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RSA AND RABIN FUNCTIONS:
CERTAIN PARTS ARE AS HARD AS THE WHOLE*

WERNER ALEXIt, BENNY CHORZ%, ODED GOLDREICH§ AND CLAUS P. SCHNORRTY

Abstract. The RSA and Rabin encryption functions Ex(-) are respectively defined by raising x € Zy
to the power e (where e is relatively prime to ¢(N)) and squaring modulo N (i.e., Ex(x)=x¢ (mod N),
En(x)=x? (mod N), respectively). We prove that for both functions, the following problems are computa-
tionally equivalent (each is probabilistic polynomial-time reducible to the other):

(1) Given EN(x), find x.

(2) Given En(x), guess the least-significant bit of x with success probability 3+ 1/poly (n) (where n

is the length of the modulus N).

This equivalence implies that an adversary, given the RSA/Rabin ciphertext, cannot have a non-negligible
advantage (over a random coin flip) in guessing the least-significant bit of the plaintext, unless he can invert
RSA/factor N. The proof techniques also yield the simultaneous security of the log n least-significant bits.
Our results improve the efficiency of pseudorandom number generation and probabilistic encryption schemes
based on the intractability of factoring.

Key words. cryptography, concrete complexity, RSA encryption, factoring integers, partial information,
predicate reductions
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1. Introduction. One-way functions are the basis for modern cryptography [11]
and have many applications to pseudorandomness and complexity theories [6], [29].
One-way functions are easy to evaluate, but hard to invert. Even though no proof of
their existence is known (such proof would imply P # NP), it is widely believed that
one-way functions do exist. In particular, if factoring large numbers (a classical open
problem) is hard, then the simple function of squaring modulo a composite number
is one-way [22].

Randomness and computational difficulty play dual roles. If a function f is one-way
then, given f(x), the argument x must be “random.” It cannot be the case that every
bit of the argument x is easily computable from f(x). Therefore, some of these bits
are unpredictable, at least in a weak sense. A natural question is whether these bits
are strongly unpredictable. That is, are there specific bits of the argument x which
cannot be guessed with the slightest advantage (over a random coin flip), given f(x).

This question was first addressed by Blum and Micali [6]. They demonstrated
such a strongly unpredictable bit for the discrete exponentiation function (which is
believed to be one-way). This was done by reducing the problem of inverting the
discrete exponentiation function to the problem of guessing a particular bit with any
non-negligible advantage.

In this paper, we deal with two functions related to the factorization problem:
Rabin’s function (squaring modulo a composite number) [22] and the RSA (raising
to a fixed exponent modulo a composite number) [23]. Both functions are believed to
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be one-way. We show that both functions have strongly unpredictable bits. In particular,
inverting each of them is probabilistic polynomial-time reducible to guessing the
least-significant bit of their argument with any non-negligible advantage.

Our results have various applications. They allow the construction of more efficient
pseudorandom bit generators [6] than those previously known, based on the intractabil-
ity assumption of factoring. They allow the construction of efficient probabilistic
encryption schemes [15], which hide all partial information. Finally, our results imply
that the RSA public-key perfectly hides all partial information about the log n least-
significant bits of the plaintext (where n is the size of the RSA modulos).

Organization of the paper. In § 2 we formally define the question of security for
RSA least-significant bit and cover previously known results. In § 3 we review the
proof of the Ben-Or, Chor and Shamir result. This investigation is the basis for our
work, which is described in § 4. Section 5 extends our proof to other RSA bits, and
§ 6, to bits in Rabin’s scheme. In § 7 we discuss applications of our results for the
construction of pseudorandom bit generators and probabilistic encryption schemes.
Section 8 contains concluding remarks and two open problems.

2. Problem definition and previous results. We begin this section by presenting
notations for two number theoretic terms which will be used throughout the paper.

DerFINITION 1. Let N be a natural number. Zy will denote the ring of integers
modulo N, where addition and multiplication are done modulo N.

It would be convenient to view the elements of Z, as points on a circle (see
Fig. 1).

Convention. Throughout the paper, n= [log, N| will denote the length of the
modulus N. All algorithms discussed in this paper have inputs of length O(n).

0

3N/4 N/4

N/2

F1G. 1. Cyclic representation of Zy.

DerFINITION 2. Let N be a natural number, and x an integer. [x]5 will denote
the remainder of x modulo N (notice that for all x, 0=[x]y < N).

The RSA encryption function is operating in the message space Zy, where N = pq
is the product of two large primes (which are kept secret). The encryption of x is
En(x)=[x°]n, where e is relatively prime to ¢(N)=(p—1)(g—1).

We now formally define the notion of bit security for the RSA.

DEeFINITION 3. For 0=x < N, Ly(x) denotes the least-significant bit in the binary
representation of x.
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DEFINITION 4. Let £(+) be a function from integers into the interval [0, 3]. Let
On be a probabilistic oracle which, given En(x), outputs a guess, On(Ex(x)), for
Ly (x) (this guess might depend on the internal coin tosses of Oy ). We say that Oy is
an e(n)-oracle for the least-significant bit (in short, £(n)-oracle) if the probability
that Oy is correct, given En(x) as its input, is at least 3+ £(n). The probability space
is that of all xe Zy and all 0-1 sequences of internal coin tosses, with uniform
distribution.

DEeFINITION 5. We say that RSA least-significant bit is £(n)-secure if there is a
probabilistic polynomial time algorithm which on input N, e (relatively prime to ¢ (N))
and x € Zy, and access to an arbitrary e(n)-oracle Oy, outputs y such that x = Ex(y) =
y¢ (mod N). (That is, the algorithm inverts Ey using any &(n)-oracle Oy.)

DEeFINITION 6. We say that RSA least-significant bit is unpredictable if it is
n”“-secure for every constant ¢ > 0.

2.1. Previous work. Goldwasser, Micali and Tong [17] were the first to investigate
the security question of least-significant bit in RSA. They showed that the least-
significant bit is as hard to determine as inverting the RSA. Furthermore, they showed
that it is (3—1/n)-secure.

In a key paper, Ben-Or, Chor and Shamir [2] showed a (5+1/poly (n))-security
result. They showed that inverting the RSA is polynomially reducible to determining
the parity of messages taken from a certain small subset of the message space. To
determine the parity of these messages, they performed many independent “measure-
ments,” each consisting of querying the oracle on a pair of related points. This sampling
method amplified the 5+ 1/poly (n) overall advantage of the oracle to ““almost certainty”
in determining parity for the above-mentioned subset. On the negative side, the sampling
of pairs of points doubles the error of the oracle and prevents the use of less reliable
oracles.

Vazirani and Vazirani [27] showed that the “error doubling” phenomena could
be overcome by introducing a new oracle-sampling technique. They proved that
incorporating their technique in the Ben-Or, Chor and Shamir algorithm, yields a
0.232-security result. Goldreich [13] used a better combinatorial analysis to show that
the Vazirani and Vazirani algorithm yields a 0.225 result. He also pointed out some
limitations of the Vazirani and Vazirani proof techniques.

All these results leave a large gap towards the desired result of proving that the
least-significant bit is unpredictable (i.e., 1/poly (n) secure).

3. A description of Ben-Or, Chor and Shamir reduction. In this section, we present
the reduction used by Ben-Or, Chor and Shamir [2]. It consists of two major parts:
An algorithm which inverts the RSA using a parity subroutine, and a method of
implementing the parity subroutine by querying an oracle for the least-significant bit.

3.0. Definition of parity. Let x be an integer. We define

absy (x) {[x]N if [x]n <N/2,

N —[x]n otherwise.
Pictorially, abs (x) can be viewed as the distance from [x]y to 0 on the Zy circle (see
Fig. 2). Notice that absy (x) =absy (—x).
The parity of x, pary (x), is defined as the least-significant bit of abs, (x). For
example, pary (N—-3)=1.

3.1. Inverting RSA using a parity subroutine. Given an encrypted message, Ex (x),
the plaintext x is reconstructed as follows. First, two integers a, b e Zy are picked at
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o absy(z)

abs . (y) .

y

Fi1G. 2. The absy function.

random. A Brent-Kung gcd procedure [7] is applied to [ax]y and [bx]y. This ged
procedure uses a parity subroutine PAR which we assume, at this point, to give correct
answers. Even though neither [ax]y nor [ bx]y are explicitly known, we can manipulate
them via their encryption. In particular, we can compute the encryption of any linear
combination A[ax]y + B[bx]y when both A, B are known (since N and e are given,
and Ep is a multiplicative function). When the gcd procedure terminates, we get a
representation of ged ([ax]n, [bx]n) =[Ix]xn in the form I and Ey(Ix). If [ax]y and
[bx]N are relatively prime, then [Ix]y = 1. This fact can be detected since En(1)=1.
Therefore, x=1"" (mod N) can be easily computed.

1.
2.

(SO0

10.
11.
12.
13.
14.
15.

16.

PNV

procedure RSA INVERSION:
INPUT « En(x) (and N, e)
Step 1—Randomization
Pick a, b e Zy at random.
Step 2—Brent—-Kung GCD of [ax]y, [bx]N
{zi=[ax]n, z,=[bx]n}
a<n,
B<n
count< 0
repeat
while PAR (b, Ex(x))=0 do
Comment: PAR (b, Ex(x)) returns a guess for pary (bx)
b<[b/2]n
{gcd [(ax]n, [bx]n) = ged (21, 22)}
B<p-1
count < count+ 1
if count>6n-+3 then go to line 3
od
if B8 =« then swap (a, b), swap (e, B)
if PAR ((a+b)/2, Ex(x))=0
Comment: PAR ((a+b)/2, Ex(x)) returns a guess for
pary ((ax+bx)/2)
then b<[(a+b)/2]n
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17. else b<[(a—b)/2]n
{ged ([ax]n, [bx]n) =ged (21, 22)}
18. count < count+1
19. if count> 6n+3 then go to line 3
20. until b=0

H Step 3—Inverting

21. if En(ax)# =1 then go to line 3. (E(ax)= E(a) - E(x).)
22. x<[xa 'ln

23. return x.

We now consider a single run of Step 2. The assertions in the braces guarantee
that if the parity subroutine does not err, then the gcd of the current [ax]y, [bx]y is
invariant. It is not hard to verify that the Brent-Kung gcd makes at most 6n + 3 calls
to the parity subroutine.! Therefore, if the original pair [ax]y, [bx]y is relatively
prime and the parity subroutine answered correctly on all queries, the algorithm will
retrieve x. By a famous theorem of Dirichlet [19, p.324], the probability that two
random integers in the range [—K, K] are relatively prime converges to 6/7° as K
tends to oco.

We assume so far that the parity subroutine always returns the correct answer.
As a matter of fact, the test in line 21 of the code makes sure that the algorithm never
errs, even if the answers of the parity subroutine are incorrect. The variable count
guarantees that even if the parity subroutine occasionally errs, we will not make more
than 6n + 3 parity calls in a single gcd iteration. The probability that x will be retrieved
in any single ged attempt is

6 . .
— - Pr (all answers of PAR in this gcd attempt are correct).
o

Thus, to invert En in probabilistic polynomial-time it suffices to have a “reliable”
parity subroutine. In fact, it suffices to have a parity subroutine which is almost always
correct on every argument y with “small” absy (). This is the case since, if absy (z;)
and absy (z,) are “small,” then (unless the parity errs) all intermediate arguments to
the parity subroutine are also ““small.”” More formally, we use the following definition.

DEeFINITION 7. Let £(-), 8(+) be functions from integers into the interval (0, 3).
Let PAR be a parity subroutine, that on input d and EN(x) outputs a guess for
pary (dx). We say that PAR is (e(n), 8(n))-reliable if for every d, xe Zy with
absy (dx)<e(n)N/2,

Prob (PAR (d, Ex(x)) # pary (dx)) <5(n).

From the above discussion we derive the following lemma.

LemMMA 1 (Ben-Or, Chor and Shamir [2]). The RSA function Ey is invertible in
O(e?(n) - n) expected number of calls to a (¢(n), 1/(12n+6)) -reliable parity subroutine.

Proof. Let PAR be a (e(n), 1/(12n+6))-reliable parity subroutine. It suffices to
give a lower bound on the probability that all PAR calls in a single gcd attempt yield
correct answers. We define the following events, as functions of the random variables
a and b (assuming values in Z%): Event S,(a, b) holds if both abs,(ax) and abs,(bx)
are smaller than £(n)N/2. Event C;.(a, b) holds if the ith answer of PAR, on a run

! This follows from the fact that @ + 8 decreases by 1 in every execution of line 10, and that throughout
the execution of the ged |a| =2* and |b| = 2”. For further details see [7], [8].
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of ged ([ax]n, [bx]n), is correct. Then
Prob ((Vi)Ai.(a, b))
= Prob(S,(a, b)) - Prob((Vi)A,(a, b)|S.(a, b))

=¢e(n)- (1 —653 Prob (1A, (a, b)|Sc(a, b)(Vj< i)A;(a, b)))

= ¢%(n) - (1—(6n+3) : 12nl+6)

=¢%(n)/2. 0

Remark. In Step (2) of the RSA inversion procedure, we used a Brent-Kung gcd,
which is faster than the binary gcd originally used in [2].

3.2. Implementing the parity subroutine. Given d and E, (x) where abs, (dx) <
e(n)N/2, the parity subroutine PAR determines (with overwhelming probability)
pary (dx), by querying Oy, an oracle for RSA least-significant bit, as follows. It picks
arandom r and asks the oracle for the least-significant bit of both [rx]y and [rx+dx]y,
by feeding the oracle in turn with En(rx)= En(r)En(x) and Ex((r+d)x)=
En(r+d)EN(x). The oracle’s answers are processed according to the following
observation. Since absy (dx) is small, with very high probability (=1—¢(n)/2) no
wraparound” occurs when [dx]y is added to [rx]n. If no wraparound occurs, the
parity of [dx]n is equal to O if the least-significant bits of [rx]n and [rx+dx]y are
identical; and equal to 1 otherwise. This sampling is repeated many times; every
repetition (instance) is called a dx-measurement.

1. procedure PAR:
Comment: PAR has access to a least-significant bit oracle Oy

2. INPUT<«d, Ex(x)
3 county < 0
4 count, <0
5. for i< 1to m do
6 pick r;€ Zy at random
7 if On(En(rix))=On(EN(rx+dx))
8 then count, < count,+1
9. else count, < count,+1
10. od
11. if count,> count,
12. then return 0
13. else return 1

3.3. Discussion. Analyzing the error probability of PAR on input d, En(x) reduces
to analyzing the error probability of a single dx-measurement. Suppose that the success
probability of a single dx-measurement can be made at least 3+ 1/poly (n). Then by
performing sufficiently many independent dx-measurements, the majority gives the
correct answer for pary (dx) with overwhelming probability.

There are two sources of error in the parity subroutine. One source is wraparound
0 in a dx-measurement, the other is oracle errors. Wraparounds are unlikely (i.e., they

2 1f [dx]n = absy (dx) then wraparound 0 means [rx]y + absy(dx)> N. If [dx]x = N — absx (dx) then
wraparound 0 means [rx]y — absy (dx) <0.
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occur with probability = e(n)/2, since absy (dx)=e(n)N/2). Thus, the main source
of errors in a dx-measurement is the errors of the oracle.

If no wraparound occurs, then the dx-measurement may be wrong only if the
oracle errs on either end points ([rx]n, [rx+ dx]x). Thus the error probability of a
dx-measurement is no more than twice the error probability of the oracle. However,
there are oracles for which the error probability of a dx-measurement is twice the
oracle error. Overcoming the error-doubling phenomena requires a new parity sub-
routine, which constitutes the core of our improvement.

4. The main result. In this section we prove that RSA least-significant bit is
unpredictable. Working in the Ben-Or, Chor and Shamir framework, we modify the
parity subroutine. For this modification we introduce two new ideas. The first idea is
to avoid the error-doubling phenomena which occurred in the dx-measurement as
follows. Instead of querying the oracle for the least-significant bit of both end points,
we query the oracle only for the least-significant bit of one end point. The least-
significant bit of the other end point is known beforehand. The second idea is a method
for generating many end points with known least-significant bits. These end points are
generated in a way that guarantees them “random” enough to be used as a good
sample of the oracle.

4.1. Generating m = poly (n) ‘“‘random” points with known least-significant bits. We
present a method for generating m = poly (n) random points, represented as multiples
of x, with the following properties:

(1) Each point is uniformly distributed in Zy;

(2) The points are pairwise independent;

(3) The least-significant bit of each point is known, with probability=1—¢e(n)/4.
We generate m points [rx]ny by picking two random independent elements k, I € Zy
with uniform distribution, and computing [rx]y =[(k+il)x]y for 1=i=m (see Fig.
3). Define the random variables y, z€ Zy by y =[kx]n, z=[Ix]n. Each of the [rx]yn
is uniformly distributed in Zy. We now show that (for 1=i#j=m) [rx]y and [rx]y
are two independent random variables. For every ¢, ¢, € Zy, the equations y+iz=¢,
(mod N) and y+jz=c, (mod N) have a unique solution in terms of y, z€ Zy. (This
is the case since all of N’s divisors are larger than m, and thus i —j has a multiplicative
inverse modulo N.) Thus, for every ¢;, ¢,€ Zy,

Pr([ry = & and [rxly = &) =23 = Pr ([l = ) - Pr ([nxl = 62).

o

y+2z

y

F1G. 3. The points y, z and [r,x]y =y+2z.
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The least-significant bits of the [rx]n’s are computed as follows: We try all
possibilities for the least-significant bit of y, and for its location in one of the intervals
Lj(e(n)N/4), (j+1)(e(n)N/4)], 0=j<4e '(n). We try all possibilities for the least-
significant bit of z, and for its location in one of the intervals

[,-“4",31”, G+ 1)————8;";1\]] ,0=j<4me ().

There are (2 - 4¢7'(n)) - (2 - 4me~'(n)) =2°me ~>(n) possibilities altogether, and exactly
one of them is correct. We will refer to that possibility as the right alternative for y
and z.

Let us now assume that we are dealing with the right alternative for y and z. Since
the location of y and z are known up to ¢(n)N/4 and e(n) N/4m, respectively, the
integer w; =g4¢ y+iz is known up to £(n)N/2 (remember 1=i=m). As [w;]n is
uniformly distributed in Zy, the probability that the integer w; falls in an interval of
length £(n) N/2 containing an integral multiple of N is exactly £(n)/2. If w; is not in
such interval, then the integral quotient of w;/ N is determined by i and the approximate
locations of y and z. This in turn, together with the least-significant bits of y and z,
determines the least-significant bit of [w;]x =[rx]x. In case the interval w; belongs to
contains an integral multiple of N, we make the (arbitrary) assumption that w; is at
the bigger part of the interval (out of the two parts determined by the integral multiple
of N).

4.2. Using the generated [rx]y in the parity subroutine. The parity subroutine
described in § 3.2 makes use of mutually independent random r;’s, and queries the
oracle for the least-significant bits of both [r,x] and [rx + dx]n. We modify it by using
ri’s generated as in § 4.1, and querying the oracle only for the least-significant bit of
[rx+ dx]n. In the sequel we will refer to the modified parity subroutine as to PAR*,

The generation of [rx]x’s is performed once per each gcd invocation, as part of
Step 1 (the randomization step) in the inversion procedure of § 3.1. The choice of k
and I (y =[kx]~, z=[Ix]x) is independent of the choice of a, b. We run 2*me *(n)
copies of the gcd procedure in parallel, each with one of the possibilities for the
approximate locations and least-significant bits of y and z. Each copy of the gcd
procedure supplies its corresponding possibility for y and z as an auxiliary input to
all calls of PAR* that it makes. Note that the run with the right alternative for y and
z has the least-significant bit of [rx]y correct, for all 1=i=m, with very high
probability.

4.3. Probability analysis of the modified parity subroutine. In this subsection we
analyze the success probability of the modified parity subroutine PAR*. We show that
given an &(n)-oracle for RSA least-significant bit, Oy, and setting m = O(n - ¢ *(n)),
makes the parity subroutine PAR* be (e(n), 1/(12n+6))-reliable. The running time
of the subroutine is polynomial in n and £ '(n), and so is the expected running time
of the entire RSA inversion procedure.

In analyzing the success probability of PAR* on input d, Ex(x), we assume that
[dx]n is small (absy (dx)<e(n)N/2) and it is given, as auxiliary input, the right
alternative for y and z. From this point on, probabilities are taken over all choices of
¥, z with uniform probability distribution (x and d are considered as fixed).

Recall that on input d, Ex(x) the parity subroutine conducts m dx-measurements.
Each measurement “supports” either pary (dx) =0 or pary (dx)=1. The subroutine
returns the majority decision. For every 1=i= m, the ith individual dx-measurement
consists of comparing the precomputed least-significant bit of [rx], to the answer of
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the oracle for the least-significant bit of [rx+dx]y. Such measurement has three
potential sources of error:

(1) The oracle errs on the least-significant bit of [rx +dx]y;

(2) A wraparound 0 occurs when [dx]y is added to [rx]n;

(3) The precomputed least-significant bit of [r;x]y is wrong.
Note that [rx+dx]y is uniformly distributed in Z. Therefore, a type 1 error has
probability 3 — &(n). Since absy (dx) < e(n)N/2, a type 2 error has probability at most
e(n)/2. A type 3 error may occur only if absy (r:x) v <&(n)N/2. A more careful look
at the way the least-significant bit of [rx]y is determined in these “fuzzy” cases show
that a type 3 error has probability at most e(n)/4. (This follows from the assignment
of correct least-significant bit values to points in the larger part of the interval.)

Thus, the overall error probability in a single dx-measurement is bounded above
by 35— &(n)/4. Define the random variable

i

{1 if the ith dx-measurement is wrong,
0 if the ith dx-measurement is correct.

Clearly, Exp (£;) =Pr({i=1)<3—e(n)/4 and Var ({;) <j. Since Exp ({;) <3—&(n)/4,

we get
( Z é' ) =P ( ; - S(n)
m ;= m =

L &i—Exp (L)l

Applying Chebyshev’s inequality (see [12, p. 219]) we get
< 3(") = Var (1/m) Y701 &)
B (e(n)/4)?

Since (for 1=i#j=m) [rx]y and [;;x] ~ are two independent random variables,
¢; and ¢{; are also independent random variables with identical distribution. (Whenever
the same function is applied to two independent random variables, the two results are
independent random variables.) Let {;=¢;—Exp({;). By pairwise independence
Exp ({i- ;) =Exp (i) - Exp (). Hence,

Var(li a) %55 f Exp (£ &)
m ; m- - Jj=

Z &i—Exp (L)}

1 m _ _
=m—<2 xp({H+ X EXp({i)Exp(Q))
i=1 1=i#j=m
1
:?'m Exp({lz)
1
<—
4dm

Thus, Pr(1/m Y, {;=3)<4/me*(n). The probability that 1/m ¥ ", {;=} is exactly
the error probability of the parity subroutine PAR* on a single input d, Ex(x). To
summarize, we have proved

defLEMMA 2. Let d,xe€Zy and suppose that absy (dx)<e(n)N/2. Let
m = 64n- & *(n)) be the number of measurements done by PAR*. On input d, Ex(x),
the right alternative for y and z, and access to an e(n)-oracle for RSA least-significant
bit, Oy, the probability that the parity subroutine PAR* outputs pary (dx) is at least
1—-1/(12n+6). The probability space is that of all choices of y, z€ Zy and all internal
coin tosses of On. In other words, with the right alternative for y and z as an auxiliary
input, the parity subroutine PAR* is (e(n), 1/(12n+6))-reliable.



Downloaded 10/04/23 to 18.29.112.255 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

BIT SECURITY OF RSA AND RABIN FUNCTIONS 203

4.4. Main theorem. Combining Lemmas 1 and 2, we get the following theorem.

THEOREM 1. RSA least-significant bit is unpredictable.

Proof. In Lemma 2, we have analyzed the success probability of PAR*, assuming
that it is given the right alternative for y and z as an auxiliary input. When executing
the RSA inversion procedure, only one of the copies of PAR* satisfies this condition,
but this is good enough.

We conclude the proof by calculating the overall expected running time of the
RSA inversion algorithm, given an e(n)-oracle for the least-significant bit. We count
elementary Zy operations (addition, multiplication, division), RSA encryptions, and
oracle calls at unit cost. The expected number of times that Step 1 of the RSA inversion
procedure is repeated equals O(e *(n)). For each execution of Step 1, O(me *(n))
copies of the gecd procedure are invoked. Each copy makes O(n) calls to PAR*. The
parity subroutine, in turn, makes O(m) operations. Multiplying these terms and
substituting m = 64ne *(n), the overall expected run time is

O(e*(n) - m*n) = 0(e%(n) - n). O

5. Extensions. By reductions due to Ben-Or, Chor and Shamir [2], we get

COROLLARY (to Theorem 1).

(a) LetI<[0, N —1] be an interval of length N /2. The I-bit of x is the characteristic
Sfunction of I (i.e., 1 if x€ I and O otherwise). This bit is unpredictable.

(b) The kth least-significant bit is (1/4+(1/2" %)+ (1/2%)+1/poly (n))-secure. At
least half of these bits are (1/6+(1/2" )+ (1/2%)+1/poly (n))-secure.

5.1. Simultaneous security.

DeFINITION. We say that the j least-significant bits are simultaneously secure if
inverting Ey is polynomial-time reducible to distinguishing, given Ex(x), between the
string of j least-significant bits of x and a randomly selected j-bit string.

We have defined the notion of simultaneous security in terms of an indistinguish-
ability test. It is also possible to define simultaneous security in terms of an unpredicta-
bility test: Given En(x) and the j—1 least-significant bits of x, the jth least-significant
bit of x is still 1/poly (n) secure. Yao [29] has shown that the indistinguishability test
is equivalent to the unpredictability test. (Although Yao’s proof was given in a different
setting, it still applies here.)

Our proof technique easily extends to show that log n least-significant bits pass
the unpredictability test(ief

THEOREM 2. Let j = O(log n).

(a) The jth least-significant bit in the binary expansion of the plaintext is 1/poly (n)
secure.

(b) The j least-significant bits of the plaintext are simultaneously secure.

Proof. (a) First note that when generating y and z, it is feasible to guess not only
their 1st least-significant bit, but all j least-significant bits of y and z. The overhead
for trying all possibilities is 2%, which is polynomial in n. Together with the locations
of y and z, these bits will determine (with high probability) all j least-significant bits
of each [rx]n. Also, with probability about 277, the ged of [ax]ny and [bx]y is 277"
(instead of 1), which we will assume is the case. This way all [dx]x’s in the gcd
calculation will have zeros in all j—1 least-significant bits. Finally, we replace all
references to the least-significant bit in the inverting algorithm, by references to the
Jjth least-significant bit. This can be done since we now have access to an oracle for
the jth least-significant bit. The reader may find it convenient to view this process as
taking the ged of [ax/2 ']y and [bx/2"']x. (This method of transforming certain
inverting algorithms which use an oracle for the first least-significant bit into inverting
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algorithms which use an oracle for the jth least-significant bit originates from Vazirani
and Vazirani [27].)

(b) Going through the proof of part (a), notice that when querying the oracle
about the jth least-significant bit of [rx + dx]x we can give it the j—1 previous bits
of [rx+ dx]y. This is the case since, if no wraparound occurs, these j—1 bits are the
same as the j—1 least-significant bits of [rx]y, which we know. 0O

Remark. Vazirani and Vazirani [28] had previously shown that certain inverting
algorithms which use an £(n)-oracle for RSA least-significant bit, can be transformed
into inverting algorithms which use an e(n)-oracle for predicting x; (given
Xj_1,° "+, X%1). It turns out that the inverting algorithm of § 4 falls into the above category
[28]; this yields an alternative (but much harder) way of proving Theorem 2(b).

5.2. Multi-prime moduli with partial factorization. The results about bit security
for the RSA function were described with respect to composite numbers N which are
the product of two large primes. However, the same proofs hold for the case of
multi-prime composite N =p,p,- - pr, where the exponent e is relatively prime to
¢(N). In fact, exactly the same proofs hold also in the case that partial factorization
of the modulus is given. Namely, given N, e and some of the p;’s, the following tasks
are computationally equivalent:

(1) Given En(x), find x;

(2) Given En(x), guess the least-significant bit of x with success probability

3+1/poly (n).

In this context, one may wonder whether RSA remains hard to invert given partial
factorization of its modulus. Using the Chinese Remainder Theorem it is not hard to
show that inverting E,, (M = p,p,) is equivalent to inverting Ex (N =p;p.ps - " * P«
and both exponents in E,; and Ey are the same) when all primes but p,, p, are known.
For details see [8].

6. Bits equivalent to factoring in Rabin’s encryption function. The Rabin encryption
function is operating on the message space Zy, where N = pq is the product of two
large primes (which %re kept secret) The encryption of x is Exn(x)=[x*]n. The
ciphertext spaceis Qn = {y|3x: y=x?(mod N)}. Rabin [22] has shown that extracting
square roots (““inverting En’’) is polynomially equivalent to factoring.

6.1. Previous results. The function E, defined above is 4 to 1 rather than being
1to 1 (as is the case in the RSA). Blum [3] has pointed out the cryptographic importance
of the fact that for p=g=3 (mod 4), Ex induces a permutation over Q. Composite
numbers of this form will be called Blum integers.

Goldwasser, Micali and Tong [17] have presented a predicate the evaluation of
which is as hard as factoring. Specifically, they showed that if p=3 {(mod 4) and p=gq
(mod 8) then factoring N is polynomially reducible to guessing their predicate with
success probability 1—(1/n).

Ben-Or, Chor and Shamir [2] considered the same predicate. Using a modification
of their RSA techniques, they showed + 1/poly (n) security also for this predicate.
Their modification requires that N be a Blum integer and furthermore that there exist
a small odd number h (h =poly (n)) with (h/ N)=—1. The correctness proof makes
use of nonelementary number theory.

6.2. Our result. Using the techniques of § 4, we show that the least-significant bit
in a variant of Rabin’s encryption function is also unpredictable. Our proof uses only
elementary number theory, and holds for all Blum integers.
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Throughout this section we make use of the Jacobi symbol. Let us review the
definition and some properties of the Jacobi symbol. Let p be an odd prime number,
and h an integer relatively prime to p. The Legendre symbol (h/p) is defined to be 1
if h is a quadratic residue modulo p, and —1 otherwise. For N = pgq, a product of two
odd primes, and h relatively prime to N, the Jacobi symbol (h/ N) is defined to be
(h/p) - (h/q). Even though the definition of the Jacobi symbol uses the factorization
of N, it can be easily computed even if N’s factorization is not given. Other facts
which are used in this section are: (h- b’/ N)=(h/N) - (h'/ N), and for a Blum integer
N, (—1/N)=1. For further details, see [21, Chap. 3].

Let N be a Blum integer. Define

def N

Sy = {x O§x<—},

2

def N X
My = 0=x<—aAl—])=1;.
v lxfozx<3(3) -1}
Redefine Ey for xe My as

N
[**]n if [x*]n <7,

Eyn(x)= 2

[N—-x*]y otherwise.

This makes En a 1—1 mapping from My onto itself. The intractability result of Rabin
still holds. That is, factoring N is polynomially reducible to inverting En. Let Ly (x)
denote the least-significant bit of x.

The security of the least-significant bit of this function is now defined in a manner
analogous to the RSA case. We would like to use the same techniques to demonstrate
that the least-significant bit of the modified Rabin function is unpredictable. The
difficulty is that the queries to the oracle may not be of the right form. Namely, we
would like to feed the oracle with En(rx+dx) and get the least-significant bit of
[rx+dx]y, but it might happen that [rx+ dx]y € My and then the oracle’s answer
does not correspond to [rx+dx]y (but rather to the square root of [(rx+ dx)* ]y
which resides in My). This ([rx+ dx]N 2 My) may happen if either [rx+dx]n £ Sn
or ((rx+dx)/ N)=—1. Both cases are easy to detect with very high probability. When
any of them occur, we discard this dx-measurement. We will show that we only discard
about 3 of the dx-measurements, and the remaining points constitute a large enough
sample to retain the high reliability of the parity subroutine. A more elaborate exposition
follows.

For technical reasons, we slightly change the definition of “small” here. In this
section, h is small means absy (h) <&(n)N/8 (instead of absy (h) <e(n)N/2 as in
§ 4). This will restrict all [dx]y’s in the gcd calculation to have absy (dx) <e(n)N/8.
Doing this, the probability that a wraparound of either 0 or N/2 occurs when [dx]x
is added to [rix]n is no greater than (n)/4. Similarly, the partition of Zy (for both
y and z) is refined by a factor of 4.

Given the original encryption En(x), pick y = kx and z = Ix, two random multiples
of x. By exhausting all possibilities, the approximate magnitude in Zy of y and z, and
their least-significant bits are known. Let [rix]y =[y+iz]n as before. If [rx]y is not
in an £(n)N/8 interval around either 0 or N/2, then we can determine whether
[rx]n € Sy, and compute the least-significant bit of [rx]y as before. In the “fuzzy”
cases, where [rx]y is in an £(n)N/8 interval around either 0 or N/2, we determine
its least-significant bit assuming that [rx]y € Sn.
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It remains to determine the parity of [dx]y by comparing the known least-
significant bit of [rx]x with the least-significant bit of [rx +dx]y. We consider the
following three cases:

(1) If [rx]n 2 Sy (according to y, z locations), then we ignore this dx-measure-

ment;

(2) If ((r;,+d)/ N)=—1, then we ignore this dx-measurement;

(3) If [rix]n € Sy (according to y, z locations) and ((r;+d)/ N) =1, then we feed
the oracle Oy with En(rx+dx), and take its answer as our guess for the
least-significant bit of [rx+ dx]y.

In the analysis of this procedure, we assume that we are dealing with the right
alternative for y and z. With high probability (=1—(e(n)/8)) we correctly determine
whether [rx]n € SN

We first estimate the probability that we ignore the dx-measurement. Since the
cardinality of My is |Z%|/4, and our only error is in testing membership in Sy, we
end up in Case (3) with probability =} —&(n)/8.

We now estimate the error probability given that we are in Case (3). It is easier
to estimate the error given that [rx]y € Sy and ((r;+d)/N)=1 (i.e., given that we
should have been in Case (3)). These two conditional probabilities are very close, as
we will see below. Let & denote the event that we produce an incorrect value for the
ith dx-measurement, % denotes the event that we are in Case (3), and € denotes the
event [rx]y €Sy and ((r;+d)/N)=1.

Pr (| B)=Pr (4N E|B)+Pr(NE|B)

Pr (%) _
= . +Pr(€|%RB).
Pr (| €) Pr (%) r(€[%B)
The reader can easily verify that
Pr((é|?]3)<8(4n),
pr (€) =1+
4 8
Pr () =120,
4 8

The error we would have made when [rx]n € Sy and ((r;+d)/ N) =1 stems from two
sources.” The oracle’s error and the possibility that [rx + dx]n £ Sx (although [rx]x €
Sy ). The first conditional probability is bounded above by 3—&(n) and the second by
£(n)/8. Thus, Pr (| €) <3—e(n)+e(n)/8. Using the calculations above, we get

_(1 7e(n) .%+s(n)/8 e(n)
Pr(dl%)=<2 8 ) i—e(n)/s 4
1 _en)
27 8

Define the random variable
3 if the ith dx-measurement is ignored,
&i=41

if the ith dx-measurement is wrong,
0 if the ith dx-measurement is correct.

3 1In case [r;x]n € S, we have determined correctly the least-significant bit of [r;x]x € Sy. This follows
by the manner in which we determine the least-significant bit of [rx]y.
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The reader can easily verify that Exp (£;)=Pr({;=1)<3—¢(n)/64 and Var ({;) <}.
The rest of the analysis is similar to the analysis presented in § 4 (as also here the
probability that (1/m) Y., ;=3 is exactly the error probability of the parity sub-
routine). This implies

THEOREM 3. The least-significant bit for the modified Rabin encryption function is
unpredictable. (That is, inverting En () is probabilistic polynomial-time reducible to the
following: Given En(x) (for x€ My), guess the least-significant bit of x with success
probability 3+1/poly (n).)

CoROLLARY (to Theorem 3). Factoring a Blum integer, N, is polynomially reducible
to guessing Ly (x) with success probability 5+ 1/poly (n) when given Ex(x), for x € My.

The proofs from the previous section about simultaneous security of the log n
least significant bits hold here just as well. The extension of the result to multi-prime
moduli is possible, but much harder. For details see [10].

7. Applications. In this section we present applications of our result to the con-
struction of pseudorandom bit generators and probabilistic encryption schemes.

7.1. Construction of pseudorandom bit generators. A pseudorandom bit generator
is a device that “expands randomness.” Given a truly random bit string s (the seed),
the generator expands the seed into a longer pseudorandom sequence. The question
of “how random” this pseudorandom sequence is depends on the definition of random-
ness we use. A strong requirement is that the expanded sequence will pass all polynomial
time statistical tests. Namely, given a pseudorandom and a truly random sequence of
equal length, no probabilistic polynomial time algorithm can tell which is which with
success probability greater than 3 (this definition was proposed by Yao [29], who also
showed it is equivalent to another natural definition—unpredictability [6]).

Blum and Micali [6] presented a general scheme for constructing such strong
pseudorandom generators. Let g: M > M be a 11 one-way function, and B(x) be an
unpredictable predicate for g. Starting with a random se€ M, the sequence obtained
by iterating g and outputting the bit b,= B(g'(s)) for each iteration is strongly
pseudorandom. Using their unpredictability result for the “half, bit” in discrete
exponentiation modulo a prime p, Blum and Micali gave a concrete implementation
of the scheme, based on the intractability assumption of computing discrete logarithm.
More generally, if B(x),- - -, Bi(x) are simultaneously secure bits for g, then the
sequence obtained by iterating g, and outputting the string (b, - b )=
(B1(g'(s)) - - - Bi(g'(s))) for each iteration, is strongly pseudorandom. Long and Wig-
derson [20] have shown that the discrete exponentiation function has log log p simul-
taneous secure bits.* Their result implies a pseudorandom bit generator which produces
log log p bits per each iteration of the discrete exponentiation.

Using our results, we get an efficient implementation of strong pseudorandom
generators, based on the intractability assumption of factoring. The modified Rabin
function Ey is iteratively applied to the random seed s € My. In the ith iteration, the
generator outputs the log n least-significant bits of E'y(s) = +s> mod N. Thus it outputs
log n pseudorandom bits at the cost of one squaring and one subtraction modulo N,
and is substantially faster than the discrete exponentiation generator. Previous strong
pseudorandom generators based on factoring ([17], [2], [27]) required the use of the
exclusive-or construction of Yao [29] and were less efficient.

Another efficient pseudorandom generator was previously constructed by Blum,
Blum and Shub [4]. Their generator output one pseudorandom bit per one modular

4 Kaliski [18] has recently simplified and generalized the argument.
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multiplication. Blum, Blum and Shub proved that their generator is a strong pseudoran-
dom generator if the problem of deciding quadratic residucity modulo a composite
number is intractable. Vazirani and Vazirani [28] have pointed out that, using our
techniques, the Blum, Blum and Shub generator is strong also with respect to the
problem of factoring Blum integers.

7.2. Construction of probabilistic public-key encryption schemes. A probabilistic
encryption scheme is said to leak no partial information if the following holds: Whatever
is efficiently computable about the plaintext given the ciphertext, is also efficiently compu-
table without the ciphertext [15]. Goldwasser and Micali presented a general scheme
for constructing public-key probabilistic encryption schemes which leak no partial
information, using a “‘secure trap-door predicate™ [15]. A secure trap-door predicate is
a predicate that is easy to evaluate given some “‘trap-door” information, but infeasible
to guess with the slightest advantage without the “trap-door” information. Goldwasser
and Micali also gave a concrete implementation of their scheme, under the intractability
assumption of deciding quadratic residucity modulo a composite number. A drawback
of their implementation is that it expands each plaintext bit into a ciphertext block
(of length equal to that of the composite modulus).

Using our results, we get an implementation of a probabilistic public-key encryp-
tion scheme that leaks no partial information, based on the intractability assumption
of factorization. This implementation is more efficient that the one in [14], which is
also based on factoring. However, our implementation still suffers from a large band-
width expansion.

Recently, Blum and Goldwasser [ 5] used our result to introduce a new implementa-
tion of probabilistic encryption, equivalent to factoring, in which the plaintext is only
expanded by a constant factor. Blum and Goldwasser’s scheme is approximately as
efficient as the RSA while provably leaking no partial information, provided that
factoring is intractable.

8. Concluding remarks and open problems. Standard sampling techniques draw
mutually independent elements from a large space. We employed a strategy of getting
elements with limited mutual independence (only pairwise independence). This strategy
allows more control on properties of the chosen elements.

Trading off statistical independence for control turned out to be fruitful in our
context. We believe that such trade-off may be useful in other contexts as well.

We conclude by presenting two open problems:

(1) In § 5 (6), we have shown simultaneous security results of O(log n) bits in
RSA (Rabin) encryption function. Extending the result beyond O(log n) bits
is of major theoretical and practical importance. In particular, if more bits
are shown to be simultaneously secure, then the efficiency of the resulting
pseudorandom generator will be greatly improved.

(2) Another interesting question is that of investigating the bit security of the
internal RSA bits—are they also 1/poly (n) secure?
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