Generating Random Factored Numbers, Easily

Adam Kalai*

Our goal is to generate a random "pre-factored" number, that is a uniformly random number between 1 and N, along with its prime factorization. Of course, one could simply pick a random number and then try to factor it, but there is no known polynomialtime factoring algorithm [3]. In his dissertation, Bach presents an efficient algorithm for generating such prefactored numbers [1, 2]. Here, we present a significantly simpler algorithm and analysis for the same problem. Our algorithm is, however, a $\log (N)$ factor less efficient.

Algorithm:

Input: Integer $N>0$.
Output: A uniformly random number $1 \leq m \leq N$.

1. Pick random seq. $N \geq s_{1} \geq s_{2} \geq \ldots \geq s_{l}=1$ by choosing $s_{1} \in\{1,2, \ldots, N\}$ and $s_{i+1} \in\left\{1,2, \ldots, s_{i}\right\}$.
2. Let r be the product of the prime s_{i} 's.
3. If $r \leq N$, output r with probability r / N.
4. Otherwise, RESTART.

The key to understanding this algorithm is that each prime $p \leq N$ is included in the sequence independently with probability $1 / p$. Intuitively, this is because p occurs iff it is chosen before $\{1, \ldots, p-1\}$, which happens with probability $1 / p$. As a result, the probability of generating a factored number $r=p_{1} p_{2} \cdots p_{k}$ is proportional to $1 / p_{1} \cdots 1 / p_{k}=1 / r$. Step 3^{1} then makes each number equally likely with rejection sampling.

We could have equivalently, but more slowly, generated the sequence in Step 1 by first choosing the number of occurrences of N, and then generating such a sequence for $N-1$. This follows from the fact that, regardless of the number of occurrences of N, the first number in the sequence less than N is equally likely to be $\{1, \ldots, N-1\}$. Clearly N occurs at least once with probability $1 / N$ and occurs exactly α times with probability $1 / N^{\alpha}(1-1 / N)$. It follows, by induction on N, that the probability of having α_{j} occurrences of j is

[^0]$1 / j^{\alpha_{j}}(1-1 / j)$, and that occurrences of different j are independent.

The chance of having α_{p} occurrences of each prime $p \leq N$ and generating the factored number $r=\prod p^{\alpha_{p}}$ in Step 2 is, by independence,

$$
\begin{aligned}
\operatorname{Pr}\left[r=\prod_{p \leq N} p^{\alpha_{p}}\right] & =\prod_{p \leq N}\left(1 / p^{\alpha_{p}}\right)(1-1 / p) \\
& =(1 / r) \prod_{p \leq N} 1-1 / p
\end{aligned}
$$

Thus the probability of generating an $r \leq N$ and outputting it in Step 3 is $(r / N)(1 / r) \prod_{p<N} 1-1 / p=$ $(1 / N) \Pi 1-1 / p$, which means that all $r \leq N$ are equally likely. So, with probability $\Pi 1-1 / p$ we output a uniformly random factored number, and otherwise we restart. Consequently, the expected number of restarts is $1 / \Pi 1-1 / p=\theta(\log N)$, by Merten's theorem [3]. On a run, we test s for primality with probability $1 / s$. Thus, we expect to execute $1+1 / 2+\cdots+1 / N=\theta(\log N)$ primality tests, giving an expected $\theta\left(\log ^{2} N\right)$ primality tests before success. Bach's algorithm uses only an expected $O(\log N)$ tests. For either algorithm, primality tests can be implemented efficiently by a randomized algorithm [3], or as shown in the following diagram:

Acknowledgements. I would like to thank Manuel Blum, Michael Rabin, and Doug Rohde for helpful comments, and an IBM Distinguished Graduate Fellowship and NSF Postdoctoral Research Fellowship for funding.

References

[1] E. Bach, Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms, MIT Press, Cambridge, 1985.
[2] E. Bach, How to Generate Factored Random Numbers, SIAM J. Computing, 17 (1988), pp. 179-193.
[3] E. Bach and J. Shallit, Algorithmic Number Theory, MIT Press, Cambridge, 1996.

[^0]: M.I.T. (akalaicmit. edu)
 ${ }^{1}$ After Step 2, we have the nice distribution over the infinite set of numbers whose factors are no larger than N, with probability of a particular r proportional to $1 / r$.

