
6.5620/6.875/18.425: Cryptography and Cryptanalysis September 15, 2023

Recitation 2: Background on Complexity Theory
Instructor: Vinod Vaikuntanathan TAs: Chirag Falor, Neekon Vafa, and Hanshen Xiao

Contents

1 Models of Computation1 Models of Computation 11
1.1 Turing Machines1.1 Turing Machines . 11
1.2 RAM (or Word RAM)1.2 RAM (or Word RAM) . 11
1.3 Circuits1.3 Circuits . 22

2 Complexity Classes2 Complexity Classes 22

3 Reductions3 Reductions 33
3.1 Many-One/Mapping/Karp Reductions3.1 Many-One/Mapping/Karp Reductions . 33
3.2 Turing/Cook Reductions3.2 Turing/Cook Reductions . 33

4 Problems4 Problems 33
4.1 Search-to-Decision Reduction for NP4.1 Search-to-Decision Reduction for NP . 33
4.2 PRG Reductions4.2 PRG Reductions . 44

1 Models of Computation

Throughout this course, we will consider different models of computation. We mention a few of them during
this recitation:

1.1 Turing Machines

• We won’t formalize it here, but you should think of it as having three tapes: input tape, a work tape,
and an output tape. WikipediaWikipedia, for example, has more formal details.

• The description of a Turing machine is independent of the input length, so has size O(1).

• You always have a pointer to some cell in the work tape, and in each time step, it can move to the left,
stay in the same position, or move to the right.

• The running-time of a Turing machine is how many time steps it takes before changing to its “accept”
state, and the space usage of the Turing machine is how much of the work tape was accessed during
the computation.

1.2 RAM (or Word RAM)

• You can think of this as a Turing machine with a fixed sized tape (say, length n), with the additional
ability of being able to move the pointer to any position of the work tape in 1 time step.

• Another way to think of it is as a small-space Turing machine that outputs instructions from the set

({read} × [n])
⋃

({write} × [n]× {0, 1}) .

1

https://en.wikipedia.org/wiki/Turing_machine#Formal_definition

That is, in each time-step, one can specify i ∈ [n], and either read the bit at index i, or write a new
bit b ∈ {0, 1} to index i. More generally, each position in the tape can be filled with a word of size w,
i.e., an element of {0, 1}w instead of just a bit, which would correspond to w = 1.

1.3 Circuits

• Unlike Turing machines, circuits have a fixed input and output length, e.g., C : {0, 1}n → {0, 1}m.

• Circuits have input wires, output wires, and intermediate wires, each containing bit values.

• Wires are connected via gates, which are chosen from some gate set. A common gate set choice is
{AND,OR,NOT}, which is universal, meaning that all functions f : {0, 1}n → {0, 1}m can be expressed
using just these gates. Another common gate set choice is {NAND}, which is also universal.

• For circuits, the typical complexity measures we consider are size, the number of gates in the circuit,
and depth, the length of the longest path from an input to output wire. If there is no upper bound on
the size of the circuit, for example, circuits can compute any function from {0, 1}n to {0, 1}m.

2 Complexity Classes

Formally, complexity classes typically contain decision problems or languages, which can be thought of as
functions D : {0, 1}∗ → {0, 1}, or equivalently, as subsets L ⊆ {0, 1}∗.

• The class P is defined as the set of languages L such that there exists a Turing machine M that runs
in polynomial time such that x ∈ L ⇐⇒ M(x) = 1.

Example 1: Language in P

Let L = {G = (V,E), v1 ∈ V, v2 ∈ V : there is a path from v1 to v2 in G}. Here, G = (V,E) denotes a
graph with vertex set V and edge set E. Path finding runs in time O(|V |+ |E|), which is linear in the size
of the input. Therefore, L ∈ P.

• The class NP is defined as the set of languages L such that there exists a Turing machine V and a
polynomial function p(n) such that V runs in time at most p(|x|) for inputs x, and x ∈ L ⇐⇒ ∃y ∈
{0, 1}p(|x|) such that V (x, y) = 1.

Example 2: Language in NP

Let L = SAT = {ϕ : ∃y1, · · · , yn ∈ {0, 1}, ϕ(y1, · · · , yn) = 1}, where ϕ is a Boolean formula on n variables.
The algorithm V will simply evaluate and output ϕ(y).

• The class BPP is defined as the set of languages L such that there exists a randomized Turing machine
M that runs in polynomial time such that x ∈ L =⇒ Prr[M(x; r) = 1] ≥ 2/3, and x /∈ L =⇒
Prr[M(x; r) = 1] ≤ 1/3, where |r| ≤ p(|x|) for some polynomial function p(n).

Example 3: Language in BPP

Let L = {Low-degree polynomial p(x1, · · · , xn) : p is functionally equivalent to the all 0 function}. The
algorithm here is to try random input points. The Schwartz–Zippel lemma says that this works with high
probability. (Don’t worry if this example is confusing.)

Once nice property (that we actually proved in our last recitation) is that the probability thresholds
1/3 and 2/3 can equivalently be made 1/2n and 1− 1/2n, respectively, thanks to Chernoff bounds.

2

3 Reductions

How can we relate different languages to each other? Ideally, we would like to say that some languages
are computationally easier or harder than others. This can be formalized by the notion of a reduction. A
reduction from language L1 to language L2 roughly says that L2 is as hard as L1 (if not harder). Sometimes,
this is denoted as L1 ≤ L2, where the inequality here can be thought of as comparing “hardness” of the
decision problems. A bit more concretely, this will mean that any algorithm for L2 can be used to construct
an algorithm for L1 with similar efficiency.

3.1 Many-One/Mapping/Karp Reductions

The standard notion of a reduction that you may have seen in previous classes is a many-one/mapping/Karp
reduction (goes by different names depending on context). This will be some efficient (often, polynomial-time
computable) algorithm R such that x ∈ L1 ⇐⇒ R(x) ∈ L2. If such an R exists, and an efficient algorithm
for L2 exists, then an efficient algorithm for L1 exists: first, compute R(x), and then, use your algorithm for
L2! Here is a central theorem in complexity theory:

Theorem 1 (Cook-Levin Theorem) SAT is NP-complete. That is, SAT ∈ NP, and for all languages
L ∈ NP, there is a Karp reduction from L to SAT.

3.2 Turing/Cook Reductions

A more general notion of a reduction is a Turing/Cook reduction. This will be some algorithm R that could
make many calls to an algorithm for L2 and use that to solve L1. More formally, a reduction R will have
oracle access to L2, meaning the reduction R can produce many values y and check, in O(1) time, whether
y ∈ L2. If such an efficient R (assuming its L2 answers are magically computed in O(1) time) exists and
solves L1, then we say there is a Turing/Cook reduction from L1 to L2. Concretely, this means that if there
is an efficient algorithm for L2, then there is one for L1, since the reduction can replace the L2 oracle with
the algorithm for L2!

In cryptography, this notion of reduction is more important, since it more broadly captures the sentiment of
“if there is an algorithm for L2, then there is an algorithm for L1”, or equivalently, “if there is no algorithm
for L1, then there is no algorithm for L2.” More than that, R will often be randomized and not always
succeed, so we will consider complex types of reductions in this course.

4 Problems

4.1 Search-to-Decision Reduction for NP

Suppose we are in a world where P = NP. Formally, this means that SAT ∈ P, so we have some polynomial-
time machine M that solves SAT, in the sense that M(ϕ) = 1 ⇐⇒ ∃y1, · · · , yn ∈ {0, 1} such that
ϕ(y1, · · · , yn) = 1. What if we want more than that? What if we also want to output a satisfying assignment
y1, · · · , yn if such an assignment exists? In general, we call such a reduction a search-to-decision reduction,
because we are reducing a search problem (namely, finding a satisfying assignment) to a decision problem
(namely, deciding whether a satisfying assignment exists). We will see other search-to-decision reductions
throughout this course.

Problem 1: Show that if SAT ∈ P, then there is a polynomial-time algorithm A such that on input a
Boolean formula ϕ, correctly outputs either (a) that ϕ is unsatisfiable, or (b) some satisfying assignment to
ϕ. More generally, show that the same holds if given a SAT oracle instead of a polynomial time algorithm
for SAT.

3

Solution 1: We describe the algorithm A as follows. On input ϕ, first we use the SAT oracle to check if
ϕ ∈ SAT. If not, A outputs that ϕ is not satisfiable. Otherwise, we know that there exists y1, · · · , yn ∈ {0, 1}
such that ϕ(y1, · · · , yn) = 1. Next, we define ϕ1 = ϕ∧y1 and run ϕ1 on the SAT oracle. Let the oracle output
be b1 ∈ {0, 1}. If b1 = 1, then we know that there exists a satisfying assignment to ϕ such that y1 = 1, so
we might as well set y1 = 1. If b1 = 0, then there is no satisfying assignment to ϕ such that y1 = 1, which
means that y1 = 0, since we know there is some value of y1 (that is not 1) that is included in a satisfying
assignment. In either case, we know y1 = b1 is a valid setting of y1. We then define ϕ2 = ϕ∧ (y1 = b1)∧ y2,
and run ϕ2 in the SAT oracle to get a bit b2. By the same reasoning we know y2 = b2 is a valid assignment.
We then define ϕ3 = ϕ ∧ (y1 = b1) ∧ (y2 = b2) ∧ y3, and continue all the way down until we have a full
satisfying assignment y = y1, · · · , yn. This runs in O(n) time, with O(n) calls to the SAT oracle.

4.2 PRG Reductions

Problem 2: Let G : {0, 1}n → {0, 1}n+1 be a PRG. Show that G′ : {0, 1}n+1 → {0, 1}n+2 defined by
G′(x||b) = G(x)||b is a PRG.

Solution 2: We will proceed by contradiction. Suppose that G′ is not a PRG. Then, we have a PPT
distinguisher D′, for which (possibly by negating the distinguisher) there exists a polynomial function p and
infinitely many n such that

Pr
y←{0,1}n+1

[D′(G′(y)) = 1]− Pr
z←{0,1}n+2

[D′(z) = 1] ≥ 1/p(n).

By using the definition of G′ and rewriting, this means

Pr
x←{0,1}n,b←{0,1}

[D′(G(x)||b) = 1]− Pr
z←{0,1}n+1,b←{0,1}

[D′(z||b) = 1] ≥ 1/p(n),

for infinitely many n. Now define the distinguisher D(z) = D′(z||b) for uniformly randomly sampled b ←
{0, 1}. Since D′ is PPT, so is D. This immediately implies

Pr
x←{0,1}n

[D(G(x)) = 1]− Pr
z←{0,1}n+1

[D(z) = 1] ≥ 1/p(n),

for infinitely many n. This shows that D is a distinguisher for G, which is a contradiction, since we have
assumed that G is a PRG. Thus, G′ is a PRG, as desired.

Problem 3: Let G : {0, 1}n → {0, 1}n+1 be an arbitrary PRG. Show that G′ : {0, 1}n−1 → {0, 1}n+1

defined by G′(x) = G
(
x||
⊕

i∈[n−1] xi

)
is not necessarily a PRG. (You may assume that there exist PRGs.)

Solution 3: Generally, these sorts of questions have three steps:

1. Assume there exists some PRG, H.

2. Using H, construct a new PRG G, and prove that G is a PRG (assuming that H is).

3. Plugging in this G from the previous step into G′, show that G′ is not a PRG by giving an explicit
distinguisher.

We will now proceed with these three steps. Let H : {0, 1}n−1 → {0, 1}n be an arbitrary PRG. Define
G : {0, 1}n → {0, 1}n+1 as

G(x||b) = H(x)||b⊕
⊕

i∈[n−1]

xi,

4

where |x| = n− 1 and |b| = 1. We now show that G is a PRG. To see this, suppose not, i.e., we have a PPT
distinguisher D, for which (possibly by negating the distinguisher) there exists a polynomial function p and
infinitely many n such that

Pr
y←{0,1}n

[D(G(y)) = 1]− Pr
z←{0,1}n+1

[D(z) = 1] ≥ 1/p(n).

By definition of G, this means that

Pr
x←{0,1}n−1,b←{0,1}

D
H(x)||b⊕

⊕
i∈[n−1]

xi

 = 1

− Pr
z←{0,1}n+1

[D(z) = 1] ≥ 1/p(n),

for infinitely many n. By a one-time pad argument, the distribution of b′ := b ⊕
⊕

i∈[n−1] xi is uniformly
random and independent of x, so one can re-write this as

Pr
x←{0,1}n−1,b′←{0,1}

[D (H(x)||b′) = 1]− Pr
z←{0,1}n,b′←{0,1}

[D(z||b′) = 1] ≥ 1/p(n),

for infinitely many n. Now, consider the distinguisher defined by D′(y) = D(y||b′) for uniformly random
b′ ← {0, 1}. We have

Pr
x←{0,1}n−1

[D′(H(x)) = 1]− Pr
z←{0,1}n

[D′(z) = 1] ≥ 1/p(n),

for infinitely many n. Therefore, D′ is a distinguisher for H, showing that H is not a PRG. This is a
contradiction. Therefore, G is a PRG.

Now, we have G′(x) = G
(
x||
⊕

i∈[n−1] xi

)
= H(x)||

(⊕
i∈[n−1] xi

)
⊕
(⊕

i∈[n−1] xi

)
= H(x)||0. There

is a simple distinguisher for G′: check if the last bit is 0! This will be true with probability 1 for G′, but
only probability 1/2 for a random string, so G′ is not a PRG.

5

	Models of Computation
	Turing Machines
	RAM (or Word RAM)
	Circuits

	Complexity Classes
	Reductions
	Many-One/Mapping/Karp Reductions
	Turing/Cook Reductions

	Problems
	Search-to-Decision Reduction for NP
	PRG Reductions

