
6.895 Randomness and Computation April 30, 2008

Lecture 22: The Leftover Hash Lemma and Explicit Extractors

Lecturer: Ronitt Rubinfeld Scribe: Andy Drucker

Recall the notion of a k-source:

Definition: A k-source X is a random variable (taking values in {0, 1}n, say, for some n > 0) such
that, for all x ∈ {0, 1}n,

Pr[X = x] ≤ 2−k.

A random variable which is a k-source is also said to have min-entropy k.

Extractors are functions which take as input a k-source, and some ‘pure’ randomness (called the
seed), and output nearly-uniform bits.

Definition: Let n,m, k, d > 0 be integers and let ǫ > 0.
We say a function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ǫ)-seeded extractor (or simply a (k, ǫ)

extractor) if, for all k-sources X on n bits, we have

∆(Ext(X,Ud), Um) < ǫ,

where ∆(S, T) denotes the statistical distance between r.v.’s S and T , and where Ut denotes the
uniform distribution on t-bit strings.

Why would an extractor be a useful thing to have? Arguably, it is difficult to find ‘pure’ randomness
in nature, but we may still hope to find ‘significant’ randomness in the form of a random variable that
is ‘hard to predict’ (which is precisely what is guaranteed by the definition of a k-source). If we can find
‘just a little’ pure randomness, namely d bits, we get an output from the extractor that can be used as
input to a randomized algorithm.

To see this, consider a randomized algorithm M(y, r) taking input y and m random bits r. Sup-
pose that M computes language L with bounded-error: if y ∈ L, then for all y, M(x, r) accepts with
probability > 5

6 over the random choice of r, while if y /∈ L,M(x, r) accepts with probability < 1
6 over r.

Define the random function F (r) = M(x, r). Suppose X is a k-source to which we have access and
Ext a (k, 1

6)-extractor; by definition we have that

∆(Ext(X,Ud), Um) <
1

6
.

Since statistical distance cannot be increased by application of a function (even a random function),
we have that

∆(F (Ext(X,Ud)), F (Um)) <
1

6
,

so

|Pr[M(x,Ext(X,Ud)) = 1]− Pr[M(x,Um)] = 1| < 1

6
.

It follows that M is a bounded-error probabilistic algorithm for L with completeness 2
3 and sound-

ness 1
3 , even when run on the extractor’s output rather than on uniform randomness Um. (Since the

extractor output is almost as good as uniform randomness for practical purposes, we sometimes call it
pseudorandom.)

If d is small, we can eliminate the need for any pure randomness in our scheme, by taking a sample
x ← X and computing the majority vote of M(y,Ext(x, s)) over all s ∈ {0, 1}d, although we need
somewhat higher success probability in the algorithm M to conclude that we get a ‘representative’

1

sample x with good probability. If d is logarithmic in |y| and M is polynomial-time, this gives a
polynomial-time scheme for computing L with X as the only source of randomness.

When we look for constructions of extractors, we have several goals. First, as usual we prefer explicit
constructions. The probabilistic method gives us nearly optimal extractors, but this is unsatisfactory as
our goal in building extractors is to precisely to reduce our reliance on randomness!

In terms of parameters, we would like m to be small, so that we get a lot of pseudorandom bits out
of the extractor; d and k to be small, so that we don’t have to put too much randomness in; ǫ to be
small, so that the output is very nearly uniform; and we’d like to work with whatever values of n we
need to.

As an indication of the most basic constraints, if one hopes to build a nontrivial extractor, one must
have m ≤ d+ k; otherwise, defining a k-source that contains k uniformly random coordinates, one could
‘stretch’ d + k random bits to obtain a greater number of almost-random bits, which is easily seen to be
impossible.

The ‘Leftover Hash Lemma’ of Impagliazzo is a classic construction of extractors, based on pairwise
independent function spaces. It achieves nearly optimal randomness extraction (i.e. k + d is very close
to m), at the cost of requiring a large seed length d = Ω(n). First, let us define pairwise independent
function spaces.

Definition: A family H of functions h : {0, 1}n → {0, 1}l is pairwise independent (p.i.) if for all
distinct x, y ∈ {0, 1}n and for all a, b ∈ {0, 1}l,

Prh[h(x) = a ∨ h(y) = b] =
1

(2l)2
,

where the probability is taken over a uniform selection of h from H.

We now state and prove the main result.

Theorem (Leftover Hash Lemma): If the family H of functions h : {0, 1}n → {0, 1}l is pairwise
independent, where l = k − 2log(1

ǫ
)−O(1), then Ext(x, h) = (h, h(x)) is a (k, ǫ/2)-extractor.

(Here we identify a function h with its index in H.)
Note: the seed length d is log|H|, and we assume |H| is a power of 2. It is known that p.i. families H

exist with |H| = Θ(n), and that this is best possible. Thus we cannot hope for logarithmic seed length
by this approach. Note, however, that the output length m = d + l is very nearly the input min-entropy
k + d, when ǫ is a constant, so we extract almost all of the randomness of X.

Proof: Conceptually, the proof is broken into three steps. We define a measure of a random variable
called its ‘collision probability’ and show that the output of Ext has low collision probability; we use
this fact to show that the extractor is close to uniform in the l2 metric; then we use a general inequality
between l2 and l1 to conclude that the extractor is close to uniform in statistical distance.

Fix now any k-source X; we aim to show that ∆(Ext(X,Ud), Um) < ǫ/2.
Given a random variable D, define the collision probability

Col(D) = Pr[x = y],

where x, y are drawn independently from D.
First, we claim that Col(X) ≤ 1

2k . To see this, let pmax be the largest probability of any outcome of
X. Then

Col(X) =
∑

x

Pr[X = x]2 ≤ pmax ·
∑

x

Pr[X = x] = pmax ≤
1

2k
.

Let us now analyze Col(Ext(X,H)) = Col((H,H(x))) where, abusing notation, H denotes a uni-
formly chosen h ∈ H. Let H ′ denote an independent copy of H, and let x, x′ denote independent draws
from X.

2

Col((H,H(x))) = Prx,x′,H,H′ [(H,H(x)) = (H ′,H ′(x′))]

= PrH,H′ [H = H ′] · Prx,x′ [H(x) = H ′(x′)|H = H ′]

= PrH,H′ [H = H ′] · Prx,x′,H [H(x) = H(x′)]

= Pr[H = H ′] ·
(

Pr[x = x′] + Pr[x 6= x] · Pr[H(x) = H(x′)|x 6= x′]

)

≤ 1

2d
· (1

2k
+ Pr[H(x) = H(x′)|x 6= x′])

(recalling that Col(X) ≤ 1
2k since X is a k-source)

=
1

2d
· (1

2k
+

1

2l
)

(since H is pairwise independent)

=
1

2d+l
· (1

22log(1

ǫ
)+O(1)

+ 1)

≤ 1

2d+l
(ǫ2 + 1).

We now turn to analyze the squared l2 distance ||(H,H(x)) − Um||22. Given any two probability
distributions p, q,

||p− q||2 =
∑

x

(pi − qi)
2

=
∑

x

p2
x +

∑

x

q2
x − 2

∑

x

pxqx.

Suppose now q is the uniform distribution Um = Ud × Ul; then the above becomes

∑

x

p2
x +

1

2d+l
− 2 · 1

2d+l

∑

x

px

= Col(P) +
1

2d+l
− 2 · 1

2d+l
= Col(P)− 1

2d+l
.

Thus

||(H,H(x))− Um||22 = Col((H,H(x)))− 1

2d+l

≤ 1

2d+l
(ǫ2 + 1)− 1

2d+l
=

ǫ2

2d+l

3

by our earlier work.
Using the general fact that for v ∈ RK , ||v||1 ≤

√
K||v||2, we conclude

∆((H,H(x)), Um) =
1

2
||(H,H(x))− Um||1 ≤

1

2

√
2d+l||(H,H(x))− Um||2

≤ 1

2

√
2d+l

√

ǫ2

2d+l
= ǫ/2.

This completes the proof. ⋄

We note briefly that extractors can be viewed as bipartite graphs. Let Ext : {0, 1}n × {0, 1}k →
{0, 1}m be a (k, ǫ)-extractor; construct a bipartite multigraph GExt = (U, V) with U = {0, 1}n, V =
{0, 1}m, and include an edge (x, y) with for each s ∈ {0, 1}k such that Ext(x, s) = y.

The condition that Ext is an extractor can be formulated in graph-theoretic terms as a statement
about GExt, although we do not do so here. We remark, however, that the condition is similar to a
bipartite version of the expansion property for graphs. The correspondence is not exact, but it is close
enough that there has been a fruitful interplay between expander and extractor research.

We conclude with a table indicating major approaches to extractor construction (as of roughly 2006).
The first two entries are benchmarks. For each method, we give a rough indication of seed and output
lengths (in terms of n, the input length, and k, the required min-entropy), with ǫ held to a (small as
desired) constant.

Method Seed Length (d) Output Length
optimal, nonconstructive log(n− k) + O(1) k + d−O(1)

needed for BPP simulation with weak randomness O(log(n)) kΩ(1)

‘spectral’ O(n− k) n
p.i. hashing (this lecture) O(n) k + d−O(1)

‘almost-p.i. hashing’ O(log(n) + k) (1 + γ)k, γ → 0
‘explicit 1’ O(log(n)) (1 + γ)k, γ → 0
‘explicit 2’ O(log2(n)) k + d−O(1)

4

