#### **MIT 6.875**

## Foundations of Cryptography Lecture 25

Credit: Some slides adapted from Raluca Ada Popa and Vinod Vaikuntanathan

# **O**(1)-Round Two-Party Computation



• Alice and Bob want to compute F(x, y).

#### Semi-honest Security:

Parties should not learn anything more than their inputs and F(x, y).





There exists a PPT simulator  $SIM_A$  such that for any x and y:

$$SIM_A(x, F(x, y)) \cong View_A(x, y)$$



There exists a PPT simulator  $SIM_B$  such that for any x and y:

$$SIM_B(y, F(x, y)) \cong View_B(x, y)$$



#### **Theorem [Goldreich-Micali-Wigderson'87]**: OT can solve **any** multi-party computation problem.

One year before '87...

Theorem (Yao'86):

OT+OWF solve *any* two-party computation problem.



## **Secure 2PC from OT**

- Constant Round!!
- Groundbreaking generic solution
- Inspired GMW'87 and more
- Beyond secure computation
  - Computing on encrypted data
  - Secure function evaluation
  - Parallel cryptography
  - •
  - Garbling as Randomized Encoding of functions [IK'00,IK'02,AIK'04,AIK'06]...

## **Secure Function Evaluation**

Alice's private input is  $C: \{0,1\}^n \rightarrow x$ Bob's private input is x



#### Q: Is *iO* a solution?

A: depends... SFE needs interaction But SFE gives one-time evaluation *only*.

## **Secure 2PC from OT**

- Constant Round!!
- Groundbreaking generic solution
- Inspired GMW'87 and more
- Beyond secure computation
  - Computing on encrypted data
  - Secure function evaluation
  - Parallel cryptography
  - •
  - Garbling as Randomized Encoding of functions [IK'00,IK'02,AIK'04,AIK'06]...

## **Parallel Cryptography**

#### Can we do super-fast cryptography?





## **Complexity of the 2-party solution**

#### f computed by circuit C $C(x, y): \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^m$

| <b>2PC</b> efficiency | GMW'87                     | Garbled Circuit              |
|-----------------------|----------------------------|------------------------------|
| # OT                  | $O(\# \wedge)$             | $O(n \cdot \lambda)$         |
| # Rounds              | ∧ -depth                   |                              |
| # Comm                | $O(\# \wedge \lambda + m)$ | $O(\lambda \cdot \# \wedge)$ |

## **How to Compute Arbitrary Functions**

For us, programs = functions = Boolean circuits with XOR  $(+ mod \ 2)$  and AND  $(\times mod \ 2)$  gates.



*Goal:* Compute every gate without knowing what the inputs and outputs are

## **Tool: Oblivious Transfer (OT)**



- Sender holds two bits  $x_0$  and  $x_1$ .
- Receiver holds a choice bit *b*.
- Receiver should learn  $x_b$ , sender should learn nothing.

## What if we have 1-out-of- $2^n$ OT?



#### Canalan halda <u>71</u> hit

# = PIR except we also require that receiver learns nothing but $x_y$ .

Receiver should learn  $x_{\gamma}$ , sender should learn nothing.

## **OT on Truth table?**





Instead of deriving the OT-by-OT protocol of GMW'87...

## **Fun with Lockboxes**







Blue/orange means 1/0, but keys on different wires, even with same colors, are different







*Key Invariant*: For each wire w of the circuit, generate a pair of keys  $k_w^0, k_w^1$ . The possession of  $k_w^b \Leftrightarrow$  the value carried on the wire is b.





*Key Invariant*: For each wire w of the circuit, generate a pair of keys  $k_w^0, k_w^1$ . The possession of  $k_w^b \Leftrightarrow$  the bit b is carried on w.

## **Garbled Evaluation**



### **Crypto Lockboxes**



• Bob tries to open both boxes using the key he received.

What about last point?

## **Tool:** Special CPA Encryption

CPA-secure secret-key encryption (Gen, Enc, Dec) that satisfies

- **1.** Elusive range ---- Let  $k \leftarrow_R \text{Gen}(1^n)$ . Any p.p.t. adversary *A* cannot generate ciphertext encrypted under *k*, w/o *k*.
- **2. Efficiently verifiable range** ---- there exists an algo Check $(1^n, k, c)$  that checks if *c* is encrypted under *k*.

## **Tool:** Special CPA Encryption

**1.** Elusive range --- Let  $k \leftarrow_R \text{Gen}(1^n)$ . Any p.p.t.

adversary A cannot generate ciphertext encrypted under k, w/o k.

2. Efficiently verifiable range --- there exists an algo

 $Check(1^n, k, c)$  that checks if c is encrypted under k.

Construction:  
Let 
$$F_k: \{0,1\}^n \to \{0,1\}^{2n}$$
 be a PRF,  
 $E_k(m;r) \coloneqq F_k(r) \bigoplus (m||0^n).$ 

## **Crypto Lockboxes**



#### Efficiently verifiable range

Check $(1^n, k, c)$  checks if c is encrypted under k.

#### **Protocol Sketch**

## Yao's protocol: Garbling

- *Keys generation:* For each wire w of C, Alice generates a pair of keys  $k_w^0$ ,  $k_w^1$ .
- Gate Garbling: For each gate  $z \leftarrow G(x, y)$ , compute the tables.



## Yao's protocol: Evaluator Bob

*Key Invariant*: For each wire w of the circuit, Bob can obtain exactly one of the two keys from  $k_w^0$ ,  $k_w^1$ .



## Yao's protocol: Evaluator Bob

Base case:

- Alice's input  $x_i \in \{0,1\}$ : Alice send the correct key  $k_i^{x_i}$ .
- Bob's input  $y_i \in \{0,1\}$ : they runs OT on  $((k_i^0, k_i^1), y_i)$ .



## Yao's protocol: Evaluator Bob

*Inductive step:* 

Assume: Bob has one key for each input wire

Bob can get exactly one key for the output wire by trying all four ciph  $k_o^{(x_1+x_2)(x_1\wedge x_2)}$ 

# Efficiently verifiable range

# $Check(1^n, k, c) \in \{0, 1\}$ checks if

# c is encrypted under k.







## **Evaluating One Gate**

La durativa atar

Oops..

### This procedure, as-is, is actually insecure.

trying an tour cipitertexts.

**Recall:** 

Given  $k_x^{b_x}$ ,  $k_v^{b_y}$ , Try all four rows to obtain  $k_{z}^{b_{x} \wedge b_{y}}$ 

Garbled gate  $E_{k_x^1}(E_{k_y^1}(k_z^1))$   $E_{k_x^0}(E_{k_y^1}(k_z^0))$   $E_{k_x^1}(E_{k_y^0}(k_z^0))$   $E_{k_x^0}(E_{k_y^0}(k_z^0))$ 

## **Reconstructing Output**

*Key Invariant*: For each wire of the circuit, Bob can obtain exactly one of the two keys associated with each wire.



### **Garbling as a Standalone Tool**

# Q: Difference with *iO*?

- Input: Boolean circuit  $C: \{0,1\}^n \rightarrow \{0,1\}$
- Output: Garbled circuit G(C) and input labels  $\{(L_1^0, L_1^1), \dots, (L_n^0, L_n^1)\}$



x = 010, labels are

 $L_{1}^{0}, L_{2}^{1}, L_{3}^{0}$ 

- **Goal:** Given G(C) and  $L_1^{x_1}, \ldots, L_n^{x_n}$
- It is possible to compute  $C(x_1 \cdots x_n)$
- It is not possible to learn any additional information other than size of circuit or input

## **2PC Using Garbled Circuits**



#### **Simulation Proof Sketch**

## **Simulating Alice**

Imagine that the parties have access to an OT angel➢ Implemented by secure simulatable OT.



## **Simulating Alice**

Imagine that the parties have access to an OT angel.



**Simulating Alice** Alice's View Sim(C, x, f(x, y)): OT transcripts Output • C(x, y) $\{\{\operatorname{Sim}_{OT}^{A}(L_{n+i}^{0}, L_{n+i}^{1})\}\}$ f(x,y)

OT for each  $i \in [n]$  in parallel: Alice's input:  $(L_{n+i}^0, L_{n+i}^1)$ Bob's input: y<sub>i</sub> C(x,y)

Imagine that the parties have access to an OT angel.



OT Simulation:

 $\operatorname{View}_{OT}^{B} \approx \operatorname{Sim}_{OT}^{B} (1^{n}, y_{i}, L_{n+i}^{y_{i}}).$ 



Assume we already simulated  $L_{n+i}^B$  with the correct distribution.





## **Step 1: Generate Dummy Labels**

- Label generation: For each wire w of C, generates a pair of keys  $L_w^0, L_w^1$ .
- Label simulation: For all input wire *i*, let  $\widetilde{L_i^{x_i}} \coloneqq L_i^0$ .

Sanity Check: This replacement is fine because keys are randomly generated.

## Step 2.a: Simulate Fake Gates

 Garbled gate simulation: Replace intermediate ciphertexts with junks.
Garbled gate simulation: Garbled gate simulation simulati

Garbled gate  $E_{L_x^1}(E_{L_y^1}(L_z^1))$   $E_{L_x^0}(E_{L_y^1}(L_z^0)) \longrightarrow \tau \cdot E_{L_x^1}(E_{L_y^0}(L_z^0))$   $E_{L_x^1}(E_{L_y^0}(L_z^0))$   $E_{L_x^0}(E_{L_y^0}(L_z^0))$ 

Garbled gate  $E_{L_x^1}(E_{L_y^1}(L_z^0))$   $E_{L_x^0}(E_{L_y^1}(L_z^0))$   $E_{L_x^1}(E_{L_y^0}(L_z^0))$   $E_{L_x^0}(E_{L_y^0}(L_z^0))$ 

- the rows are randomly permuted ( $\sigma, \tau \in Perm([4])$ )
- only a random row can be decrypted
- the junk entries are w.h.p. non-decryptable.

## Step 2.b: Simulate Output

• *Generate the following decoding table* 



Sanity Check: This is fine because the label  $L_o^0$  might as well be encoding 1.

Input:  $y \in \{0,1\}^n$ 

### Bob's View

- Wire labels
- Garbled tables
- Final decoding table
- OT transcripts

Sim(C, y, f(x, y)): Simulate labels

- $\succ \operatorname{Sim}_{\operatorname{OT}}^{\operatorname{B}}(L_y^{y_i})$
- Simulate garbled

### gates

Simulate final decoding table.

## Efficiency

## **Garbling is parallelizable**





**Sequentiality:** Input to next OT is output from previous OT.

## **Garbled-circuit 2PC**

#### f computed by circuit C $C(x, y): \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^m$

| <b>2PC</b> efficiency | GMW'87                     | <b>Garbled Circuit</b>       |
|-----------------------|----------------------------|------------------------------|
| # OT                  | $O(\# \wedge)$             | $O(n \cdot \lambda)$         |
| # Rounds              | ∧ -depth                   | 0(1)                         |
| # Comm                | $O(\# \wedge \lambda + m)$ | $O(\lambda \cdot \# \wedge)$ |

## **Optimization 1: Free XOR trick**

In GMW or BGW, linear (XOR) gates are free (no communication).

Can we say something for Garbled circuits?

Theorem [Kolesnikov, Schneider'08]: If we generate labels *carefully*, then there is no need to send garbled XOR tables.

Observation: do not use so much randomness.

## **Optimization 1: Free XOR trick**

#### Rough intuition:

Acceptable correlations of labels:

- Pick global *R*, a random value hidden from evaluator
- Generate non-XOR-output wire w subject to  $L_w^b = L_w^{1-b} \bigoplus R$
- Now if  $z = x \oplus y$ , we define  $L_z = L_x \oplus L_y$ .
- 1.  $L_z^1 = L_x^0 \bigoplus L_y^1 = L_x^0 \bigoplus L_y^0 \bigoplus R = L_x^1 \bigoplus L_y^0$ . 2.  $I^0 = I^1 \bigoplus I^1 = I^0 \bigoplus I^0$

**Observation:** do not use so much randomness.

## **Optimization 2: Half-Gates**

# Half-gate trick [Zahur, Rosulek, Evans'15]: Keeping XOR gates free, AND gate can be 2 ct each.

|                           | size per      | gate | cal           | calls to $H$ per gate |               |     |  |  |
|---------------------------|---------------|------|---------------|-----------------------|---------------|-----|--|--|
|                           |               |      | generator     |                       | evaluator     |     |  |  |
| technique                 | XOR           | AND  | XOR           | AND                   | XOR           | AND |  |  |
| classical [31]            | 4             | 4    | 4             | 4                     | 4             | 4   |  |  |
| point-permute [3]         | 4             | 4    | 4             | 4                     | 1             | 1   |  |  |
| row reduction (GRR3) [27] | 3             | 3    | 4             | 4                     | 1             | 1   |  |  |
| row reduction (GRR2) [28] | 2             | 2    | 4             | 4                     | 1             | 1   |  |  |
| free XOR + GRR3 [20]      | 0             | 3    | 0             | 4                     | 0             | 1   |  |  |
| fleXOR [19]               | $\{0, 1, 2\}$ | 2    | $\{0, 2, 4\}$ | 4                     | $\{0, 1, 2\}$ | 1   |  |  |
| half gates [this work]    | 0             | 2    | 0             | 4                     | 0             | 2   |  |  |

Table 1. Optimizations of garbled circuits. Size is number of "ciphertexts" (multiples of k bits).

Credit: Table taken from proceedings version of [ZRE'15].

## **Optimization 3: Beyond Half-Gates**

# Slicing & Dicing [Rosulek, Roy'21]: Keeping XOR gates free, AND gate can be 1.5 ct plus 5 bits each.

|                                          | GC size               |               | calls to $H$ per gate |               |          |               |                |
|------------------------------------------|-----------------------|---------------|-----------------------|---------------|----------|---------------|----------------|
|                                          | $(\kappa \text{ bit}$ | s / gate)     | ga                    | rbler         | eva      | luator        |                |
| scheme                                   | AND                   | XOR           | AND                   | XOR           | AND      | XOR           | assump.        |
| unoptimized textbook Yao                 | 8                     | 8             | 4                     | 4             | 2.5      | 2.5           | PRF            |
| Yao + point-permute [BMR90]              | 4                     | 4             | 4                     | 4             | 1        | 1             | $\mathbf{PRF}$ |
| $4 \rightarrow 3$ row reduction [NPS99]  | 3                     | 3             | 4                     | 4             | 1        | 1             | $\mathbf{PRF}$ |
| $4 \rightarrow 2$ row reduction [PSSW09] | 2                     | 2             | 4                     | 4             | 1        | 1             | $\mathbf{PRF}$ |
| free-XOR [KS08]                          | 3                     | 0             | 4                     | 0             | 1        | 0             | CCR            |
| fleXOR [KMR14]                           | 2                     | $\{0, 1, 2\}$ | 4                     | $\{0, 2, 4\}$ | 1        | $\{0, 1, 2\}$ | CCR            |
| half-gates [ZRE15]                       | 2                     | 0             | 4                     | 0             | 2        | 0             | CCR            |
| [GLNP15]                                 | 2                     | 1             | 4                     | 3             | 2        | 1.5           | PRF            |
| ours                                     | 1.5                   | 0             | $\leq 6$              | 0             | $\leq 3$ | 0             | CCR            |

Credit: Table taken from proceedings version of [RR'21].

### **Malicious Alice**

#### What can a malicious garbler do?

# Simple Generic Defense Cut-and-choose

#### Rough sketch:

- Alice commits to q garbled gates and the randomness in generating them.
- Bob opens all but one instances, including all the labels, and check that gates are garbled correctly; if not, abort.
- Use the unopened GC to compute.

**Note:** Use of commitment is crucial:

How do we get soundness error:  $2^{\Omega(q)}$ ?

## **Malicious Bob**

#### What can a malicious evaluator do?

## Next class: Quantum Cryptography