
Program Obfuscation
and the Quest for Cryptography’s Holy Grail

MIT CSAIL
Vinod Vaikuntanathan

Obfuscation
n. the action of making something obscure, unclear, or unintelligible.

Program Obfuscation
n. the action of making a program unintelligible, while preserving
 its input/output behavior.

Program 1 Program 2

Courtesy: IOCCC/Omer P.

Answer: Run me!

Program Obfuscation

PROGRAMS w/ SECRETS:

Cryptographic keys
Licensing Info

The Algorithm Itself

def DecryptEmail(EncryptedMsg):
 SecretKey = “786fe0974effa30621”
 m = Decrypt(EncryptedMsg, SecretKey)
 if m.find(“STOC”) return m
 return “Sorry, this e-mail is private”

Example: E-mail delegation

Backdoors

138805012AA98B7920FC103850
89012408A292E00FF001659009
01659AA1606B692650F3893EE3
9030957BE927A6789C10846DD
10AA92DEADBEEF09179578134

Program Obfuscation in Crypto

“CRYPTO-COMPLETE”:
Nearly all crypto is an easy corollary of program obfuscation.

Public Key Encryption (from Secret Key Encryption)
[Diffie-Hellman’76]

Secret-key Encryption

Enc(SK,●)

Dec(SK,●)

Public-key Encryption

Dec(SK,●)

Public Encryption Algorithm?

Public Encryption Algorithm =

Enc(SK,●)

Program Obfuscation in Crypto

“CRYPTO-COMPLETE”:
Nearly all crypto is an easy corollary of program obfuscation.

Fully Homomorphic Encryption
[Rivest-Adleman-Dertouzos’78, Gentry’09, Brakerski-V’11]

On Input ciphertexts c1,c2 and OP:
m1 = Dec(SK,c1); m2 = Dec(SK,c2);
m3 = m1 OP m2;
Return Enc(SK,m3);

“Program
Obfuscation”

Functional
Encryption

Compact Token-based
Obfuscation

One-way
Functions

Public-key
Encryption

Deniable
Encryption

PPAD Hardness

Correlation-
intractable fns

Non-interactive
Key Exchange

Time-lock Puzzles

Software
Watermarking

Constrained PRFs

Two-round MPC

“Pure” FHE

NIWI
Traitor Tracing

Succinct RE

“CRYPTO-COMPLETE”:
Nearly all crypto is an easy corollary of program obfuscation.

TUTORIAL OUTLINE

Part 1. DEFINITIONS Part 2. APPLICATIONS

Part 3. CONSTRUCTIONS
of IO from simpler objects

Theorem: If 3-linear maps
exist and local PRGs exist,
so does IO.

a. Virtual Black-Box OBF

of program obfuscation

b. Indistinguishability OBF (IO)

of IO

a. Crypto Applications
b. A Complexity Application
c. Bootstrapping Theorems

Part 4. DE-IO-IZATION

Remove the need for IO in
applications.

e.g., Traitor Tracing (on Wed)

Defining Program Obfuscation (Take 1)
Virtual Black-Box (VBB) obfuscation
[Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang’01]

“𝒪(P) reveals no more info than black-box access to P”.

∃ Black-box Learner∀ Deobfuscator

P

DeObfuscator

P
x

P(x)
Learner

BAD NEWS: There are “unobfuscatable” programs!

≈

[Barak-GIRSVY’01, Goldwasser-Kalai’05]

Unobfuscatable Programs

THEOREM [BAD NEWS, BGIRSVY’01]:
∀𝒪	∃P such that 𝒪 completely fails to obfuscate P.

Proof: “Programs that eat themselves”

Define a family of programs {𝑃!,#} where x and y are n-bit
strings, as follows:

𝑃!,#(𝑏, Π) =

y

x, y

0 otherwise

if b=1 and Π(0,x) = y

if b=0 and Π = x

Unobfuscatable Programs

THEOREM [BAD NEWS, BGIRSVY’01]:
∀𝒪	∃P such that 𝒪 completely fails to obfuscate P.

Proof: “Programs that eat themselves”

Define a family of programs {𝑃!,#} where x and y are n-bit
strings, as follows:

𝑃!,#(𝑏, Π) =

y

x, y

0 otherwise

if b=1 and Π(0,x) = y

if b=0 and Π = x

Define a family of programs {𝑃!,#} where x and y are n-bit
strings, as follows:

𝑃!,#(𝑏, Π) =

y

x, y

0 otherwise

if b=1 and Π(0,x) = y

if b=0 and Π = x

1. Black-box access to P is useless:

For random x and y, cannot distinguish between black-box
to 𝑃!,# versus black-box access to the all-zero function.

2. Can recover source from obfuscated code:
Given 𝑃$ = 𝒪(𝑃!,#), simply run 𝑃$(1, 𝑃$).

Defining Program Obfuscation (Take 2)
Virtual Black-Box (VBB) obfuscation
[Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang’01]

“𝒪(P) betrays no more info than black-box access to P”.

BAD NEWS: There are “unobfuscatable” programs!
[BGIRSVY’01, Goldwasser-Kalai’05]

“Indistinguishability obfuscation”: Much weaker.

GOOD NEWS #1: No impossibility results and even
candidate constructions.

GOOD NEWS #2:
IO + Basic Crypto + Hard Work = Nearly All Applications.

[BGIRSVY’01, Goldwasser-Rothblum’05]

[Garg-Gentry-Halevi-Raykova-Sahai-Waters’13]

[Sahai-Waters’14 and many followups]

Defining Program Obfuscation (Take 2)
Indistinguishability Obfuscation (IO) for Circuits:
[Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang’01]

It is Secure:
For any two functionally equivalent circuits C1 and C2 of
the same size, 𝒪(C1) is computationally indistinguishable
from 𝒪(C2).

A probabilistic poly-time algorithm 𝒪 is an
indistinguishability obfuscator if:

It is Correct:
For any circuit C, 𝒪(C) is functionally the same as C.

An Example

𝐶% 𝑥, 𝑦 :

OUTPUT	(𝑥 + 𝑦)(𝑥 − 𝑦)	

𝐶& 𝑥, 𝑦 :

OUTPUT	 𝑥& − 𝑦&	

𝐶% 𝑥, 𝑦 :

OUTPUT	(𝑥 + 𝑦)(𝑥 − 𝑦)	

𝐶& 𝑥, 𝑦 :

OUTPUT	 𝑥& − 𝑦&	
≈#

≡

Indistinguishability obfuscation

Indistinguishability Obfuscation:
Reveals the truth table, hides the implementation.

Slide Courtesy: Omer Paneth

IO exists if P = NP

Computationally inefficient IO exists.

Given a circuit C, output the lexicographically smallest
equivalent circuit C’.

If P=NP, this strategy can be implemented efficiently.

(Even better, this is a perfect IO.)

Corollary:
IO does not imply any crypto (even one-way functions).

Suppose IO ⟹ OWF.
Then, P = NP ⟹	∃OWF, a contradiction.

[BGIRSVY’01]

IO is a “Best Possible” Obfuscation
[Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang’01, Goldwasser-Rothblum’17]

𝐂𝐢𝐫𝐜𝐮𝐢𝐭	𝐂

≈
(comp.

indistinguishable)

Best Possible Obf

(ca. 2100)

𝐂𝐢𝐫𝐜𝐮𝐢𝐭	𝐂

Pad(C)

(as secure as)

IO(Pad(C)) IO(BPO(C))

More Theorems on IO

If Perfect (even Statistical) IO exists, then PH collapses.
[Goldwasser-Rothblum’07]

IO is equivalent to VBB with an unbounded simulator.

“Mildly compressing” IO + “standard crypto” implies IO.
[Ananth-Jain’15, Bitansky-V.’15, Lin-Pass-Seth-Telang’16]

XIO is IO with two relaxations:

1. Obfuscator can run in poly(2') time.

2. Obfuscated circuit has size 2(%)*)' for some 𝜀 > 0.

IO + “basic
hardness”

Functional
Encryption

Compact Token-based
Obfuscation

One-way
Functions

Public-key
Encryption

Deniable
Encryption

PPAD Hardness

Correlation-
intractable fns

Non-interactive
Key Exchange

Time-lock Puzzles*

Software
Watermarking

Constrained PRFs

Two-round MPC

“Pure” FHE*

NIWI
Traitor Tracing

Succinct RE

“CRYPTO-COMPLETE”:
IO + Basic Hardness + Hard Work ⟹	Nearly all crypto.

TUTORIAL OUTLINE

Part 1. DEFINITIONS Part 2. APPLICATIONS

Part 3. CONSTRUCTIONS
of IO from simpler objects

Theorem: If 3-linear maps
exist, so does IO.

a. Virtual Black-Box OBF

of program obfuscation

b. Indistinguishability OBF (IO)

of IO

a. Crypto Applications
b. A Complexity Application
c. Bootstrapping Theorems

Part 4. DE-IO-IZATION

Remove the need for IO in
applications.

e.g., Traitor Tracing (on Wed)

Application 1: One-way Functions

THEOREM [Komargodski-Moran-Naor-Pass-Rosen-Yogev’14]

If IO exists and 𝑁𝑃 ⊈ 𝑖. 𝑜-𝑐𝑜𝑅𝑃, one-way functions exist.

G(r) = 𝒪(Z; r) where Z is the Zero circuit
One-way Function CONSTRUCTION:

(Z(x) = 0 for all x)

Suppose there is an inverter Inv.

If F is SAT, then Inv cannot “invert” 𝒪(F; r).

If F is UNSAT, then Inv “inverts” 𝒪(F; r).

// since the sets {𝒪(F; r)}, and {𝒪(Z; r)}, are disjoint.
Satisfiability Algorithm, on input a formula F:
If Inv inverts 𝒪(F; r), output UNSAT else output SAT.

// Outputs r’ such that 𝒪(Z; r’) = 𝒪(F; r)

Application 2: Public-key Encryption

THEOREM [Garg-Gentry-Sahai-Waters’13, Sahai-Waters’14]

If IO and OWF exist, so does public-key encryption.

Let G: {0,1}' → {0,1}&' be a cryptographic PRG.
Public-key Encryption CONSTRUCTION:

Secret key = s ←- {0,1}' and Public key = G(s)

Enc(PK, m) ←- 𝒪(𝐶./,0) where

𝐶./,0 𝑥 =
𝑚 if 𝐺 𝑥 = 𝑃𝐾
⊥ otherwise

Secret key = s ←- {0,1}' and Public key = G(s)

Enc(PK, m) ←- 𝒪(𝐶./,0) where

𝐶./,0 𝑥 =
𝑚 if 𝐺 𝑥 = 𝑃𝐾
⊥ otherwise

EXPT 0: Adv gets 𝑃𝐾 and ciphertext	𝒪(𝐶./,0).

EXPT 1: Adv gets #𝑃𝐾 and ciphertext	𝒪(𝐶1./,0)
where #𝑃𝐾 is uniformly random.

≈𝑷𝑹𝑮

(note: w.h.p. #𝑃𝐾 lives outside the image of G)
≈𝑰𝑶

EXPT 2: Adv gets #𝑃𝐾 and ciphertext	𝒪(𝑍)
where the circuit 𝑍 always outputs ⊥.

THEOREM [Komargodski-Moran-Naor-Pass-Rosen-Yogev’14]

If IO exists and 𝑁𝑃 ⊈ 𝑖. 𝑜-𝑐𝑜𝑅𝑃, one-way functions exist.

THEOREM [Garg-Gentry-Sahai-Waters’13, Sahai-Waters’14]

If IO and OWF exist, so does public-key encryption.

COMMON THEME:
IO “lifts” hardness into useful hardness.

Application 3: PPAD-Hardness

FP

TFNP

NASH

PPAD

PPAD [Papadimitriou’94]: Totality is proved via
“a parity argument in directed graphs”

NASH is complete for PPAD [DGP’05, CD’05].

Slides Courtesy: Omer Paneth

Application 3: PPAD-Hardness

FP

TFNP

NASH

PPAD

END-of-LINE

Canonical complete problem: END-of-LINE [Pap’94]

The END-of-LINE Problem

Input: A graph with in/out degree ≤ 1

 A source:

Output: Another source/sink:

The END-of-LINE Problem

… …

0! 𝑣 𝑆(𝑣)𝑃(𝑣)

Exponential size graph:

Nodes are in 0,1 '

Edges defined by programs 𝑆, 𝑃: 0,1 ' → 0,1 '

FNP

FP

3SAT

PPAD

NASH

EOL
FACTORING
DLOG
LWE

?
Crypto:

PPAD not NP-hard unless NP	= coNP
[Megido-Papadimitriou 89]

THEOREM [Bitansky-Paneth-Rosen’15]

If IO and OWF exist, END-of-LINE is (average-case) hard.
(Previously Abbott-Kane-Valiant’05 from Super-VBB)

Constructing the Hard EOL Instance

Slide Courtesy: Omer Paneth

Using a pseudorandom function 𝑓", construct a graph

… …

(1, 𝜎&) (𝑖, 𝜎')(𝑖 − 1, 𝜎'(&) (𝑖 + 1, 𝜎')&) (𝑁, 𝜎*)

where 𝜎# = 𝑓"(𝑖).

… …

(1, 𝜎&) (𝑖, 𝜎')(𝑖 − 1, 𝜎'(&) (𝑖 + 1, 𝜎')&) (𝑁, 𝜎*)

𝑺𝒌 𝒊, 𝝈 :
if i, 𝜎 = (𝑁, 𝜎3):
 return"𝑠𝑖𝑛𝑘“
If i, 𝜎 = (𝑖, 𝜎4):
 return 𝑖 + 1, 𝜎45%
else:
 return (𝑖, 𝜎)

𝑷𝒌 𝒊, 𝝈 :
if i, 𝜎 = (1, 𝜎%):
 return"𝑠𝑜𝑢𝑟𝑐𝑒“
If i, 𝜎 = (𝑖, 𝜎4):
 return 𝑖 − 1, 𝜎4)%
else:
 return (𝑖, 𝜎)

… …

𝑆: 𝑃:

Slide Courtesy: Omer Paneth

Need	To	Prove

… …

(1, 𝜎&) (𝑖, 𝜎')(𝑖 − 1, 𝜎'(&) (𝑖 + 1, 𝜎')&) (𝑁, 𝜎*)

𝑆" 𝑃" 𝜎!

… …

(𝑁, 𝜎*)

𝑆" 𝜎!𝑆"$

(𝑁, 𝜎*)

≈#

…

(1, 𝜎&) (𝑖, 𝜎')(𝑖 − 1, 𝜎'(&) (𝑖 + 1, 𝜎')&)

…

… …

(𝑁, 𝜎*)

(𝑁, 𝜎*)

…

(1, 𝜎&) (𝑖, 𝜎')(𝑖 − 1, 𝜎'(&) (𝑖 + 1, 𝜎')&)

𝑆"/𝑆"$

…

… …

(𝑁, 𝜎*)

𝑆"𝑆"$

(𝑁, 𝜎*)

…

(1, 𝜎&) (𝑖, 𝜎')(𝑖 − 1, 𝜎'(&) (𝑖 + 1, 𝜎')&)

…

≡

… …

(𝑁, 𝜎*)

…

(1, 𝜎&)

… …

… …

… …

…

Step 1: remove a random edge

Step 2: modify a node with in-degree 0

Step 2

Step 2 ×𝑶(𝑵)

…

A	Useful	Lemma

𝑩𝒓,𝒛 𝒙 :
if 𝑥 = 𝑟: return	𝑧
else: return 𝐴(𝑥)

𝑨

𝑥

𝐴(𝑥)

𝑥

𝐵,,8(𝑥)

𝑟

𝑧

A	Useful	Lemma

𝑩𝒓,𝒛 𝒙 :
if 𝑥 = 𝑟: return	𝑧
else: return 𝐴(𝑥)

𝑨

𝑩𝒓,𝒛 𝒙 :
if 𝑥 = 𝑟: return	𝑧
else: return 𝐴(𝑥)

𝑨
≈!

For a random 𝑟 and for all 𝑧:

Proof	of	Lemma	(using	ideas	from	[Sahai-Waters14])

𝑩𝒓,𝒛 𝒙 :
if 𝑥 = 𝑟: return	𝑧
else: return 𝐴(𝑥)

Also using an Injective,

length doubling PRG:

𝑔: 0,1 ' → 0,1 &'	

𝑩𝒔:𝒈(𝒓),𝒛∗ 𝒙 :

if 𝑔(𝑥) = 𝑠: return	𝑧
else: return 𝐴(𝑥)

≈!

𝑨

using IO

Proof	of	Lemma

𝑩𝒓,𝒛 𝒙 :
if 𝑥 = 𝑟: return	𝑧
else: return 𝐴(𝑥)

𝑩𝒔:𝒈(𝒓),𝒛∗ 𝒙 :

if 𝑔(𝑥) = 𝑠: return	𝑧
else: return 𝐴(𝑥)

≈!

𝑨

using IO

𝑩𝒔←𝑼,𝒛∗ 𝒙 :
if 𝑔(𝑥) = 𝑠: return	𝑧
else: return 𝐴(𝑥)

≈!

using 𝑔≈!using IO

Step	1	- Proof

𝑺𝒌,𝒓$ 𝒊, 𝝈 :
if 𝑖 = 𝑟: return ⊥
else: return 𝑺𝒌(𝒊, 𝝈)

𝑺𝒌(𝒊, 𝝈)

… …

(𝑁, 𝜎*)(1, 𝜎&)

… …
Step 1: remove a random edge

(𝑟, 𝜎+)

≈!

Step	2	- Proof

… …

(𝑁, 𝜎*)(1, 𝜎&)

… …
Step 2: modify a node with in-degree 0

(𝑖, 𝜎')

pseudorandom

Interlude: Pseudorandom Functions (PRFs)

Family of poly-time computable functions 𝐹/ such that
no poly-time oracle alg. can distinguish between oracle
access to 𝐹/ vs. oracle access to a truly random function.

Theorem [Goldreich-Goldwasser-Micali’84 + Hastad-Impagliazzo-Levin-Luby’89]

If one-way functions exist, so do PRFs.

Useful Tool: Punctured PRFs

Can create a “punctured key” 𝐾{𝑥}	which
− Allows anyone to compute 𝐹/(𝑦) for 𝑦 ≠ 𝑥,	but
− Hides 𝐹/(𝑥)

Punctured PRFs are “mildly obfuscatable” already.

THEOREM [Boyle-Goldwasser-Ivan’13,Boneh-Waters’13,Kiayias-Papadopoulos-
Triandopoulos-Zacharias’13]

If one-way functions exist, so do punctured PRFs.

An Observation:

Step	2	- Proof

… …

(𝑁, 𝜎*)(1, 𝜎&)

… …

By IO and puncturing

(𝑖, 𝜎')

(𝑖, 𝑟)

… …

By Lemma
(𝑖, 𝑟)

Independent of 𝑟 (𝑖,∗)

… …
(𝑁, 𝜎*)

𝑆" 𝜎!𝑆"$

(𝑁, 𝜎*)

≈#

…

(1, 𝜎&) (𝑖, 𝜎')(𝑖 − 1, 𝜎'(&) (𝑖 + 1, 𝜎')&)

…

𝑃"

With More Work:

FNP

FP

3SAT

PPAD

NASH

EOL
FACTORING
DLOG
LWE

?
Crypto:

PPAD not NP-hard unless NP	= coNP
[Megido-Papadimitriou 89]

Slide Courtesy: Omer Paneth

THEOREM [Bitansky-Paneth-Rosen’15]

If IO and OWF exist, END-of-LINE is (average-case) hard.
(Previously Abbott-Kane-Valiant’05 from Super-VBB)

TUTORIAL OUTLINE

Part 1. DEFINITIONS Part 2. APPLICATIONS

Part 3. CONSTRUCTIONS
of IO from simpler objects

Theorem: If 3-linear maps
exist, so does IO.

a. Virtual Black-Box OBF

of program obfuscation

b. Indistinguishability OBF (IO)

of IO

a. Crypto Applications
b. A Complexity Application
c. Bootstrapping Theorems

Part 4. DE-IO-IZATION

Remove the need for IO in
applications.

e.g., Traitor Tracing (on Wed)

IO Bootstrapping Theorems

1. From Simple Circuits to All Circuits.
 IO for a circuit class 𝐶 implies IO for P assuming either:

− Fully homomorphic encryption with decryption in 𝐶

OR

− Sub-exponentially secure PRFs computable in 𝐶

[Garg-Gentry-Halevi-Raykova-Sahai-Waters’13]

[Applebaum’15, Canetti-Lin-Tessaro-V.’15]

2. From Circuits to Turing Machines and RAM Machines.
 IO for circuits implies IO TMs and RAMs assuming that
 sub-exponentially secure PRGs exist.

[Canetti-Holmgren-Jain-V.’15, Bitansky-Garg-Lin-Pass-Telang’15,
Koppula-Lewko-Waters’15, Canetti-Holmgren’16]

From Simple Circuits to All Circuits

THEOREM [Canetti-Lin-Tessaro-V.’15]

If (subexp. secure) IO for NC1 exists and PRFs computable
in NC1 exist, so does IO for P.

KEY TOOL: RANDOMIZED ENCODINGS [Ishai-Kushilevitz’98, Yao’86]

A randomized encoding RE is a probabilistic algorithm:

− takes a pair (𝑪, 𝒙) and outputs a pair p𝑪, q𝒙 .

− RE can be computed in parallel (same depth as a PRF).

− Given p𝑪 and q𝒙, one can compute C(x).

− Given C(x), can simulate the distribution of p𝑪, q𝒙 .

From Simple Circuits to All Circuits

THEOREM [Canetti-Lin-Tessaro-V.’15]

If (subexp. secure) IO for NC1 exists and PRFs computable
in NC1 exist, so does IO for P.

CONSTRUCTION IDEA:
“Don’t compute C(x). Compute RE(C,x).”

𝒪(C) = 𝑷𝑪,𝑲 𝒙
 Generate randomness 𝑟 = 𝐹/(𝑥)
 Output RE(𝐶, 𝑥; 𝑟).

Observe: P is a “low-depth” circuit if 𝐹/ is “low-depth”.

TUTORIAL OUTLINE

Part 1. DEFINITIONS Part 2. APPLICATIONS

Part 3. CONSTRUCTIONS
of IO from simpler objects

Theorem: If 3-linear maps
exist, so does IO.

a. Virtual Black-Box OBF

of program obfuscation

b. Indistinguishability OBF (IO)

of IO

a. Crypto Applications
b. A Complexity Application
c. Bootstrapping Theorems

Part 4. DE-IO-IZATION

Remove the need for IO in
applications.

e.g., Traitor Tracing (on Wed)

Crypto and New Sources of Hardness

Discrete Logarithms.
ℤA∗

Diffie-Hellman

Elliptic Curves and
Bilinear Maps. [Joux, Boneh-Franklin]

Integer Lattices.

Hardness of Factoring.

PUBLIC KEY ENCRYPTION

IDENTITY-BASED ENCRYPTION

FULLY HOMOMORPHIC ENCRYPTION

[Gentry, Brakerski-V]

INDISTINGUISHABILITY OBFUSCATION ?

Constructing Program Obfuscators

Break,

OBFUSCATION

[Garg-Gentry
-Halevi-

Raykova-Sahai-W
aters’1

3]

Fix, Break, F
ix, …

UPSHOT: We now have candidate constructions secure
against all known attacks + generalizations, but no
absolute proofs of security.

Constructing Program Obfuscators

OBFUSCATION

TOKEN-BASED OBF.
[Goldwasser-Kalai-Popa-V-Zeldovich’13]

THEOREM [BITANSKY-

V’15, ANANTH-JAIN’15]

THEOREM 1:

If token-based obfuscation exists,

so does indistinguishability obf.

Constructing Program Obfuscators

TOKEN-BASED OBF.

“2-LINEAR
MAPS”

?

1, 2- and 3-Linear Maps

1-Linear Map: Need Group G where

𝑔! v 𝑔# = 𝑔!5# 𝑔! , 𝑔#
BC,D

𝑔!#BUT

ℤA∗

Diffie-Hellman

2-Linear Map: Need Groups G, G’ where

𝑔! ∘ 𝑔# = 𝑔!# 𝑔! , 𝑔# , 𝑔8
BC,D

𝑔!#8BUT
[Joux, Boneh-Franklin]

3-Linear Map: Need Groups G, G’ where

𝑔! ∘ 𝑔# ∘ 𝑔8 = 𝑔!#8 𝑔! , 𝑔# , 𝑔8 , 𝑔E
BC,D

𝑔!#8EBUT
See [Huang’18] for a candidate

Constructing Program Obfuscators

TOKEN-BASED OBF.

“2-LINEAR
MAPS”

“3-LINEAR
MAPS”

THEOREM 2 [Lin-V’16, Lin’17, Ananth-Sahai’17, Lin-Tessaro’17]

If 3-linear maps exist*, so does token-based obf.,

and therefore, indistinguishability obf.

CONSTRUCTION OUTLINE

Token-based Obfuscation for NC0

Token-based Obfuscation for P

[Bitansky-V15, Ananth-Jain’15,
Ananth-Jain-Sahai’16, Lin-Pass-Seth-Telang’16]

3-Linear Maps

[Lin16, Lin-V16, Lin17, Ananth-Sahai’17,
Lin-Tessaro’17]

+ "Local PRG"

IO for P

[Lin16, Lin-V16, Lin17, Ananth-Sahai’17,
Lin-Tessaro’17]

Obfuscation Token-Based Obfuscation

P

x

P(x)

Given 𝒪(P), can compute
P(x) for any x.

(TBO)

P

P(x)

P x

TB𝒪(P) is useless by itself.
Given TB𝒪(P) and Tok(x),
can compute P(x).

y

P(y)

From Token-Based to Obfuscation

C 000 001 010 110 111…

KEY IDEA: Self-Replicating Programs (Tokens)

00 01 10 11

0 1

ε

ON INPUT x:

Return
Tok(SK,x0), Tok(SK,x1);

Careful: (Token) SIZE Matters!

[Bitansky-V 15, Ananth-Jain 15]

From Token-Based to Obfuscation
KEY IDEA: Self-Replicating Programs (Tokens)
Careful: Token SIZE Matters!

[Goldwasser-Kalai-Popa-V-Zeldovich’13] uses standard
crypto assumptions (Learning with Errors). However, their
token size doubles every level of the tree!

CONSTRUCTION OUTLINE

Token-based Obfuscation for NC0

Token-based Obfuscation for P

[Bitansky-V15, Ananth-Jain’15,
Ananth-Jain-Sahai’16, Lin-Pass-Seth-Telang’16]

3-Linear Maps

[Lin16, Lin-V16, Lin17, Ananth-Sahai’17,
Lin-Tessaro’17]

+ Local PRG

IO for P

[Lin16, Lin-V16, Lin17, Ananth-Sahai’17,
Lin-Tessaro’17]

Specified by:
a) a sequence of m L-tuples H1,…,Hm and
b) a predicate P: {0,1}L → {0,1}.

Input: n bits

Output: m bits

n: input length (in bits)
m: output length (in bits)
L: locality

the PRG

Local Pseudorandom Generators
[Goldreich’00]

Token-based Obf: From NC0 to P

“Proof”: Similar to bootstrapping obfuscation

Use Randomized encodings for P.
 [Applebaum-Ishai-Kushilevitz’00, Yao’86]
No need for a PRF. Instead, use a local PRG

Benefit: Can start from TBO for NC0 (instead of NC1).

Lemma: If there exists a TBO for degree-L functions and there exists
a locality-L PRG, then TBO for P (and thus, IO) exists.

CONSTRUCTION OUTLINE

Token-based Obfuscation for NC0

Token-based Obfuscation for P

[Bitansky-V15, Ananth-Jain’15,
Ananth-Jain-Sahai’16, Lin-Pass-Seth-Telang’16]

3-Linear Maps

[Lin16, Lin-V16, Lin17, Ananth-Sahai’17,
Lin-Tessaro’17]

+ Local PRG

IO for P

[Lin16, Lin-V16, Lin17, Ananth-Sahai’17,
Lin-Tessaro’17]

Token-Based Obfuscation for NC0:
A Caricature

Lemma: For any constant L, there exists a TBO for degree-L
functions (in particular, NC0) assuming L-linear maps exist.

Sketch:

Obfuscation of x = (𝑥&, … , 𝑥,) is (𝑔-! ,…, 𝑔-")

Given secret key, want to compute degree-L functions “in the
exponent”.

Prior works show that O(L)-linear maps are sufficient.

Lin-Tessaro show that L-linear maps are sufficient.

(L,q)-Blockwise Local PRGs
[Lin-Tessaro’17]

Specified by:

a) a sequence of m L-tuples H1,…,Hm and
b) a predicate P: [q]L → {0,1}.

Input: n “blocks”

Output: m bits

n: input length (in blocks)
m: output length (in bits)
L: locality
q: alphabet size

the PRG

**(We could additionally have different predicates Pi for each output bit. We focus
on the single predicate case in this talk.)

Generalizing: The Lin-Tessaro Theorem
Theorem (informal): There exists an IO scheme, assuming:

a) L-linear maps (with the SXDH assumption); and

b) Blockwise-Locality L PRGs with polynomial stretch (and subexponential security)

[Lin and Tessaro, CRYPTO 2017]

Case L = 3: There exists an IO scheme, assuming:

a) 3-linear maps; and

with sub-exponential security.

b) “Blockwise 3-local” PRGs expanding blocks to bits

Generalizing: The Lin-Tessaro Theorem
Theorem (informal): There exists an IO scheme, assuming:

a) L-linear maps (with the SXDH assumption); and

b) Blockwise-Locality L PRGs with polynomial stretch (and subexponential security)

[Lin and Tessaro, CRYPTO 2017]?
Case L = 2: There exists an IO scheme, assuming:

a) Bilinear maps; and

with sub-exponential security.

b) “(2,q)-blockwise local” PRGs expanding blocks to bits

Polynomial Time Attacks on Blockwise 2-local PRGs
[Lombardi-V’17, Barak-Brakerski-Komargodski-Kothari’17]

Therefore, the [LT17] construction gets stuck at 3-
linear maps.

Case L = 2: There exists an IO scheme, assuming:

a) Bilinear maps with the SXDH assumption; and

with sub-exponential security.

b) “(2,q)-blockwise local” PRGs expanding blocks to bits

TUTORIAL OUTLINE

Part 1. DEFINITIONS Part 2. APPLICATIONS

Part 3. CONSTRUCTIONS
of IO from simpler objects

Theorem: If 3-linear maps
exist, so does IO.

a. Virtual Black-Box OBF

of program obfuscation

b. Indistinguishability OBF (IO)

of IO

a. Crypto Applications
b. A Complexity Application
c. Bootstrapping Theorems

Part 4. DE-IO-IZATION

Remove the need for IO in
applications.

e.g., Traitor Tracing (on Wed)

DE-IO-IZATION:

IO

Functional
Encryption

Compact Token-based
Obfuscation

One-way
Functions

Under Standard Crypto

Assumptions alone:

Public-key
Encryption

Deniable
Encryption

PPAD Hardness

Correlation-
intractable fns

Non-interactive
Key Exchange

Time-lock Puzzles

Software
Watermarking

Constrained PRFs

Two-round MPC

“Pure” FHE

NIWI
Traitor Tracing

Succinct RE

Remove the need for IO

“IO-Inspired” Results

IO-based Constructions teach us new techniques.
(quite often, non-black-box techniques)

■ (Anonymous) ID-based Encryption from 1-linear maps.

(Previously, required 2-linear maps.)
[Garg-Dottling’17, ‘18, Brakerski-Lombardi-Segev-V.’18]

■ 2-round Multiparty Computation from OT.
(Previously, required IO or learning with errors.)
[Garg-Srinivasan‘18, Benhamouda-Lin’18]

SUMMARY

Part 1. DEFINITIONS Part 2. APPLICATIONS

Part 3. CONSTRUCTIONS
of IO from simpler objects

Theorem: If 3-linear maps
exist, so does IO.

a. Virtual Black-Box OBF

of program obfuscation

b. Indistinguishability OBF (IO)

of IO

a. Crypto Applications
b. A Complexity Application
c. Bootstrapping Theorems

Part 4. DE-IO-IZATION

Remove the need for IO in
applications.

e.g., Traitor Tracing (on Wed)

PROGRAM
OBFUSCATION

The Quest Continues…

Thank you!

INDISTINGUISHABILITY
OBFUSCATION

MANY OTHER RESULTS:
Obfuscating simple programs
Obfuscation with the aid of secure hardware
Achieving applications without obfuscation

Functional Encryption

Given encryption of string x

[Sahai-Waters’05, Boneh-Sahai-Waters’12]

and secret key for function f

Thou shalt be able to compute f(x),

but nothing else.

P.S.: the size of Enc(x) should be 𝑂F(|x|).

From NC0 to NC1 (Lemma 2)

“Proof”:

Use AIK Randomized encodings for NC1.
 [Applebaum-Ishai-Kushilevitz’04]
AIK Principle: Instead of computing a complex function 𝐹(𝑥),
compute a simpler randomized function 8𝐹 𝑥, 𝑟 . (8𝐹 is in NC0).

Problem: |𝑟| proportional to the circuit size of 𝐹	and ≫ |𝑥|.

Solution: use local PRG to generate 𝑟.

Lemma 2: If there exists a functional encryption for degree-L
functions and there exists a locality-L PRG, then functional
encryption for NC1 (and thus, IO) exists.

[Lin, CRYPTO 2017]

Theorem: There exists an IO scheme, assuming:

a) L-linear maps with the SXDH assumption
b) Locality L PRGs with any polynomial stretch (and subexponential security)

c) Subexponentially secure Learning with Errors (ignored from now on)

Connection between Local PRGs and IO
[Lin’16, Lin-V’16, Lin’17, Ananth-Sahai’17]

?

Lemma 1: For any constant L, there exists a functional encryption
for degree-L functions (in particular, NC0) assuming L-linear maps
exist.

Connection between Local PRGs and IO
[Lin’16, Lin-V’16, Lin’17, Ananth-Sahai’17]

Lin’s Theorem = Lemma 1 + Lemma 2

Lemma 2: If there exists a functional encryption for degree-L
functions and there exists a locality-L PRG, then functional
encryption for NC1 (and thus, IO) exists.

