
MIT 6.875

Lecture 25
Foundations of Cryptography

Credit: Some slides adapted from Raluca Ada Popa and Vinod Vaikuntanathan

𝑶 𝟏 -Round
Two-Party Computation

Secure Two-Party Computation

Bob

Input: 𝒚

• Alice and Bob want to compute 𝐹 𝑥, 𝑦 .

Parties should not learn anything more than their inputs
and 𝐹 𝑥, 𝑦 .

Alice

Input: 𝒙

Semi-honest Security:

Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙REAL
WORLD:

IDEAL
WORLD: 𝒙

𝒚

𝑭(𝒙
, 𝒚) 𝑭(𝒙, 𝒚)

≈

Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator 𝑆𝐼𝑀! such that for any 𝑥
and 𝑦:

𝑆𝐼𝑀!(𝑥, 𝐹(𝑥, 𝑦)) ≅ 𝑉𝑖𝑒𝑤!(𝑥, 𝑦)

Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator 𝑆𝐼𝑀" such that for any 𝑥
and 𝑦:

𝑆𝐼𝑀"(𝑦, 𝐹(𝑥, 𝑦)) ≅ 𝑉𝑖𝑒𝑤"(𝑥, 𝑦)

Secure MPC

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any multi-party computation problem.

One year before ‘87…
Theorem (Yao'86):
OT+OWF solve any two-party computation problem.

Secure 2PC from OT

• Constant Round!!
• Groundbreaking generic solution
• Inspired GMW’87 and more
• Beyond secure computation
• Computing on encrypted data
• Secure function evaluation
• Parallel cryptography
• …
• Garbling as Randomized Encoding of

functions [IK’00,IK’02,AIK’04,AIK’06]…

• Constant Round!!
• Groundbreaking generic solution
• Inspired GMW’87 and more
• Beyond secure computation
• Computing on encrypted data
• Secure function evaluation
• Parallel cryptography
• …
• Garbling as Randomized Encoding of

functions [IK’00,IK’02,AIK’04,AIK’06]…

Secure Function Evaluation

Alice’s private input is 𝐶: 0,1 ! → 𝑥
Bob’s private input is 𝑥

Q: Is 𝑖𝑂 a solution?

A: depends…
❌ SFE needs interaction
✅ But SFE gives one-time evaluation only.

Goal: Compute 𝐶 𝑥

Secure 2PC from OT

• Constant Round!!
• Groundbreaking generic solution
• Inspired GMW’87 and more
• Beyond secure computation
• Computing on encrypted data
• Secure function evaluation
• Parallel cryptography
• …
• Garbling as Randomized Encoding of

functions [IK’00,IK’02,AIK’04,AIK’06]…

• Constant Round!!
• Groundbreaking generic solution
• Inspired GMW’87 and more
• Beyond secure computation
• Computing on encrypted data
• Secure function evaluation
• Parallel cryptography
• …
• Garbling as Randomized Encoding of

functions [IK’00,IK’02,AIK’04,AIK’06]…

Parallel Cryptography

Can we do super-fast cryptography?

Complexity of the 2-party solution

2PC efficiency GMW’87
OT 𝑂(# ∧)
Rounds ∧ -depth

Comm 𝑂(# ∧⋅ 𝜆 + 𝑚)

𝑓 computed by circuit 𝐶
𝐶 𝑥, 𝑦 : 0,1 !× 0,1 ! → 0,1 "

Garbled Circuit
𝑂(𝑛 ⋅ 𝜆)
𝑂(1)

𝑂(𝜆 ⋅ # ∧)

How to Compute Arbitrary Functions

+X

X

For us, programs = functions = Boolean circuits with XOR
(+	𝑚𝑜𝑑	2) and AND (×	𝑚𝑜𝑑	2) gates.

Goal: Compute every gate without knowing what the
inputs and outputs are

Tool: Oblivious Transfer (OT)

Receiver

Choice bit: 𝒃
𝑥#
𝑥$

• Sender holds two bits 𝑥# and 𝑥$.

• Receiver holds a choice bit 𝑏.

• Receiver should learn 𝑥%, sender should learn nothing.

Sender

What if we have 1-out-of-𝟐𝒏 OT?

Receiver

Choice index:
𝒚 ∈ 𝟎, 𝟏 𝒏

• Sender holds 𝟐𝒏 bits.

• Receiver holds a choice index 𝒚 ∈ 𝟎, 𝟏 𝒏.

• Receiver should learn 𝑥', sender should learn nothing.

Sender

𝑣!
𝑣"
𝑣#
⋮
𝑣"!

= PIR except we also require that
receiver learns nothing but 𝑥7.

OT on Truth table?

Bob

Input: 𝒚 ∈ 𝟎, 𝟏 𝒏

• Alice prepares truth table of 𝑓 with her input 𝑥
hardcoded.

• Bob uses his input 𝑦 as the OT choice index
• Bob tells Alice what he receives from OT, 𝑓 𝑥, 𝑦 .

Alice

𝑓(𝑥, 𝟎𝒏)
𝑓(𝑥, 𝟎𝒏%𝟏𝟏)
𝑓(𝑥, 𝟎𝒏%𝟐𝟏𝟎)

⋮
𝑓(𝑥, 𝟏𝒏)

Input: 𝒙 ∈ 𝟎, 𝟏 𝒏

We can try to get OT via some kind of tree
construction. But expanding the truth table
itself is already inefficient!

Gate-by-gate on circuit of 𝑓!

Fun with Lockboxes
Instead of deriving the OT-by-OT protocol of GMW’87…

Physical 2PC
Input: 𝒚 ∈ {𝟎, 𝟏}Input: 𝒙 ∈ {𝟎, 𝟏}

• Alice puts results in lock boxes

• Bob gets key via some physical OT mechanism

• Bob tries to open both boxes using the key he received.

This is way more complicated than OT.

Why do this?

AND(𝑥, 0)
AND(𝑥, 1)

𝑦 = 0

𝑦 = 1

AND(𝑥, 0)
AND(𝑥, 1)

𝑦

OT

×

Possession of or is information!

Physical 2PC
×

×or
𝑧

𝑧

or
𝑥

𝑥

or
𝑦

𝑦

• For each wire 𝑤, Alice generates a pair of keys 𝑘#$, 𝑘#% .
• Bob knowing 𝑘#& ⇔ the value carried on the wire is 𝑏.

Blue/orange means 1/0, but keys on
different wires, even with same colors,
are different

×

𝑥 = 0

𝑦 = 0

𝑥 ∧ 𝑦 = 0

Idea

𝑥 ∧ 𝑦 𝑥 𝑦

1 1 1

0 0 1

0 1 0

0 0 0

𝑥 = 0

𝑦 = 1

𝑥 ∧ 𝑦 = 0

𝑥 = 	1

𝑦 = 1

𝑥 ∧ 𝑦 = 1

𝑥 = 	1

𝑦 = 0

𝑥 ∧ 𝑦 = 0

Key Invariant: For each wire 𝑤 of the circuit, generate a pair
of keys 𝑘#$, 𝑘#% . The possession of 𝑘#& ⇔ the value carried on
the wire is 𝑏.

𝑥 ∧ 𝑦 𝑥 𝑦

1 1 1

0 0 1

0 1 0

0 0 0

𝑥 ∧ 𝑦 𝑥 𝑦

1 1 1

0 0 1

0 1 0

0 0 0

𝑥 ∧ 𝑦 𝑥 𝑦

1 1 1

0 0 1

0 1 0

0 0 0

𝑥 ∧ 𝑦 𝑥 𝑦
1 1 1

0 0 1

0 1 0

0 0 0

×

𝑥 ∧ 𝑦 𝑥 𝑦

1 1 1

0 0 1

0 1 0

0 0 0

Idea

𝑥 = 	1

𝑦 = 1

𝑥 ∧ 𝑦 = 1

𝑥 = 	1

𝑦 = 0

𝑥 ∧ 𝑦 = 0

Key Invariant: For each wire 𝑤 of the circuit, generate a pair
of keys 𝑘#$, 𝑘#% . The possession of 𝑘#& ⇔ the bit 𝑏 is carried
on 𝑤.

Garbled Evaluation

+
×

⊕

Crypto Lockboxes

Physical 2PC
×

Input: 𝒚 ∈ 𝟎, 𝟏 %

AND(𝑥, 0)
AND(𝑥, 1)

Input: 𝒙 ∈ 𝟎, 𝟏 𝒏

• Alice puts results in lock boxes

• Bob gets key via some physical OT mechanism

• Bob tries to open both boxes using the key he received.

Crypto

in IND-CPA encryption

crypto

What about last point?

𝑦 = 0

𝑦 = 1

𝑦
AND(𝑥, 0)
AND(𝑥, 1)OT

Tool: Special CPA Encryption

CPA-secure secret-key encryption Gen, Enc, Dec that

satisfies

1. Elusive range --- Let 𝑘 ←: Gen 1; . Any p.p.t.

adversary 𝐴 cannot generate ciphertext encrypted

under 𝑘, w/o 𝑘.

2. Efficiently verifiable range --- there exists an algo

Check(1<, 𝑘, 𝑐) that checks if 𝑐 is encrypted under 𝑘.

Any Ideas?

Tool: Special CPA Encryption
1. Elusive range --- Let 𝑘 ←: Gen 1; . Any p.p.t.

adversary 𝐴 cannot generate ciphertext encrypted

under 𝑘, w/o 𝑘.

2. Efficiently verifiable range --- there exists an algo

Check(1<, 𝑘, 𝑐) that checks if 𝑐 is encrypted under 𝑘.

Construction:

Let 𝐹=: 0,1 < → 0,1 >< be a PRF,

E= 	𝑚; 𝑟 ≔ 𝐹= 𝑟 ⊕ (𝑚| 0< .

Crypto Lockboxes

Efficiently verifiable range

Check(1<, 𝑘, 𝑐) checks if 𝑐 is encrypted under 𝑘.

𝑥 𝑦 𝑧
1 1 1
0 1 0
1 0 0
0 0 0

Garbled gate
E!RS(E!TS 𝑘"

)

E!RU(E!TS 𝑘"
$)

E!RS(E!TU 𝑘"
$)

E!RU(E!TU 𝑘"
$)

Protocol Sketch

Garbled gate
𝑐#$

𝑐#%

𝑐#&

𝑐#'

Garbled gate
𝑐#$

𝑐#%

𝑐#&

𝑐#'

Yao’s protocol: Garbling
• Keys generation: For each wire 𝑤 of 𝐶, Alice generates a

pair of keys 𝑘#$, 𝑘#% .
• Gate Garbling: For each gate 𝑧 ← 𝐺 𝑥, 𝑦 , compute the

tables.

𝑥 𝑦 𝑧

1 1 1

0 1 0

1 0 0

0 0 0

Garbled gate
E(!"(E(#" 𝑘)

$)

E(!$(E(#" 𝑘)
*)

E(!"(E(#$ 𝑘)
*)

E(!$(E(#$ 𝑘)
*)

Garbled gate
𝑐#$

𝑐#%

𝑐#&

𝑐#'

Garbled gate
𝑐#$

𝑐#%

𝑐#&

𝑐#'

Garbled gate
𝑐#$

𝑐#%

𝑐#&

𝑐#'

𝐶

Yao’s protocol: Evaluator Bob
Key Invariant: For each wire 𝑤 of the circuit, Bob can obtain
exactly one of the two keys from 𝑘#$, 𝑘#% .

+X

X

𝑥$ = 𝑎

𝑘?

𝑘@
𝑘A

𝑦$ = 𝑏 𝑦> = 𝑏′𝑥> = 𝑎′

Yao’s protocol: Evaluator Bob
Key Invariant: For each wire 𝑤 of the circuit, Bob can obtain
exactly one of the two keys from 𝑘#$, 𝑘#% .

+X

X

𝑥$ 𝑦$ 𝑥> 𝑦>

𝑘?

𝑘@
𝑘A

Base case:
• Alice’s input 𝑥(∈ 0,1 : Alice send the correct key 𝑘(

)!.
• Bob’s input 𝑦(∈ {0,1}: they runs OT on ((𝑘($, 𝑘(%), 𝑦().

𝑘(
)" 𝑘(*

)#𝑘+
," 𝑘+*

,#

Yao’s protocol: Evaluator Bob
Key Invariant: For each wire 𝑤 of the circuit, Bob can obtain
exactly one of the two keys from 𝑘#$, 𝑘#% .

+X

X

𝑥$ 𝑦$ 𝑥> 𝑦>

𝑘?

𝑘@
𝑘A

Inductive step:
Assume: Bob has one key for each input wire
Ø Bob can get exactly one key for the output wire by

trying all four ciphertexts.

𝑘(
)" 𝑘+

,"

𝑘-
)"∧)#

𝑘(*
)# 𝑘+*

,#

𝑘-*
)"/)#

𝑘0
()"/)#)()"∧)#)

Efficiently verifiable range

Check 1!, 𝑘, 𝑐 ∈ 0,1 checks if

𝑐 is encrypted under 𝑘.

Evaluating One Gate
Key Invariant: For each wire 𝑤 of the circuit, Bob can obtain
exactly one of the two keys from 𝑘#$, 𝑘#% .
Inductive step:
Assume: Bob has one key for each input wire
Ø Bob can get exactly one key for the output wire by

trying all four ciphertexts.

Recall:
Garbled gate
E(!"(E(#" 𝑘)

$)

E(!$(E(#" 𝑘)
*)

E(!"(E(#$ 𝑘)
*)

E(!$(E(#$ 𝑘)
*)

Given 𝒌𝒙
𝒃𝒙 , 𝒌𝒚

𝒃𝒚,
Ø Try all four rows

to obtain 𝑘"
(R∧(T

Oops..
This procedure, as-is, is actually insecure.

Reconstructing Output
Key Invariant: For each wire of the circuit, Bob can obtain
exactly one of the two keys associated with each wire.

Ø Bob simply asks Alice if
𝑘* is 𝑘*$ or 𝑘*%.

+X

X

𝑎 𝑏 𝑎′ 𝑏′

𝑘?

𝑘@ 𝑘A

After evaluation, Bob
learns 𝑘* ∈ {𝑘*$, 𝑘*%}.

𝑘0
()"/)#)()"∧)#)

After Bob’s hard work, it is
midnight and Alice is asleep...Can we avoid this final round?

Garbling as a Standalone Tool

Garbling as a Stand-Alone ToolQ: Difference with 𝑖𝒪?

2PC Using Garbled Circuits

Simulation Proof Sketch

Simulating Alice
Imagine that the parties have access to an OT angel
Ø Implemented by secure simulatable OT.

𝑳𝟎 , 𝑳
𝟏 𝒃

𝑳 𝒃

Simulating Alice
Imagine that the parties have access to an OT angel.

Simulating Alice
Alice’s View
• OT transcripts
• 𝐶 𝑥, 𝑦

Sim 𝐶, 𝑥, 𝑓 𝑥, 𝑦 :
Output
{ Sim!"

# 𝐿$%	'(, 𝐿$%	')
'

𝑓(𝑥, 𝑦)}

Simulating Bob
Imagine that the parties have access to an OT angel.

Simulating Bob
OT Simulation:

View+,
- ≈ Sim+,

- 1. , 𝑦(, 𝐿./(
0! .

Assume we already simulated 𝐿!"#$ with the correct distribution.

Simulating Bob

Simulating Bob

Step 1: Generate Dummy Labels
• Label generation: For each wire 𝑤 of 𝐶, generates a pair

of keys 𝐿#$, 𝐿#% .
• Label simulation: For all input wire 𝑖, let L𝐿(

)! ≔ 𝐿($.

Sanity Check:
This replacement is fine because keys are randomly
generated.

Step 2.a: Simulate Fake Gates
• Garbled gate simulation: Replace intermediate

ciphertexts with junks.
Garbled gate
E+!" (E+#" 𝐿)$)

E+!$ (E+#" 𝐿)*)

E+!" (E+#$ 𝐿)*)

E+!$ (E+#$ 𝐿)*)

Garbled gate
E+!" (E+#" 𝐿)*)

E+!$ (E+#" 𝐿)*)

E+!" (E+#$ 𝐿)*)

E+!$ (E+#$ 𝐿)*)

• the rows are randomly permuted (𝜎, 𝜏 ∈ 𝑃𝑒𝑟𝑚(4))
• only a random row can be decrypted
• the junk entries are w.h.p. non-decryptable.

𝜎 ⋅
𝜏 ⋅

Step 2.b: Simulate Output

• Generate the following decoding table

Output label Decoded result
𝐿,* 𝐶(𝑥, 𝑦)
𝐿,$ 1 − 𝐶(𝑥, 𝑦)

Sanity Check: This is fine because the label 𝐿*$ might as
well be encoding 1.

Simulating Bob
Bob’s View
• Wire labels
• Garbled tables
• Final decoding

table
• OT transcripts

Sim 𝐶, 𝑦, 𝑓 𝑥, 𝑦 :
Ø Simulate labels
Ø Sim!"

* 𝐿+
+!

Ø Simulate garbled
gates

Ø Simulate final
decoding table.

Efficiency

Garbling is parallelizable

+X

X

+X

X

+X

X

+X

XGarbled gate

E!!"(E!#" 𝐿"#)

E!!$(E!#" 𝐿"$)

E!!"(E!#$ 𝐿"$)

E!!$(E!#$ 𝐿"$)

𝜎 ⋅

Parallelism: Each garbled gate is computed locally (only
depends on 𝐿)$, 𝐿)% , 𝐿0$, 𝐿0% , (𝐿2$, 𝐿2%), generated at the
very beginning).

Why is GMW sequential?

+X

X

OT

𝑠(𝑠+

OT
𝑠- 𝑠3

OT

𝑠(* 𝑠+*

Sequentiality: Input to next OT is output from previous OT.

Garbled-circuit 2PC

2PC efficiency GMW’87 Garbled Circuit
OT 𝑂(# ∧) 𝑂(𝑛 ⋅ 𝜆)
Rounds ∧ -depth 𝑂(1)

Comm 𝑂(# ∧⋅ 𝜆 + 𝑚) 𝑂(𝜆 ⋅ # ∧)

𝑓 computed by circuit 𝐶
𝐶 𝑥, 𝑦 : 0,1 !× 0,1 ! → 0,1 "

Optimization 1: Free XOR trick

In GMW or BGW, linear (XOR) gates are free (no
communication).
Can we say something for Garbled circuits?

Theorem [Kolesnikov, Schneider’08]: If we
generate labels carefully, then there is no need
to send garbled XOR tables.

 Observation: do not use so much randomness.

Optimization 1: Free XOR trick

Rough intuition:
Acceptable correlations of labels:
• Pick global 𝑅, a random value hidden from evaluator
• Generate non-XOR-output wire 𝑤 subject to

𝐿#& = 𝐿#%3& ⊕𝑅
Now if 𝑧 = 𝑥 ⊕ 𝑦, we define 𝐿2 = 𝐿) ⊕𝐿0.
1. 𝐿2% = 𝐿)$ ⊕𝐿0% = 𝐿)$ ⊕𝐿0$ ⊕𝑅 = 𝐿)% ⊕𝐿0$.
2. 𝐿2$ = 𝐿)% ⊕𝐿0% = 𝐿)$ ⊕𝐿0$. Observation: do not use so much randomness.

Optimization 2: Half-Gates

Half-gate trick [Zahur, Rosulek, Evans’15]: Keeping
XOR gates free, AND gate can be 2 ct each.

Credit: Table taken from proceedings version of [ZRE’15].

Optimization 3: Beyond Half-Gates

Slicing & Dicing [Rosulek, Roy’21]: Keeping XOR
gates free, AND gate can be 1.5 ct plus 5 bits each.

Credit: Table taken from proceedings version of [RR’21].

Malicious Alice

What can a malicious garbler do?

Simple Generic Defense
Cut-and-choose

What can a malicious Garbler do?

Rough sketch:
• Alice commits to 𝑞 garbled gates and the randomness

in generating them.
• Bob opens all but one instances, including all the labels,

and check that gates are garbled correctly; if not, abort.
• Use the unopened GC to compute.

Note: Use of commitment is crucial:

Soundness: Only 𝟏/𝒒.How do we get soundness error: 𝟐𝛀(𝐪)?

Malicious Bob

What can a malicious evaluator do?

Next class:
Quantum Cryptography

