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Lecture 9
Foundations of Cryptography



Lectures 8-10

• Key Agreement and Public-key Encryption: 
Definition and Properties 

• Constructions

2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

1: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev



The Multiplicative Group ℤ𝑵∗
= {1 ≤ 𝑥 < N: gcd x, N = 1}

Theorem: ℤ𝑵∗ is a group under multiplication mod N.

Inverses exist: since gcd x, N = 1, there exist integers 𝑎
and 𝑏 s.t.

𝑎𝑥 + 𝑏𝑁 = 1 (Bezout’s identity)

Thus, 𝑎𝑥 = 1 𝑚𝑜𝑑 𝑁 or 𝑎 = 𝑥#$ (𝑚𝑜𝑑 𝑁).  



The Multiplicative Group ℤ𝑵∗
= {1 ≤ 𝑥 < N: gcd x, N = 1}

Theorem: ℤ𝑵∗ is a group under multiplication mod N.

Order of ℤ𝑵∗ = Euler’s totient function 𝜑(𝑁).

𝜑 𝑃 = 𝑃−1 if 𝑃 prime.

𝜑 𝑁 = (𝑃−1)(𝑄−1) if 𝑁 = 𝑃𝑄,𝑃 ≠ 𝑄 primes.

𝜑 𝑁 = ∏𝑃%
&!#$(𝑃% −1) if 𝑁 =∏𝑃%

&!.

Theorem [Lagrange, Euler]: 
For every a ∈ ℤ'∗ , 𝑎( ' = 1𝑚𝑜𝑑 𝑁.



Examples

ℤ𝟐∗ = {𝟏}

ℤ𝟑∗ = {𝟏, 𝟐}

ℤ𝟒∗ = {𝟏, 𝟑}

ℤ𝟓∗ = {𝟏, 𝟐, 𝟑, 𝟒}

ℤ𝟔∗ = {𝟏, 𝟓}

ℤ𝟕∗ = {𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕}



The Multiplicative Group ℤ𝒑∗

ℤ/∗ : ({1, … , p − 1}, group operation: K mod 𝑝)

• Computing the group operation is easy.

• Computing inverses is easy: Extended Euclid.

• Exponentiation (given 𝑔 ∈ ℤ/∗ and 𝑥 ∈ ℤ/#$, find 
𝑔0 mod p) is easy: Repeated Squaring Algorithm.

• The discrete logarithm problem (given a generator 
𝑔 and ℎ ∈ ℤ/∗ , find 𝑥 ∈ ℤ/#$ s.t. h = 𝑔0 mod p) is 
hard, to the best of our knowledge!



The Discrete Log Assumption

Distributions…

1. Is the discrete log problem hard for a random p? 
Could it be easy for some p?

2.   Given p: is the problem hard for all generators g?

3.   Given p and g: is the problem hard for all x?

The discrete logarithm problem is: given a generator 
𝑔 and ℎ ∈ ℤ/∗ , find 𝑥 ∈ ℤ/#$ s.t. h = 𝑔0 mod p.



Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm 𝐴 s.t.
Pr 𝐴 𝑝, 𝑔, 𝑔0 mod 𝑝 = 𝑥 > 1/poly(log 𝑝)

for some 𝑝, random generator 𝑔 of ℤ/∗ , and random 𝑥
in ℤ/#$, then there is a p.p.t. algorithm 𝐵 s.t.

𝐵 𝑝, 𝑔, 𝑔0 mod 𝑝 = 𝑥
for all g and x.

Proof: On the board.



Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm 𝐴 s.t.
Pr 𝐴 𝑝, 𝑔, 𝑔0 mod 𝑝 = 𝑥 > 1/poly(log 𝑝)

for some 𝑝, random generator 𝑔 of ℤ/∗ , and random 𝑥
in ℤ/#$, then there is a p.p.t. algorithm 𝐵 s.t.

𝐵 𝑝, 𝑔, 𝑔0 mod 𝑝 = 𝑥
for all g and x.

2.   Given p: is the problem hard for all generators g?

3.   Given p and g: is the problem hard for all x?
… as hard for any generator is it for a random one.

… as hard for any x is it for a random one.



Algorithms for Discrete Log

• Pohlig-Hellman algorithm: time 𝑂( 𝑞) where 𝑞 is 
the largest prime factor of 𝑝 − 1. That is, there 
are dlog-easy primes.

• Baby Step-Giant Step algorithm: time --- and 
space --- 𝑂( 𝑝) .



The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm 𝐴,
there is a negligible function 𝜇 s.t.

Pr
𝑝 ← 𝑃𝑅𝐼𝑀𝐸𝑆1; 𝑔 ← 𝐺𝐸𝑁 ℤ/∗ ;
𝑥 ← ℤ/#$: 𝐴 𝑝, 𝑔, 𝑔0 mod 𝑝 = 𝑥

= 𝜇(𝑛)



One-way Permutation (Family)

𝐹 𝑝, 𝑔, 𝑥 = (𝑝, 𝑔, 𝑔0 mod p)

ℱ1 = {𝐹1,/,3} where 𝐹1,/,3 𝑥 = (𝑝, 𝑔, 𝑔0 mod p)

Theorem: Under the discrete log assumption, 𝐹 is a 
one-way permutation (resp. ℱ1 is a one-way 
permutation family).



Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm 𝐴,
there is a negligible function 𝜇 s.t.

Pr
𝑝 ← 𝑃𝑅𝐼𝑀𝐸𝑆1; 𝑔 ← 𝐺𝐸𝑁 ℤ/∗ ;

𝑥, 𝑦 ← ℤ/#$: 𝐴 𝑝, 𝑔, 𝑔0 , 𝑔4 = 𝑔04
= 𝜇(𝑛)

CDH DLOG
OPEN



Diffie-Hellman Key Exchange

Pick a random 
number 𝑥 ∈ 𝑍/#$

𝑔0 mod 𝑝

𝑝, 𝑔:Generator of our group 𝑍!∗

Pick a random 
number y ∈ 𝑍/#$

𝑔4 mod 𝑝

Shared key K = 𝑔04 mod 𝑝
= (𝑔4)0 mod 𝑝

Shared key K = 𝑔04 mod 𝑝
= (𝑔0)4 mod 𝑝



Diffie-Hellman/El Gamal Encryption

• 𝐺𝑒𝑛 11 : Generate an 𝑛-bit prime 𝑝 and a generator 
𝑔 of 𝑍/∗ . Choose a random number 𝑥 ∈ 𝑍/#$

Let 𝑝𝑘 = (𝑝, 𝑔, 𝑔0) and let 𝑠𝑘 = 𝑥.

• 𝐸𝑛𝑐 𝑝𝑘,𝑚 where 𝑚 ∈ 𝑍/∗ : Generate random 𝑦
∈ 𝑍/#$ and output (𝑔4 , 𝑔04 K 𝑚)

• 𝐷𝑒𝑐 𝑠𝑘 = 𝑥, 𝑐 : Compute 𝑔04 using 𝑔4 and 𝑥 and 
divide the second component to retrieve 𝑚.

Is this Secure?How to make this really work?



How to come up with a prime p 
(1) Prime number theorem: ≈ 1/𝑛 fraction of 𝒏-bit 
numbers are prime.

(2) Primality tests [Miller’76, Rabin’80, Agrawal-
Kayal-Saxena’02] Can test in time poly(𝑛) if a given 
𝑛-bit number is prime. 

OPEN: Deterministically come up with an n-bit prime?  



How to come up with a generator g 

(1) There are lots of generators: ≈ 1/ log 𝑛 fraction 
of ℤ/∗ are generators (where p is an n-bit prime).

(2) Testing if 𝒈 is a generator: 

Theorem: let 𝑞$, … , 𝑞5 be the prime factors of 𝑝 − 1. 
Then, g is a generator of ℤ/∗ if and only if  

𝑔(/#$)/9! ≠ 1 (mod 𝑝) for all i.

OPEN: Can you test if g is a generator without knowing the 
prime factorization of p-1?  
OPEN: Deterministically come up with a generator?  



To Summarize

• Pick a random prime p together with the prime 
factorization of p-1 (How? Adam Kalai 2000 paper)

• We will see another, more commonly used method, 
soon.

• Pick a random element of ℤ/∗ and test if it is a 
generator (using theorem from last slide). 

• Continue step 2 until you hit a generator.



Squares mod P

Let P be prime. 𝑥 ∈ 𝑍:∗ is a squares mod P (also called a 
“quadratic residue”) if there is a y ∈ 𝑍:∗ s.t.

𝑥 = 𝑦; mod 𝑃.

Theorem: Exactly half of 𝑍:∗ are squares mod P.



Squares mod P: A Characterization

Claim: Fix any generator 𝑔. Then, 𝑥 ∈ ℤ:∗ is a square iff
𝐷𝐿𝑂𝐺3(𝑥) mod 𝑝 − 1 is even.

Proof (if) 
If 𝑥 = 𝑔< mod 𝑃 and 𝑎 is even, then 𝑔</; mod 𝑃 is a square 
root of 𝑥.

Proof (iff) 
If 𝑥 = 𝑔< = (𝑔=); mod 𝑃, then 𝑎 = 2𝑏 (mod 𝑃 − 1). So, 
𝑎 is even.



So, it is easy to detect whether a number mod P is a square.

Claim: 𝑥 mod P is a square iff 𝑥(:#$)/; = 1mod 𝑃

Proof (iff) If 𝑥 = 𝑦; mod 𝑃, 𝑥(:#$)/; = 𝑦(:#$) = 1𝑚𝑜𝑑 𝑃.

Proof (if) Show that the discrete log of 𝑥 has to be even and 
therefore (by previous slide) 𝑥 is a square.

Now, an Efficient Characterization…



The Problem

Claim: Given p, g, 𝑔0 mod 𝑝 and 𝑔4 mod 𝑝, adversary can

Corollary: Therefore, additionally given 𝑔04 K 𝑚 mod 𝑝, the 
adversary can determine whether 𝑚 is a square mod 𝑝, 
violating “IND-CPA security”.

compute some information about 𝑔04 mod 𝑝.determine if 𝑔04 mod 𝑝 is a square mod 𝑝.



The Problem

Claim: Given p, g, 𝑔0 mod 𝑝 and 𝑔4 mod 𝑝, adversary can
determine if 𝑔04 mod 𝑝 is a square mod 𝑝.

𝑔04 mod 𝑝 is a square ⟺ 𝑥𝑦 (mod 𝑝 − 1) is even

⟺𝑥𝑦 is even
⟺𝑥 is even or 𝑦 is even 
⟺𝑥 (𝑚𝑜𝑑 𝑝 − 1) is even or 𝑦 (mod p − 1) is even 
⟺𝑔0 𝑚𝑜𝑑 𝑝 or 𝑔4 𝑚𝑜𝑑 𝑝 is a square 

This can be checked in poly time!



Diffie-Hellman/El Gamal Encryption

Claim: Given p, g, 𝑔0 mod 𝑝 and 𝑔4 mod 𝑝, adversary can

Lesson: Best to work over a group of prime order. Such 
groups have no non-trivial subgroups.

More generally, dangerous to work with groups that have 
non-trivial subgroups (in our case, the subgroup of all 
squares mod p)

An Example: Let 𝑝 = 2𝑞 + 1 where 𝑞 is a prime itself. 
Then, the group of squares mod 𝑝 has order /#$

;
= 𝑞.

determine if 𝑔04 mod 𝑝 is a square mod 𝑝.



Diffie-Hellman/El Gamal Encryption

• 𝐺𝑒𝑛 11 : Generate an 𝑛-bit “safe” prime 𝑝 = 2𝑞 + 1
and a generator 𝑔 of 𝑍/∗ and let ℎ = 𝑔;mod 𝑝 be a 
generator of 𝑄𝑅/ . Choose a random number 𝑥 ∈ 𝑍9 . 

Let 𝑝𝑘 = (𝑝, ℎ, ℎ0) and let 𝑠𝑘 = 𝑥.

• 𝐸𝑛𝑐 𝑝𝑘,𝑚 where 𝑚 ∈ 𝑄𝑅/ : Generate random 𝑦
∈ 𝑍9 and output (𝑔4 , 𝑔04 K 𝑚)

• 𝐷𝑒𝑐 𝑠𝑘 = 𝑥, 𝑐 : Compute 𝑔04 using 𝑔4 and 𝑥 and 
divide the second component to retrieve 𝑚.



Decisional Diffie-Hellman Assumption

Hard to distinguish between 𝑔04 and a uniformly 
random group element, given 𝑔, 𝑔0 and 𝑔4

Decisional Diffie-Hellman Assumption (DDHA):

That is, the following two distributions are 
computationally indistinguishable: 

(𝑔, 𝑔0 , 𝑔4 , 𝑔04) ≈ (𝑔, 𝑔0 , 𝑔4 , 𝑢)

DH/El Gamal is IND-secure under the DDH assumption 
on the given group. 



Which Group to Use?
(1) 𝑄𝑅: for a safe prime P = 2𝑄 + 1 where 𝑄 is prime. 
The order of the group is Q.

Discrete log can be broken in sub-exponential time 
2 >?@ : >?@ >?@ : (better than poly(𝑃) but worse than 
poly(log 𝑃). )

2 Elliptic Curve Groups. The set of solutions (𝑥, 𝑦) to 
the equation 𝑦; = 𝑥A + 𝑎𝑥 + 𝑏 (mod P) together with a 
very cool group addition law.

Best known Discrete log algorithm: O( 𝑃) time!

Much smaller keys: 160-bit P suffices for “80-bit security”.


