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Obfuscation 
n. the action of making something obscure, unclear, or unintelligible.

Program Obfuscation 
n. the action of making a program unintelligible, while preserving 
     its input/output behavior.



Program 1 Program 2

Courtesy: IOCCC/Omer P. 

Answer: Run me!



Program Obfuscation

PROGRAMS w/ SECRETS: 

Cryptographic keys
Licensing Info

The Algorithm Itself

def DecryptEmail(EncryptedMsg):
  SecretKey = “786fe0974effa30621”
  m = Decrypt(EncryptedMsg, SecretKey)
  if m.find(“STOC”) return m
  return “Sorry, this e-mail is private” 

Example: E-mail delegation

Backdoors

138805012AA98B7920FC103850
89012408A292E00FF001659009
01659AA1606B692650F3893EE3
9030957BE927A6789C10846DD
10AA92DEADBEEF09179578134



Program Obfuscation in Crypto

“CRYPTO-COMPLETE”:
Nearly all crypto is an easy corollary of program obfuscation. 

Public Key Encryption (from Secret Key Encryption)
[Diffie-Hellman’76]

Secret-key Encryption

Enc(SK,●)

Dec(SK,●)

Public-key Encryption

Dec(SK,●)

Public Encryption Algorithm?

Public Encryption Algorithm = 

Enc(SK,●)



Program Obfuscation in Crypto

“CRYPTO-COMPLETE”:
Nearly all crypto is an easy corollary of program obfuscation. 

Fully Homomorphic Encryption
[Rivest-Adleman-Dertouzos’78, Gentry’09, Brakerski-V’11]

On Input ciphertexts c1,c2 and OP:
m1 = Dec(SK,c1); m2 = Dec(SK,c2);
m3 = m1 OP m2;
Return Enc(SK,m3);



“Program 
Obfuscation”

Functional 
Encryption

Compact Token-based
Obfuscation

One-way 
Functions

Public-key
Encryption

Deniable 
Encryption

PPAD Hardness

Correlation-
intractable fns

Non-interactive
Key Exchange

Time-lock Puzzles

Software 
Watermarking

Constrained PRFs

Two-round MPC

“Pure” FHE

NIWI
Traitor Tracing

Succinct RE

“CRYPTO-COMPLETE”:
Nearly all crypto is an easy corollary of program obfuscation. 



TUTORIAL OUTLINE

Part 1. DEFINITIONS Part 2. APPLICATIONS

Part 3. CONSTRUCTIONS
of IO from simpler objects

Theorem: If 3-linear maps 
exist and local PRGs exist, 
so does IO.

a. Virtual Black-Box OBF

of program obfuscation

b. Indistinguishability OBF (IO)

of IO

a. Crypto Applications
b. A Complexity Application
c. Bootstrapping Theorems

Part 4. DE-IO-IZATION

Remove the need for IO in 
applications. 

e.g., Traitor Tracing (on Wed)



Defining Program Obfuscation (Take 1)
Virtual Black-Box (VBB) obfuscation 
[Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang’01] 

“𝒪(P) reveals no more info than black-box access to P”. 

∃ Black-box Learner∀ Deobfuscator

P

DeObfuscator

P
x

P(x)
Learner

BAD NEWS: There are “unobfuscatable” programs!

≈

[Barak-GIRSVY’01, Goldwasser-Kalai’05]



Unobfuscatable Programs

THEOREM [BAD NEWS, BGIRSVY’01]: 
∀𝒪	∃P such that 𝒪 completely fails to obfuscate P.

Proof: “Programs that eat themselves”

Define a family of programs {𝑃!,#} where x and y are n-bit 
strings, as follows:

𝑃!,#(𝑏, Π) = 

y

x, y

0 otherwise

if b=1 and Π(0,x) = y 

if b=0 and Π = x 



Unobfuscatable Programs

THEOREM [BAD NEWS, BGIRSVY’01]: 
∀𝒪	∃P such that 𝒪 completely fails to obfuscate P.

Proof: “Programs that eat themselves”

Define a family of programs {𝑃!,#} where x and y are n-bit 
strings, as follows:

𝑃!,#(𝑏, Π) = 

y

x, y

0 otherwise

if b=1 and Π(0,x) = y 

if b=0 and Π = x 



Define a family of programs {𝑃!,#} where x and y are n-bit 
strings, as follows:

𝑃!,#(𝑏, Π) = 

y

x, y

0 otherwise

if b=1 and Π(0,x) = y 

if b=0 and Π = x 

1. Black-box access to P is useless:

For random x and y, cannot distinguish between black-box 
to 𝑃!,#  versus black-box access to the all-zero function.

2. Can recover source from obfuscated code:
Given 𝑃$ = 𝒪(𝑃!,#), simply run 𝑃$(1, 𝑃$). 



Defining Program Obfuscation (Take 2)
Virtual Black-Box (VBB) obfuscation 
[Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang’01] 

“𝒪(P) betrays no more info than black-box access to P”. 

BAD NEWS: There are “unobfuscatable” programs!
[BGIRSVY’01, Goldwasser-Kalai’05]

“Indistinguishability obfuscation”: Much weaker. 

GOOD NEWS #1: No impossibility results and even 
candidate constructions.

GOOD NEWS #2: 
IO + Basic Crypto + Hard Work = Nearly All Applications.

[BGIRSVY’01, Goldwasser-Rothblum’05]

[Garg-Gentry-Halevi-Raykova-Sahai-Waters’13]

[Sahai-Waters’14 and many followups]



Defining Program Obfuscation (Take 2)
Indistinguishability Obfuscation (IO) for Circuits: 
[Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang’01] 

It is Secure: 
For any two functionally equivalent circuits C1 and C2 of 
the same size, 𝒪(C1) is computationally indistinguishable 
from 𝒪(C2). 

A probabilistic poly-time algorithm 𝒪 is an 
indistinguishability obfuscator if: 

It is Correct: 
For any circuit C, 𝒪(C) is functionally the same as C.



An Example

𝐶% 𝑥, 𝑦 :

OUTPUT	(𝑥 + 𝑦)(𝑥 − 𝑦)	

𝐶& 𝑥, 𝑦 :

OUTPUT	 𝑥& − 𝑦&	

𝐶% 𝑥, 𝑦 :

OUTPUT	(𝑥 + 𝑦)(𝑥 − 𝑦)	

𝐶& 𝑥, 𝑦 :

OUTPUT	 𝑥& − 𝑦&	
≈#

≡

Indistinguishability obfuscation

Indistinguishability Obfuscation:  
Reveals the truth table, hides the implementation.

Slide Courtesy: Omer Paneth 



IO exists if P = NP

Computationally inefficient IO exists. 

Given a circuit C, output the lexicographically smallest 
equivalent circuit C’.

If P=NP, this strategy can be implemented efficiently.

(Even better, this is a perfect IO.)

Corollary: 
IO does not imply any crypto (even one-way functions).

Suppose IO ⟹ OWF. 
Then, P = NP ⟹	∃OWF, a contradiction. 

[BGIRSVY’01]



IO is a “Best Possible” Obfuscation
[Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang’01, Goldwasser-Rothblum’17] 

𝐂𝐢𝐫𝐜𝐮𝐢𝐭	𝐂

≈
(comp. 

indistinguishable)

Best Possible Obf 

(ca. 2100)

𝐂𝐢𝐫𝐜𝐮𝐢𝐭	𝐂

Pad(C)

(as secure as)

IO(Pad(C)) IO(BPO(C))



More Theorems on IO

If Perfect (even Statistical) IO exists, then PH collapses.
[Goldwasser-Rothblum’07]

IO is equivalent to VBB with an unbounded simulator.

“Mildly compressing” IO + “standard crypto” implies IO.
[Ananth-Jain’15, Bitansky-V.’15, Lin-Pass-Seth-Telang’16]

XIO is IO with two relaxations:

1. Obfuscator can run in poly(2') time.

2. Obfuscated circuit has size 2(%)*)' for some 𝜀 > 0.



IO + “basic 
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“CRYPTO-COMPLETE”:
IO + Basic Hardness + Hard Work ⟹	Nearly all crypto. 



TUTORIAL OUTLINE

Part 1. DEFINITIONS Part 2. APPLICATIONS

Part 3. CONSTRUCTIONS
of IO from simpler objects

Theorem: If 3-linear maps 
exist, so does IO.

a. Virtual Black-Box OBF

of program obfuscation

b. Indistinguishability OBF (IO)

of IO

a. Crypto Applications
b. A Complexity Application
c. Bootstrapping Theorems

Part 4. DE-IO-IZATION

Remove the need for IO in 
applications. 

e.g., Traitor Tracing (on Wed)



Application 1: One-way Functions

THEOREM [Komargodski-Moran-Naor-Pass-Rosen-Yogev’14] 

If IO exists and 𝑁𝑃 ⊈ 𝑖. 𝑜-𝑐𝑜𝑅𝑃, one-way functions exist.

G(r) = 𝒪(Z; r) where Z is the Zero circuit
One-way Function CONSTRUCTION:

(Z(x) = 0 for all x)

Suppose there is an inverter Inv. 

If F is SAT, then Inv cannot “invert” 𝒪(F; r).

If F is UNSAT, then Inv “inverts” 𝒪(F; r).

// since the sets {𝒪(F; r)}, and {𝒪(Z; r)},  are disjoint.  
Satisfiability Algorithm, on input a formula F: 
If Inv inverts 𝒪(F; r), output UNSAT else output SAT. 

// Outputs r’ such that 𝒪(Z; r’) = 𝒪(F; r) 



Application 2: Public-key Encryption

THEOREM [Garg-Gentry-Sahai-Waters’13, Sahai-Waters’14]

If IO and OWF exist, so does public-key encryption.

Let G: {0,1}' → {0,1}&' be a cryptographic PRG.
Public-key Encryption CONSTRUCTION:

Secret key = s ←- {0,1}' and Public key = G(s)

Enc(PK, m) ←-  𝒪(𝐶./,0) where 

𝐶./,0 𝑥 =
𝑚   if 𝐺 𝑥 = 𝑃𝐾
⊥   otherwise



Secret key = s ←- {0,1}' and Public key = G(s)

Enc(PK, m) ←-  𝒪(𝐶./,0) where 

𝐶./,0 𝑥 =
𝑚   if 𝐺 𝑥 = 𝑃𝐾
⊥   otherwise

EXPT 0:  Adv gets 𝑃𝐾 and ciphertext	𝒪(𝐶./,0).

EXPT 1:  Adv gets #𝑃𝐾 and ciphertext	𝒪(𝐶1./,0)
where #𝑃𝐾 is uniformly random. 

≈𝑷𝑹𝑮

(note: w.h.p. #𝑃𝐾 lives outside the image of G)
≈𝑰𝑶

EXPT 2:  Adv gets #𝑃𝐾 and ciphertext	𝒪(𝑍)
where the circuit 𝑍 always outputs ⊥. 



THEOREM [Komargodski-Moran-Naor-Pass-Rosen-Yogev’14] 

If IO exists and 𝑁𝑃 ⊈ 𝑖. 𝑜-𝑐𝑜𝑅𝑃, one-way functions exist.

THEOREM [Garg-Gentry-Sahai-Waters’13, Sahai-Waters’14]

If IO and OWF exist, so does public-key encryption.

COMMON THEME: 
IO “lifts” hardness into useful hardness.



Application 3: PPAD-Hardness

FP

TFNP

NASH

PPAD

PPAD [Papadimitriou’94]: Totality is proved via 
“a parity argument in directed graphs”

NASH is complete for PPAD [DGP’05, CD’05].

Slides Courtesy: Omer Paneth 



Application 3: PPAD-Hardness

FP

TFNP

NASH

PPAD

END-of-LINE

Canonical complete problem: END-of-LINE [Pap’94]



The END-of-LINE Problem

Input: A graph with in/out degree ≤ 1

    A source: 

Output: Another source/sink: 



The END-of-LINE Problem

… …

0! 𝑣 𝑆(𝑣)𝑃(𝑣)

Exponential size graph:

Nodes are in 0,1 '

Edges defined by programs  𝑆, 𝑃: 0,1 ' → 0,1 '



FNP

FP

3SAT

PPAD

NASH

EOL
FACTORING
DLOG
LWE

?
Crypto:

PPAD not NP-hard unless NP	= coNP 
[Megido-Papadimitriou 89]

THEOREM [Bitansky-Paneth-Rosen’15] 

If IO and OWF exist, END-of-LINE is (average-case) hard.
(Previously Abbott-Kane-Valiant’05 from Super-VBB) 



Constructing the Hard EOL Instance

Slide Courtesy: Omer Paneth 

Using a pseudorandom function 𝑓", construct a graph

… …

(1, 𝜎&) (𝑖, 𝜎')(𝑖 − 1, 𝜎'(&) (𝑖 + 1, 𝜎')&) (𝑁, 𝜎*)

where 𝜎# = 𝑓"(𝑖).



… …

(1, 𝜎&) (𝑖, 𝜎')(𝑖 − 1, 𝜎'(&) (𝑖 + 1, 𝜎')&) (𝑁, 𝜎*)

𝑺𝒌 𝒊, 𝝈 :
if i, 𝜎 = (𝑁, 𝜎3):
    return"𝑠𝑖𝑛𝑘“
If i, 𝜎 = (𝑖, 𝜎4):
    return 𝑖 + 1, 𝜎45%
else:
    return (𝑖, 𝜎)

𝑷𝒌 𝒊, 𝝈 :
if i, 𝜎 = (1, 𝜎%):
    return"𝑠𝑜𝑢𝑟𝑐𝑒“
If i, 𝜎 = (𝑖, 𝜎4):
    return 𝑖 − 1, 𝜎4)%
else:
     return (𝑖, 𝜎)

… …

𝑆: 𝑃:

Slide Courtesy: Omer Paneth 



Need	To	Prove

… …

(1, 𝜎&) (𝑖, 𝜎')(𝑖 − 1, 𝜎'(&) (𝑖 + 1, 𝜎')&) (𝑁, 𝜎*)

𝑆" 𝑃" 𝜎!



… …

(𝑁, 𝜎*)

𝑆" 𝜎!𝑆"$

(𝑁, 𝜎*)

≈#

…

(1, 𝜎&) (𝑖, 𝜎')(𝑖 − 1, 𝜎'(&) (𝑖 + 1, 𝜎')&)

…



… …

(𝑁, 𝜎*)

(𝑁, 𝜎*)

…

(1, 𝜎&) (𝑖, 𝜎')(𝑖 − 1, 𝜎'(&) (𝑖 + 1, 𝜎')&)

𝑆"/𝑆"$

…



… …

(𝑁, 𝜎*)

𝑆"𝑆"$

(𝑁, 𝜎*)

…

(1, 𝜎&) (𝑖, 𝜎')(𝑖 − 1, 𝜎'(&) (𝑖 + 1, 𝜎')&)

…

≡



… …

(𝑁, 𝜎*)

…

(1, 𝜎&)

… …

… …

… …

…

Step 1: remove a random edge 

Step 2: modify a node with in-degree 0

Step 2

Step 2 ×𝑶(𝑵)

…



A	Useful	Lemma

𝑩𝒓,𝒛 𝒙 :
if 𝑥 = 𝑟: return	𝑧
else:  return 𝐴(𝑥)

𝑨

𝑥

𝐴(𝑥)

𝑥

𝐵,,8(𝑥)

𝑟

𝑧



A	Useful	Lemma

𝑩𝒓,𝒛 𝒙 :
if 𝑥 = 𝑟: return	𝑧
else:  return 𝐴(𝑥)

𝑨

𝑩𝒓,𝒛 𝒙 :
if 𝑥 = 𝑟: return	𝑧
else:  return 𝐴(𝑥)

𝑨
≈!

For a random 𝑟 and for all 𝑧:



Proof	of	Lemma	(using	ideas	from	[Sahai-Waters14])

𝑩𝒓,𝒛 𝒙 :
if 𝑥 = 𝑟: return	𝑧
else:  return 𝐴(𝑥)

Also using an Injective, 

length doubling PRG:

𝑔: 0,1 ' → 0,1 &'	

𝑩𝒔:𝒈(𝒓),𝒛∗ 𝒙 :

if 𝑔(𝑥) = 𝑠: return	𝑧
else:  return 𝐴(𝑥)

≈!

𝑨

using  IO



Proof	of	Lemma

𝑩𝒓,𝒛 𝒙 :
if 𝑥 = 𝑟: return	𝑧
else:  return 𝐴(𝑥)

𝑩𝒔:𝒈(𝒓),𝒛∗ 𝒙 :

if 𝑔(𝑥) = 𝑠: return	𝑧
else:  return 𝐴(𝑥)

≈!

𝑨

using  IO

𝑩𝒔←𝑼,𝒛∗ 𝒙 :
if 𝑔(𝑥) = 𝑠: return	𝑧
else:  return 𝐴(𝑥)

≈!

using 𝑔≈!using  IO



Step	1	- Proof

𝑺𝒌,𝒓$ 𝒊, 𝝈 :
if 𝑖 = 𝑟:   return ⊥
else:      return 𝑺𝒌(𝒊, 𝝈)

𝑺𝒌(𝒊, 𝝈)

… …

(𝑁, 𝜎*)(1, 𝜎&)

… …
Step 1: remove a random edge 

(𝑟, 𝜎+)

≈!



Step	2	- Proof

… …

(𝑁, 𝜎*)(1, 𝜎&)

… …
Step 2: modify a node with in-degree 0

(𝑖, 𝜎')

pseudorandom



Interlude: Pseudorandom Functions (PRFs)

Family of poly-time computable functions 𝐹/  such that 
no poly-time oracle alg. can distinguish between oracle 
access to 𝐹/  vs. oracle access to a truly random function.

Theorem [Goldreich-Goldwasser-Micali’84 + Hastad-Impagliazzo-Levin-Luby’89] 

If one-way functions exist, so do PRFs.



Useful Tool: Punctured PRFs

Can create a “punctured key” 𝐾{𝑥}	which
− Allows anyone to compute 𝐹/(𝑦) for 𝑦 ≠ 𝑥,	but 
− Hides 𝐹/(𝑥) 

Punctured PRFs are “mildly obfuscatable” already.

THEOREM [Boyle-Goldwasser-Ivan’13,Boneh-Waters’13,Kiayias-Papadopoulos-
Triandopoulos-Zacharias’13] 

If one-way functions exist, so do punctured PRFs.

An Observation:



Step	2	- Proof

… …

(𝑁, 𝜎*)(1, 𝜎&)

… …

By IO and puncturing  

(𝑖, 𝜎')

(𝑖, 𝑟)

… …

By Lemma
(𝑖, 𝑟)

Independent of 𝑟 (𝑖,∗)



… …
(𝑁, 𝜎*)

𝑆" 𝜎!𝑆"$

(𝑁, 𝜎*)

≈#

…

(1, 𝜎&) (𝑖, 𝜎')(𝑖 − 1, 𝜎'(&) (𝑖 + 1, 𝜎')&)

…

𝑃"

With More Work:



FNP

FP

3SAT

PPAD

NASH

EOL
FACTORING
DLOG
LWE

?
Crypto:

PPAD not NP-hard unless NP	= coNP 
[Megido-Papadimitriou 89]

Slide Courtesy: Omer Paneth 

THEOREM [Bitansky-Paneth-Rosen’15] 

If IO and OWF exist, END-of-LINE is (average-case) hard.
(Previously Abbott-Kane-Valiant’05 from Super-VBB) 



TUTORIAL OUTLINE

Part 1. DEFINITIONS Part 2. APPLICATIONS

Part 3. CONSTRUCTIONS
of IO from simpler objects

Theorem: If 3-linear maps 
exist, so does IO.

a. Virtual Black-Box OBF

of program obfuscation

b. Indistinguishability OBF (IO)

of IO

a. Crypto Applications
b. A Complexity Application
c. Bootstrapping Theorems

Part 4. DE-IO-IZATION

Remove the need for IO in 
applications. 

e.g., Traitor Tracing (on Wed)



IO Bootstrapping Theorems

1. From Simple Circuits to All Circuits. 
      IO for a circuit class 𝐶 implies IO for P assuming either:

− Fully homomorphic encryption with decryption in 𝐶 

OR

− Sub-exponentially secure PRFs computable in 𝐶 

[Garg-Gentry-Halevi-Raykova-Sahai-Waters’13]

[Applebaum’15, Canetti-Lin-Tessaro-V.’15]

2.   From Circuits to Turing Machines and RAM Machines.      
      IO for circuits implies IO TMs and RAMs assuming that
      sub-exponentially secure PRGs exist.

[Canetti-Holmgren-Jain-V.’15, Bitansky-Garg-Lin-Pass-Telang’15, 
Koppula-Lewko-Waters’15, Canetti-Holmgren’16]



From Simple Circuits to All Circuits

THEOREM [Canetti-Lin-Tessaro-V.’15]

If (subexp. secure) IO for NC1 exists and PRFs computable 
in NC1 exist, so does IO for P.

KEY TOOL: RANDOMIZED ENCODINGS [Ishai-Kushilevitz’98, Yao’86]

A randomized encoding RE is a probabilistic algorithm:

− takes a pair (𝑪, 𝒙) and outputs a pair p𝑪, q𝒙 .

− RE can be computed in parallel (same depth as a PRF).

− Given p𝑪 and q𝒙, one can compute C(x).

− Given C(x), can simulate the distribution of p𝑪, q𝒙  .



From Simple Circuits to All Circuits

THEOREM [Canetti-Lin-Tessaro-V.’15]

If (subexp. secure) IO for NC1 exists and PRFs computable 
in NC1 exist, so does IO for P.

CONSTRUCTION IDEA:
“Don’t compute C(x). Compute RE(C,x).”

𝒪(C) = 𝑷𝑪,𝑲 𝒙
     Generate randomness 𝑟 = 𝐹/(𝑥) 
     Output RE(𝐶, 𝑥; 𝑟).

Observe: P is a “low-depth” circuit if 𝐹/  is “low-depth”. 



TUTORIAL OUTLINE

Part 1. DEFINITIONS Part 2. APPLICATIONS

Part 3. CONSTRUCTIONS
of IO from simpler objects

Theorem: If 3-linear maps 
exist, so does IO.

a. Virtual Black-Box OBF

of program obfuscation

b. Indistinguishability OBF (IO)

of IO

a. Crypto Applications
b. A Complexity Application
c. Bootstrapping Theorems

Part 4. DE-IO-IZATION

Remove the need for IO in 
applications. 

e.g., Traitor Tracing (on Wed)



Crypto and New Sources of Hardness

Discrete Logarithms.
ℤA∗

Diffie-Hellman

Elliptic Curves and 
Bilinear Maps. [Joux, Boneh-Franklin]

Integer Lattices.

Hardness of Factoring.

PUBLIC KEY ENCRYPTION

IDENTITY-BASED ENCRYPTION

FULLY HOMOMORPHIC ENCRYPTION

[Gentry, Brakerski-V]

INDISTINGUISHABILITY OBFUSCATION ?



Constructing Program Obfuscators

Break,

OBFUSCATION

[Garg-Gentry
-Halevi-

Raykova-Sahai-W
aters’1

3]

Fix, Break, F
ix, …

UPSHOT: We now have candidate constructions secure 
against all known attacks + generalizations, but no 
absolute proofs of security.   



Constructing Program Obfuscators

OBFUSCATION

TOKEN-BASED OBF.
[Goldwasser-Kalai-Popa-V-Zeldovich’13]

THEOREM [BITANSKY-

V’15, ANANTH-JAIN’15]

THEOREM 1:

If token-based obfuscation exists, 

so does indistinguishability obf.



Constructing Program Obfuscators

TOKEN-BASED OBF.

“2-LINEAR 
MAPS”



?

1, 2- and 3-Linear Maps

1-Linear Map: Need Group G where 

𝑔! v 𝑔# = 𝑔!5# 𝑔! , 𝑔#
BC,D

𝑔!#BUT

ℤA∗

Diffie-Hellman

2-Linear Map: Need Groups G, G’ where 

𝑔! ∘ 𝑔# = 𝑔!# 𝑔! , 𝑔# , 𝑔8
BC,D

𝑔!#8BUT
[Joux, Boneh-Franklin]

3-Linear Map: Need Groups G, G’ where 

𝑔! ∘ 𝑔# ∘ 𝑔8 = 𝑔!#8 𝑔! , 𝑔# , 𝑔8 , 𝑔E
BC,D

𝑔!#8EBUT
See [Huang’18] for a candidate



Constructing Program Obfuscators

TOKEN-BASED OBF.

“2-LINEAR 
MAPS”

“3-LINEAR 
MAPS”

THEOREM 2 [Lin-V’16, Lin’17, Ananth-Sahai’17, Lin-Tessaro’17]

If 3-linear maps exist*, so does token-based obf., 

and therefore, indistinguishability obf.



CONSTRUCTION OUTLINE

Token-based Obfuscation for NC0       

Token-based Obfuscation for P

[Bitansky-V15, Ananth-Jain’15, 
Ananth-Jain-Sahai’16, Lin-Pass-Seth-Telang’16]

3-Linear Maps

[Lin16, Lin-V16, Lin17, Ananth-Sahai’17, 
Lin-Tessaro’17]

+ "Local PRG"

IO for P

[Lin16, Lin-V16, Lin17, Ananth-Sahai’17, 
Lin-Tessaro’17]



Obfuscation Token-Based Obfuscation

P

x

P(x)

Given 𝒪(P), can compute 
P(x) for any x.

(TBO)

P

P(x)

P x

TB𝒪(P) is useless by itself. 
Given TB𝒪(P) and Tok(x), 
can compute P(x).

y

P(y)



From Token-Based to Obfuscation

C 000 001 010 110 111…

KEY IDEA: Self-Replicating Programs (Tokens)

00 01 10 11

0 1

ε

ON INPUT x: 

Return 
Tok(SK,x0), Tok(SK,x1); 

Careful: (Token) SIZE Matters!

[Bitansky-V 15, Ananth-Jain 15]



From Token-Based to Obfuscation
KEY IDEA: Self-Replicating Programs (Tokens)
Careful: Token SIZE Matters!

[Goldwasser-Kalai-Popa-V-Zeldovich’13] uses standard 
crypto assumptions (Learning with Errors). However, their 
token size doubles every level of the tree!



CONSTRUCTION OUTLINE

Token-based Obfuscation for NC0       

Token-based Obfuscation for P

[Bitansky-V15, Ananth-Jain’15, 
Ananth-Jain-Sahai’16, Lin-Pass-Seth-Telang’16]

3-Linear Maps

[Lin16, Lin-V16, Lin17, Ananth-Sahai’17, 
Lin-Tessaro’17]

+ Local PRG

IO for P

[Lin16, Lin-V16, Lin17, Ananth-Sahai’17, 
Lin-Tessaro’17]



Specified by:
a) a sequence of m L-tuples H1,…,Hm and  
b) a predicate P: {0,1}L → {0,1}.

Input: n bits 

Output: m bits 

n: input length (in bits)
m: output length (in bits)
L: locality

the PRG

Local Pseudorandom Generators 
[Goldreich’00]



Token-based Obf: From NC0 to P

“Proof”: Similar to bootstrapping obfuscation

Use Randomized encodings for P.
  [Applebaum-Ishai-Kushilevitz’00, Yao’86]
No need for a PRF. Instead, use a local PRG

Benefit: Can start from TBO for NC0 (instead of NC1). 

Lemma:  If there exists a TBO for degree-L functions and there exists 
a locality-L PRG, then TBO for P (and thus, IO) exists.



CONSTRUCTION OUTLINE

Token-based Obfuscation for NC0       

Token-based Obfuscation for P

[Bitansky-V15, Ananth-Jain’15, 
Ananth-Jain-Sahai’16, Lin-Pass-Seth-Telang’16]

3-Linear Maps

[Lin16, Lin-V16, Lin17, Ananth-Sahai’17, 
Lin-Tessaro’17]

+ Local PRG

IO for P

[Lin16, Lin-V16, Lin17, Ananth-Sahai’17, 
Lin-Tessaro’17]



Token-Based Obfuscation for NC0:
A Caricature

Lemma:  For any constant L, there exists a TBO for degree-L 
functions (in particular, NC0) assuming L-linear maps exist.

Sketch:

Obfuscation of x = (𝑥&, … , 𝑥,) is (𝑔-! ,…, 𝑔-")  

Given secret key, want to compute degree-L functions “in the 
exponent”. 

Prior works show that O(L)-linear maps are sufficient.

Lin-Tessaro show that L-linear maps are sufficient.



(L,q)-Blockwise Local PRGs 
[Lin-Tessaro’17]

Specified by:

a) a sequence of m L-tuples H1,…,Hm and  
b) a predicate P: [q]L → {0,1}.

Input: n “blocks”

Output: m bits 

n: input length (in blocks)
m: output length (in bits)
L: locality
q: alphabet size

the PRG

**(We could additionally have different predicates Pi for each output bit. We focus 
on the single predicate case in this talk.)



Generalizing: The Lin-Tessaro Theorem
Theorem (informal):  There exists an IO scheme, assuming: 

a) L-linear maps (with the SXDH assumption); and

b) Blockwise-Locality L PRGs with polynomial stretch (and subexponential security)

[Lin and Tessaro, CRYPTO 2017]

Case L = 3:  There exists an IO scheme, assuming: 

a) 3-linear maps; and

with sub-exponential security.

b) “Blockwise 3-local” PRGs expanding     blocks to                bits 



Generalizing: The Lin-Tessaro Theorem
Theorem (informal):  There exists an IO scheme, assuming: 

a) L-linear maps (with the SXDH assumption); and

b) Blockwise-Locality L PRGs with polynomial stretch (and subexponential security)

[Lin and Tessaro, CRYPTO 2017]?
Case L = 2:  There exists an IO scheme, assuming: 

a) Bilinear maps; and

with sub-exponential security.

b) “(2,q)-blockwise local” PRGs expanding   blocks to                bits 



Polynomial Time Attacks on Blockwise 2-local PRGs
[Lombardi-V’17, Barak-Brakerski-Komargodski-Kothari’17]

Therefore, the [LT17] construction gets stuck at 3-
linear maps.

Case L = 2:  There exists an IO scheme, assuming: 

a) Bilinear maps with the SXDH assumption; and

with sub-exponential security.

b) “(2,q)-blockwise local” PRGs expanding   blocks to                bits 



TUTORIAL OUTLINE

Part 1. DEFINITIONS Part 2. APPLICATIONS

Part 3. CONSTRUCTIONS
of IO from simpler objects

Theorem: If 3-linear maps 
exist, so does IO.

a. Virtual Black-Box OBF

of program obfuscation

b. Indistinguishability OBF (IO)

of IO

a. Crypto Applications
b. A Complexity Application
c. Bootstrapping Theorems

Part 4. DE-IO-IZATION

Remove the need for IO in 
applications. 

e.g., Traitor Tracing (on Wed)



DE-IO-IZATION:

IO

Functional 
Encryption

Compact Token-based
Obfuscation

One-way 
Functions

Under Standard Crypto 

Assumptions alone:

Public-key
Encryption

Deniable 
Encryption

PPAD Hardness

Correlation-
intractable fns

Non-interactive
Key Exchange

Time-lock Puzzles

Software 
Watermarking

Constrained PRFs

Two-round MPC

“Pure” FHE

NIWI
Traitor Tracing

Succinct RE

Remove the need for IO



“IO-Inspired” Results

IO-based Constructions teach us new techniques.
(quite often, non-black-box techniques)

■ (Anonymous) ID-based Encryption from 1-linear maps.

(Previously, required 2-linear maps.)
[Garg-Dottling’17, ‘18, Brakerski-Lombardi-Segev-V.’18]

■ 2-round Multiparty Computation from OT.
(Previously, required IO or learning with errors.)
[Garg-Srinivasan‘18, Benhamouda-Lin’18]



SUMMARY

Part 1. DEFINITIONS Part 2. APPLICATIONS

Part 3. CONSTRUCTIONS
of IO from simpler objects

Theorem: If 3-linear maps 
exist, so does IO.

a. Virtual Black-Box OBF

of program obfuscation

b. Indistinguishability OBF (IO)

of IO

a. Crypto Applications
b. A Complexity Application
c. Bootstrapping Theorems

Part 4. DE-IO-IZATION

Remove the need for IO in 
applications. 

e.g., Traitor Tracing (on Wed)



PROGRAM
OBFUSCATION

The Quest Continues…

Thank you!



INDISTINGUISHABILITY
OBFUSCATION

MANY OTHER RESULTS:
Obfuscating simple programs
Obfuscation with the aid of secure hardware
Achieving applications without obfuscation



Functional Encryption

Given encryption of string x

[Sahai-Waters’05, Boneh-Sahai-Waters’12]

and secret key for function f  

Thou shalt be able to compute f(x),  

but nothing else.

P.S.: the size of Enc(x) should be 𝑂F(|x|). 



From NC0 to NC1 (Lemma 2)

“Proof”:

Use AIK Randomized encodings for NC1.
  [Applebaum-Ishai-Kushilevitz’04]
AIK Principle: Instead of computing a complex function 𝐹(𝑥), 
compute a simpler randomized function 8𝐹 𝑥, 𝑟 . ( 8𝐹 is in NC0).

Problem: |𝑟| proportional to the circuit size of 𝐹	and ≫ |𝑥|. 

Solution: use local PRG to generate 𝑟.

Lemma 2:  If there exists a functional encryption for degree-L 
functions and there exists a locality-L PRG, then functional 
encryption for NC1 (and thus, IO) exists.



[Lin, CRYPTO 2017]

Theorem:  There exists an IO scheme, assuming: 

a) L-linear maps with the SXDH assumption
b) Locality L PRGs with any polynomial stretch (and subexponential security)

c) Subexponentially secure Learning with Errors (ignored from now on)

Connection between Local PRGs and IO
[Lin’16, Lin-V’16, Lin’17, Ananth-Sahai’17]

?



Lemma 1:  For any constant L, there exists a functional encryption
for degree-L functions (in particular, NC0) assuming L-linear maps 
exist.

Connection between Local PRGs and IO
[Lin’16, Lin-V’16, Lin’17, Ananth-Sahai’17]

Lin’s Theorem = Lemma 1 + Lemma 2

Lemma 2:  If there exists a functional encryption for degree-L 
functions and there exists a locality-L PRG, then functional 
encryption for NC1 (and thus, IO) exists.


