧫ Secret-key Encryption and Authentication

⧫ Public-key Encryption and Digital Signatures

⧫ Homomorphic Encryption

⧫ Private Information Retrieval

⧫ Zero-knowledge Proofs

⧫ Secure Multiparty Computation

⧫ Advanced topics:  
Threshold Cryptography, Program Obfuscation, 
Quantum Crypto, …  

⧫ Cryptographic Hashing
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Administrivia

o Course website, the central point of reference.
https://mit6875.github.io 

o Homework (75%): 6 psets, we will count your best 5.

Piazza for questions, Gradescope for psets.

o Midterm (20%): Oct 25.

o Class Participation (5%): Lecture, Piazza.

o Prereqs: Algorithms, Probability & Discrete Math, but most 
of all, “mathematical maturity”.

o (Optional) special recitations: 1. probability (this Friday), 2. 
basic complexity theory,  3. number theory. 

https://mit6875.github.io/


Secure Communication

Alice Bob

Eavesdropper “Eve”

m

Alice wants to send a message m to Bob without revealing it to Eve. 
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Key k Key k

Eavesdropper “Eve”

m

SETUP: Alice and Bob meet beforehand to agree on a secret key k.
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Key Notion: Secret-key Encryption  
(or Symmetric-key Encryption)

Key k Key k

 𝑚

Three (possibly probabilistic) polynomial-time algorithms:

o Key Generation Algorithm Gen: 𝑘 ← Gen(1𝑛)

o Encryption Algorithm Enc: 𝑐 ← Enc(𝑘, 𝑚)

o Decryption Algorithm Dec: 𝑚 ← Dec(𝑘, 𝑐)

Ciphertext 𝑐 ← Enc(𝑘, 𝑚) 𝑚 ← Dec(𝑘, 𝑐)

Has to be probabilistic
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The Worst-case Adversary

⧫ An arbitrary computationally unbounded algorithm EVE.*

⧫ Knows Alice and Bob’s algorithms  and  but 
does not know the key nor their internal randomness.  
 (Kerckhoff’s principle or Shannon’s maxim)

𝐺𝑒𝑛, 𝐸𝑛𝑐 𝐷𝑒𝑐

⧫ Can see the ciphertexts going through the channel 
(but cannot modify them… we will come to that later)

Security Definition: What is she trying to learn?
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The Two Definitions are Equivalent

THEOREM: An encryption scheme  
satisfies perfect secrecy IFF it satisfies perfect 
indistinguishability.

(Gen, Enc, Dec)

PROOF: Simple use of conditional probabilities.
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𝑸𝑬𝑫 .
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Pseudorandomness

ZK proofs
Public-key encryption

+ number theory/geometry/combinatorics

the promised crypto land

Fully homomorphic encryption



To Summarize…

• Secure Communication: a quintessential problem in 
cryptography.

• We saw two equivalent definitions of security: 
 Shannon’s perfect indistinguishability and perfect secrecy

• One-time pad achieves perfect secrecy.

• A Serious Limitation: Any perfectly secure encryption scheme 
needs keys that are at least as long as the messages.

• Next Lecture: Overcoming the limitation with Computationally 
Bounded Adversaries.


