
6.5620/6.875/18.425: Cryptography and Cryptanalysis September 8, 2023

Recitation 1: Background on Probability Theory
Instructor: Vinod Vaikuntanathan TAs: Chirag Falor, Neekon Vafa, and Hanshen Xiao

Contents

1 Basic theory1 Basic theory 11
1.1 Definitions and background1.1 Definitions and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Law of total probability.1.2 Law of total probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.3 Conditional probability.1.3 Conditional probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4 Union bound.1.4 Union bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5 Expectation.1.5 Expectation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.6 Variance.1.6 Variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2 Concentration inequalities2 Concentration inequalities 77
2.1 Markov’s inequality.2.1 Markov’s inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.2 Chebyshev’s inequality.2.2 Chebyshev’s inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.3 Chernoff bounds.2.3 Chernoff bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3 Example problems3 Example problems 99
3.1 Problems pertaining to random variables.3.1 Problems pertaining to random variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.2 Problems pertaining to concentration bounds3.2 Problems pertaining to concentration bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111
3.3 The Coupon Collector problem.3.3 The Coupon Collector problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212

1 Basic theory

1.1 Definitions and background

Probability is always defined over a set of possible outcomes Ω of a (discrete) random experiment. For
example, the possible outcomes for a single coin flip are heads (H) or tails (T ), and so we have Ω = {H,T}.
We call Ω the sample space of the experiment. On the other hand, if our random experiment consists of
flipping a coin n times independently, then

Ω = {(ω1, . . . , ωn) : ωi ∈ {H,T}}.

A probability distribution over Ω is a function p : Ω→ R≥0 such that
∑
x∈Ω

p(x) = 1. That is, the sum of

all pi over all possible outcomes in Ω is 1.

An event is any subset A ⊆ Ω. The probability of an event A is

Pr
p

[A] =
∑
x∈A

p(x).

In words, we can define the probability of an event in a uniform distribution as

Pr[event happens] =
number of ways it can happen

total number of outcomes

Note: We will often just write Pr instead of Pr
p

when the distribution p is clear from context.
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Two events A,B ⊆ Ω are said to be independent, if Pr[A ∩B] = Pr[A] · Pr[B].

Let look at an example involving coin tosses.

Example 1: Tossing a coin

Recall the experiment of tossing a coin n times: Ω = {(ω1, . . . , ωn) : ωi ∈ {H,T}}.
The event that the first flip is heads is represented as the set

A1,H = {(H,ω2, . . . , ωn) : ωi ∈ {H,T}},

and similarly the event that the first flip is tails is

A1,T = {(T, ω2, . . . , ωn) : ωi ∈ {H,T}}.

Example 2: Tossing a coin (continued...)

We can define the events Ai,H for the i-th flip to be heads, and Ai,T for tails. If we assume that the coin is fair11

and each toss is independent, then we have that for fixed ω1, · · ·ωn:

p((ω1, . . . , ωn)) = Pr [A1,ω1 ∩ . . . ∩An,ωn ]

= Pr [A1,ω1 ] . . .Pr [An,ωn ] // by independence

=
1

2
· . . . · 1

2
// by fairness

=
1

2n
.

1Formally, this means that p(H) = p(T ).

A (real-valued) random variable is a function X : Ω→ R. In Example 11, the number of heads is a random
variable represented by the function

X((ω1, . . . , ωn)) =

n∑
i=1

ωi

Two discrete real-valued random variables X,Y are said to be independent if

Pr [X = x, Y = y] = Pr [X = x] · Pr [Y = y] ,

for any x, y ∈ R.

The random variables X1, . . . , Xn are said to be (jointly) independent if

Pr [X1 = x1, . . . , Xn = xn] =

n∏
i=1

Pr [Xi = xi]

for any x1, . . . , xn.

Note: X1, . . . , Xn can be pairwise independent without being jointly independent!

Example 3: Jointly independent random variables

Let Xi be the random variable that is 1 if the i-th fair coin landed heads and 0 otherwise.
That is,

Xi =

{
1, if ith coin lands H.

0, if ith coin lands T .

The random variables X1, . . . , Xn are jointly independent.
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Example 4: Pairwise independent but not jointly independent random variables

Let Ω = {(ω1, ω2) : ωi ∈ {0, 1}}. Consider the uniform distribution p over Ω. Let X(ω1, ω2) = ω1 be the outcome
of the first flip, Y (ω1, ω2) = ω2 be the outcome of the second flip, and Z(ω1, ω2) = ω1 ⊕ ω2 be the XOR of both
flips. For all x, y, z ∈ {0, 1}, we have

Pr[X = x] = Pr[Y = y] = Pr[Z = z] =
1

2
, and

Pr[X = x, Y = y] = Pr[X = x, Z = z] = Pr[Y = y, Z = z] =
1

4
,

which implies pairwise independence. However, we have

Pr[X = 0, Y = 0, Z = 1] = 0 6= 1

8
= Pr[X = 0] · Pr[Y = 0] · Pr[Z = 1],

showing that these random variables are not jointly independent.

1.2 Law of total probability.

The law of total probability states that if we have events A1, A2, . . . , An which partition the sample space
(i.e., Ω is a disjoint union of these events), and B is any event, then

Pr [B] =

n∑
i=1

Pr [B ∩Ai] .

Note: the law of total probability is also valid if we have a countably infinite partition into events
A1, A2, . . . , An, . . ., in which case

Pr [B] =

∞∑
i=1

Pr [B ∩Ai] .

1.3 Conditional probability.

Conditioning on an event means assuming examining what happens given another event occurs. For example,
we can condition on the probability of it raining tomorrow given that it’s raining today.
Formally, the probability of event A conditioned on event B is defined as

Pr[A|B] =
Pr[A ∩B]

Pr[B]
.

In words, this formula captures the probability that both events happen, subject to B happening. The
intuition is that we focus only on the part of our sample space Ω in which B happens (i.e. the subset
B ⊂ Ω). We can then think of B as our new sample space. Then, the part of A that matters is only
the intersection A ∩ B. However, if we make B our new sample space, then we need to normalize by the
probability that B happens (in Ω), because B doesn’t necessarily have the full probability mass within Ω.
This is where the denominator Pr [B] comes from in the formula.

To see that this is indeed a valid probability, note that

Pr[A|B] + Pr[A|B] =
Pr[A ∩B] + Pr[A ∩B]

Pr[B]
= 1

From the above, we get Bayes’ rule, one of the most important formulas in probability:

Pr[A|B] =
Pr[B|A] Pr[A]

Pr[B]
.
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Additionally, using conditional probability, we can obtain a formula for the probability of an intersection of
events, even if the events are not independent!

Pr[A1 ∩A2 · · · ∩An] = Pr[A1] Pr[A2|A1] . . .Pr[An|A1 ∩A2 ∩ · · · ∩An−1]

The above is often called the “chain rule” of conditional probability.

1.4 Union bound.

For events A1, A2 ⊆ Ω, we have

Pr[A1 ∪A2] = Pr[A1] + Pr[A2]− Pr[A1 ∩A2].

This is a special case of the inclusion-exlusion principle. In particular,

Pr[A1 ∪A2] ≤ Pr[A1] + Pr[A2],

and by induction, for A1, · · · , An ⊆ Ω,

Pr

[
n⋃
i=1

Ai

]
≤

n∑
i=1

Pr [Ai] .

This is called the union bound. This technique is commonly used when we want to provide a bound on the
probability that at least one event happens, from a family of events. We upper bound this probability by
the sum of the probabilities of the individual events. As implied by the inclusion-exclusion principle, this is
tight when all the Ai are disjoint.

1.5 Expectation.

For a discrete real-valued random variable X taking possible values x1, . . . , xn ∈ R, the expectation is defined
as

E [X] =

n∑
i=1

Pr [X = xi] · xi.

You can think of the expectation as being the “average” value that X will take on.

Example 5: Expectation of a coin toss

Let X be the random variable that is 1 if a fair coin landed heads and 0 otherwise.

E [X] =

(
1

2

)
· 1 +

(
1

2

)
· 0 =

1

2
.
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Linearity of Expectation
Given random variables X1, ..., Xn and X =

∑n
i=1Xi, we have

E[X] = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E [Xi]

In words, the expected value of the sum of random variables is equal to the sum of the expected values. A
very important takeaway from this result is that it holds even if the random variables are not independent.
This will be used frequently when we have to find the expected value of a sum of random variables when
they might not be independent.

Example 6: Linearity of Expectation for a coin toss

Let Xi be the random variable that is 1 if the i-th fair coin landed heads and 0 otherwise.
Let X =

∑n
i=1 Xi.

E [X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi] =
n

2
.

Which matches our intuition that, on average, the number of times that the coin comes up heads is roughly half
the number of trials.

Multiplicativity of expectation under independence
Another cool property of expectation is that the expectation of a product of independent variables is the
product of individual expectations:

E [XY ] = E [X]E [Y ] .

To see this, it is easiest to start manipulating the right side. Suppose X can take values in S and Y can
take values in T , and let W = {xy : x ∈ S, y ∈ T}. Then we have

E [X]E [Y ] =
∑
x∈S

∑
y∈T

Pr [X = x] · Pr [Y = y] · x · y

=
∑
x∈S

∑
y∈T

Pr [X = x, Y = y] · x · y

=
∑
a∈W

∑
(x,y)∈S×T :xy=a

Pr [X = x, Y = y] · a

=
∑
a∈W

Pr [XY = a] · a = E [XY ] .

1.6 Variance.

For a discrete real-valued random variable X, the variance is defined as

Var [X] = E
[
(X − E [X])

2
]

Intuitively, the variance captures how far the random variable is from its expectation in a squared, expected
sense. Note that this can be alternatively expressed as

E
[
(X − E [X])

2
]

= E
[
X2 − 2XE [X] + E [X]

2
]

= E
[
X2
]
− 2E [XE [X]] + E [X]

2

= E
[
X2
]
− 2E [X]

2
+ E [X]

2

= E
[
X2
]
− E [X]

2
.
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Linearity of variance under pairwise independence.
An important property of the variance is that it is additive when the summands are pairwise independent
random variables. That is, if X1, . . . , Xn are pairwise independent random variables, we have

Var

[
n∑
i=1

Xi

]
=

n∑
i=1

Var [Xi]

To see this, note that

Var

[
n∑
i=1

Xi

]
= E

( n∑
i=1

Xi

)2
−( n∑

i=1

E [Xi]

)2

=

n∑
i=1

E
[
X2
i

]
+ 2

∑
i<j

E [XiXj ]−
n∑
i=1

E [Xi]
2 − 2

∑
i<j

E [Xi]E [Xj ]

=

n∑
i=1

E
[
X2
i

]
−

n∑
i=1

E [Xi]
2

=

n∑
i=1

Var [Xi]

where we used the fact that E [XY ] = E [X]E [Y ] for independent X,Y .
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2 Concentration inequalities

Concentration inequalities are tools that allow us to bound the probability with which a random variable
can be far from its expectation. There is a vast number of concentration inequalities corresponding to the
different assumptions on the random variable.
For example, if a random variable is a sum of many independent random variables, intuitively it seems
very (exponentially in the number of summands) unlikely for all individual random variables in the sum to
conspire to bring the value of the sum away from its expectation. As we’ll see below, in such a situation we
in fact have theorems saying that deviating from the expectation is exponentially unlikely, as one intuitively
expects.

2.1 Markov’s inequality.

Let Y be a discrete random variable taking non-negative values in the set S. Then for any a > 0,

Pr[Y ≥ a] ≤ E[Y ]

a

A nice feature of this inequality is that it only depends on the expectation of the random variable.
Proof.

E[Y ] =
∑
y∈S

y · Pr[Y = y] =
∑

y∈S,y<a
y · Pr[Y = y] +

∑
y∈S,y≥a

y · Pr[Y = y]

≥
∑

y∈S,y≥a

y · Pr[Y = y] ≥
∑

y∈S,y≥a

a · Pr[Y = y] = a · Pr[Y ≥ a].

This is tight when Y is a with probability 1. Markov’s inequality is important because it ties the probability
of a random variable being greater than some threshold to the expected value of the random variable. What’s
not obvious though is that it can also be extended to prove much more powerful inequalities.

2.2 Chebyshev’s inequality.

Let X be a random variable with expected value µ and strictly positive variance σ2. Then for all real k > 0:

Pr[|X − µ| ≥ k] ≤ σ2

k2

What this is saying is that the probability that X is a distance from the mean is related directly to the
variance and inversely to the squared distance. In general, Chebyshev’s inequality provides us with a stronger
bound than Markov’s inequality because we utilize the variance of the random variable.
Proof. Since (X − µ)2 is a nonnegative random variable, by Markov’s inequality we get

Pr[(X − µ)2 ≥ k2] ≤ E[(X − µ)2]

k2
,

Pr[|X − µ| ≥ k] ≤ σ2

k2
.
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2.3 Chernoff bounds.

Suppose X1, . . . , Xn are independent random variables taking values in {0, 1}. Let X denote their sum and
let µ = E[X] denote the sum’s expected value. Then for any β > 0,

• Pr[X > (1 + β)µ] < e−β
2µ/3, for 0 < β < 1

• Pr[X > (1 + β)µ] < e−βµ/3, for β > 1

• Pr[X < (1− β)µ] < e−β
2µ/2, for 0 < β < 1

This allows us to get an even tighter bound because we can use the fact that the random variables exhibit
full mutual independence. Note that this is a stronger assumption than pairwise independence! There are
groups of random variables which are all pairwise independent but which are not mutually independent.
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3 Example problems

3.1 Problems pertaining to random variables.

1. For each of the following distributions, compute their expectation and variance:
(1) Uniform in {1, 2, . . . , n},
(2) Bernoulli11 with success probability p.

Solution.

(1) We have

E[X] =

n∑
i=1

1

n
· i =

1

n
· n(n+ 1)

2
=
n+ 1

2
,

and

Var[X] = E[X2]− (E[X])2 =
n∑
i=1

1

n
· i2 −

(
n+ 1

2

)2

=
1

n
· n(n+ 1)(2n+ 1)

6
− (n+ 1)2

4
=
n2 − 1

12
.

(2)
E[X] = p · 1 + (1− p) · 0 = p,

and

Var[X] = E[X2]− (E[X])2 = p · 12 + (1− p) · 02 − p2 = p(1− p)

2. Suppose Alice flips 6 fair coins. What is the probability that result is three heads and three tails?
Suppose furthermore that Alice has to pay $1 to flip 6 coins. What is the expected number of dollars
she must pay until she sees the result of three heads and three tails?

Solution. The probability space can be represented as Ω = {(a1, . . . , a6) : ai ∈ {0, 1}}. The event of

getting three heads is then A = {(a1, . . . , a6) :
∑6
i=1 ai = 3}. Since every possible choice (a1, . . . , a6)

has the same probability 1
26 , we have

Pr [A] =
|A|
26

=

(
6
3

)
26

=
5

16

For the second part, we’re in the following general situation: we have a Bernoulli (i.e., {0, 1}) random
variable X such that Pr [X = 1] = p, and we sample independent copies X1, X2, . . . of X. We want to
know what is the expected time E [T ] such that XT = 1 for the first time. Well, we have

Pr [T = t] = Pr [X1 = 0, . . . , Xt−1 = 0, Xt = 1] = (1− p)t−1p

1The Bernoulli distribution is defined by the random variable X where X = 1 with probability p and X = 0 with probability
1 − p.
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and hence

E [T ] =

∞∑
t=1

Pr [T = t] t =

∞∑
t=1

(1− p)t−1pt

= p

∞∑
t=1

(1− p)t−1t

= p

( ∞∑
t=1

(1− p)t−1 +

∞∑
t=2

(1− p)t−1 + . . .

)

= p

(
1

p
+ (1− p)1

p
+ (1− p)2 1

p
+ . . .

)
= 1 + (1− p) + (1− p)2 + . . . =

1

p
.

So, we get a very neat result: the expected number of independent trials until a Bernoulli random
variable with probability of being 1 equal to p is 1 is 1

p .

Applying this to our case, the expected number of dollars will be 16
5 .

This calculation can be simplified using the following identity which holds whenever T ranges over the
natural numbers:

E [T ] =

∞∑
t=0

Pr [T > t]

3. Alice flips a fair coin n times, and so does Bob. Show that the probability that they get the same
number of heads is

(
2n
n

)
/4n. Use your argument to verify the identity

n∑
k=0

(
n

k

)2

=

(
2n

n

)

Solution. Let our probability space be Ω = {(a1, . . . , an, b1, . . . , bn) : ai ∈ {0, 1}, bi ∈ {0, 1}}, where
ai = 1 if the i-th flip of Alice was heads and 0 otherwise, and bi = 1 if the i-th flip of Bob was tails,
and 0 otherwise. Note that we encode heads and tails in opposite ways for Alice and Bob.

Then note that the event that they flipped the same number of heads is

A =

{
(a1, . . . , an, b1, . . . , bn) :

n∑
i=1

ai =

n∑
i=1

(1− bi)

}

=

{
(a1, . . . , an, b1, . . . , bn) :

n∑
i=1

ai +

n∑
i=1

bi = n

}

which immediately tells us that Pr [A] =
(2n

n )
22n as wanted.

Now, note that we could have computed the same probability with a different probability space: namely,
the one where we encode heads and tails in the same way. Here Ω = {(a1, . . . , an, b1, . . . , bn) : ai ∈
{0, 1}, bi ∈ {0, 1}}, where ai = 1 if the i-th flip of Alice was heads and 0 otherwise, and bi = 1 if the
i-th flip of Bob was heads, and 0 otherwise. Now we have

A =

{
(a1, . . . , an, b1, . . . , bn) :

n∑
i=1

ai =

n∑
i=1

bi

}
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We can calculate the probability by considering all the different possible numbers of heads that the
two players can have (we’re using the law of total probability here):

Pr [A] =

n∑
k=0

Pr

[
A ∩

n∑
i=1

ai = k

]

=

n∑
k=0

Pr

[
n∑
i=1

ai =

n∑
i=1

bi = k

]

=

n∑
k=0

Pr

[
n∑
i=1

ai = k

]
Pr

[
n∑
i=1

bi = k

]

=

n∑
k=0

(
n
k

)
2n

(
n
k

)
2n

=

∑n
k=0

(
n
k

)2
4n

.

Comparing the two expressions, we get the desired identity.

3.2 Problems pertaining to concentration bounds

1. Let’s say that we flip a biased coin that lands heads with probability 1
3 a total of n times. Use Chernoff

bounds to determine a value of n such that the probability of getting more than half of the flips heads
is less than 1

1000 .

Solution. Let Xi be a random variable that is 1 if the i-th flip landed heads and 0 otherwise. If we

denote X =
n∑
i=1

Xi, we want to find the smallest n such that Pr[X > n
2 ] < 1

1000 .

Note that µ = E[X] =
n∑
i=1

E[Xi] =
n∑
i=1

1
3 = n

3 . Applying Chernoff bounds from the previous section

with β = 1
2 we get

Pr[X >
3

2
µ] < e−(1/2)2µ/3

⇔Pr[X >
n

2
] < e−n/36

So for e−n/36 < 1/1000⇔ n > 36 log 1000 ≈ 250 we have the required bound.

2. Bar the bear decides he wants to manage beehives in his old age. He’s just received k bees that he
wants to allocate to his n beehives. Since Bar is old, he often loses count when trying to allocate the
bees to beehives. He decides to just allocate the bees randomly to his hives. That is, for each bee,
he chooses a beehive uniformly at random. Help Bar prove that his strategy yields an approximately
uniform distribution of bees with high probability.

(a) Let Xi be the number of bees in the i-th beehive. Compute E[Xi].

Solution. Let Yji be 1 if the j-th bee is allocated to the i-th beehive, and 0 otherwise.

We have E[Yji] = Pr[j-th bee is put into i-th beehive] = 1/n. Then Xi =
∑k
j=1 Yji, so

E[Xi] =
∑k
j=1E[Yji] =

∑k
j=1 1/n = k/n.

(b) Show that Xi and Xj are not independent.

Solution. We see that Pr[Xi = k ∩ Xj = k] = 0. However, Pr[Xi = k] Pr[Xj = k] =
(1/n)2k. Thus, Xi and Xj are not independent.
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(c) Let M = max(X1, X2, . . . , Xn). Show Pr[M ≥ 2k/n] ≤ ne−k/(3n).

Solution. The idea is to use Chernoff bounds to show that Pr[Xi ≥ 2k/n] is small and
then use the union bound to bound the probability that any of the Xi variables is greater
than 2k/n. Recall that Xi =

∑k
j=1 Yji. We have Pr[Xi ≥ (1 + δ)E[Xi]] ≤ e−δ

2E[Xi]/3 by

Chernoff. Thus, we get Pr[Xi ≥ 2k/n] ≤ e−k/(3n), and by union bound Pr[M ≥ 2k/n] ≤∑n
i=1 Pr[Xi ≥ 2k/n] ≤

∑n
i=1 e

−k/(3n) = ne−k/(3n).

3.3 The Coupon Collector problem.

Suppose there are n different kinds of coupons, and we want to collect at least one coupon from every kind.
We start out with nothing, and at each step, we get a new random coupon, equally likely to be any of the
n kinds, and independent of the previous coupons. This is known as the coupon collector’s problem.

• What is the expected time T when we’re done collecting?

• What is the variance of T?

• Use Chebyshev’s inequality to bound the probability that T deviates far from its expectation.

Solution. Let Ti be the random variable equal to the first time we have i different kinds of coupons. Then,
we can break the total time to collect all kinds of coupons Tn into the phases between getting a new kind of
coupon:

E [Tn] = E [T1 + (T2 − T1) + . . .+ (Tn − Tn−1)]

= E [T1] + E [T2 − T1] + . . .+ E [Tn − Tn−1] .

Now let’s think about the random variable Tk+1 − Tk: it is the time it takes us to get a k + 1-th coupon
given that we already have k coupons. No matter what kinds of coupons we have already, the probability
that we get a new coupon is n−k

n in each step independently.
This is identical to the earlier problem where we had a Bernoulli random variable X such that Pr [X = 1] = p,
and we showed that the expected time until it becomes 1 for the first time is 1

p . Thus, E [Tk+1 − Tk] = n
n−k ,

and

E [Tn] = 1 +
n

n− 1
+ . . .+

n

1

= n

(
1

n
+

1

n− 1
+ . . .+

1

1

)
= nHn

where Hn is the n-th harmonic number. It is known that Hn = Θ(log n) (which can be proved using an
integral among other methods), hence E [T ] = Θ(n log n).
For the variance, note that the random variables Tk+1 − Tk are independent. Indeed, if k > l, we have

Pr [Tk+1 − Tk = tk, Tl+1 − Tl = tl] = Pr
[
Tk+1 − Tk = tk

∣∣ Tl+1 − Tl = tl
]

Pr [Tl+1 − Tl = tl]

Now, note that conditioning on Tl+1−Tl = tl has no effect on the probability that Tk+1−Tk = tk, since the
future coupons we get are independent of the past. Hence the above is

= Pr [Tk+1 − Tk = tk] Pr [Tl+1 − Tl = tl]

which shows that the random variables are indeed independent. This means that

Var [Tn] = Var [T1 + (T2 − T1) + . . .+ (Tn − Tn−1)]

= Var [T1] + Var [T2 − T1] + . . .+ Var [Tn − Tn−1]

12



Now we’re faced with the general task of computing the variance of the random variable T which is the first
time that a Bernoulli random variable X with Pr [X = 1] = p becomes 1. We have

Pr [T = t] = (1− p)t−1p

and as we saw earlier, E [T ] = 1
p . It remains to compute

E
[
T 2
]

=

∞∑
t=1

Pr [T = t] t2

=

∞∑
t=1

(1− p)t−1pt2

= p

∞∑
t=1

(1− p)t−1t2

We could compute this sum by decomposing it into simpler sums in a clever way. But here’s a useful (and
more principled) trick for computing sums like this: consider the function f(x) = 1

1−x for |x| < 1. Then we
have the power series expansion

1

1− x
= 1 + x+ x2 + . . . =

∞∑
n=0

xn

Differentiating both sides, we have

1

(1− x)2
= 1 + 2x+ 3x2 + . . . =

∞∑
t=0

(t+ 1)xt

and differentiating again,

2

(1− x)3
= 2 + 6x+ 12x2 + . . . =

∞∑
t=0

(t+ 1)(t+ 2)xt

Using this, we have

∞∑
t=1

(1− p)t−1t2 =

∞∑
t=1

(1− p)t−1t(t+ 1)−
∞∑
t=1

(1− p)t−1t

=

∞∑
t=0

(1− p)t(t+ 1)(t+ 2)−
∞∑
t=0

(1− p)t(t+ 1)

=
2

p3
− 1

p2

and so

Var [T ] = E
[
T 2
]
− E [T ]

2

=
2

p2
− 1

p
− 1

p2
=

1− p
p2

which implies that

Var [Tn] =

n∑
k=1

1− n−k
n(

n−k
n

)2 =

n∑
k=1

nk

(n− k)2
≤ n2

∞∑
l=1

1

l2
≤ 2n2.

Thus, by Chebyshev,

Pr [|Tn − E [Tn]| ≥ cn] ≤ 2

c2
.

13


	Basic theory
	Definitions and background
	Law of total probability.
	Conditional probability.
	Union bound.
	Expectation.
	Variance.

	Concentration inequalities
	Markov's inequality.
	Chebyshev's inequality.
	Chernoff bounds.

	Example problems
	Problems pertaining to random variables.
	Problems pertaining to concentration bounds
	The Coupon Collector problem.


