MIT 6.875

Foundations of Cryptography
Lecture 9

Lectures 8-10

« Key Agreement and Public-key Encryption:

Definition and Properties

Constructions

1: Diffie-Hellman/El Gamal
2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

4: Learning with Errors/Regev

The Multiplicative Group Zy
={1 < x < N:gcd(x,N) = 1}

Theorem: Z)y is a group under multiplication mod N.

Inverses exist: since gcd(x, N) = 1, there exist integers a
and b s.t.
ax + bN = 1 (Bezout’s identity)

Thus, ax = 1 (mod N) ora = x~! (mod N).

The Multiplicative Group Zy
={1 < x < N:gcd(x,N) = 1}

Theorem: Z)y is a group under multiplication mod N.

Order of Zy = Euler’s totient function ¢@(N).

@(P) =P —1if P prime.
o(N) =P -1)(@Q—1)if N=PQ,P +# Q primes.

o(N) = [IR"' (P, — 1)if N =TI R™

Theorem [Lagrange, Euler]:
For every a € Zj, a®™ = 1 mod N.

Examples

1 = {1}

73 = {1,2)
Z; = {1,3)
Zr = {1,2,3,4)
Zy = {1,5)

75 ={1,2,3,4,5,6,7)

The Multiplicative Group 7Z,,

Ly: ({1, ...,p — 1}, group operation: - mod p)

Computing the group operation is easy.
Computing inverses is easy: Extended Euclid.

Exponentiation (given g € Z, and x € Z,_,, find
g”* mod p) is easy: Repeated Squaring Algorithm.

The discrete logarithm problem (given a generator
gand h € Z,, find x € Z,_; s.t.h = g* mod p) is
hard, to the best of our knowledge!

The Discrete Log Assumption

The discrete logarithm problem is: given a generator
gand h € Zy, find x € Z,,_; s.t. h = g* mod p.

Distributions...

1. Is the discrete log problem hard for a random p?
Could it be easy for some p?

2. Given p: is the problem hard for all generators g?

3. Given p and g: is the problem hard for all x?

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.

Pr[A(p, g, 9" mod p) = x] > 1/poly(logp)
for some p, random generator g of Z,,, and random x
in Z,_4, then there is a p.p.t. algorithm B s.t.

B(p,g,9* modp) = x
for all g and x.

Proof: On the board.

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.

Pr[A(p, g, 9" mod p) = x] > 1/poly(logp)
for some p, random generator g of Z,,, and random x
in Z,_4, then there is a p.p.t. algorithm B s.t.

B(p,g,9* modp) = x
for all g and x.

2. Given p: is the problem hard for all generators g?
... as hard for any generator is it for a random one.
3. Given p and g: is the problem hard for all x?
... as hard for any x is it for a random one.

Algorithms for Discrete Log

* Baby Step-Giant Step algorithm: time --- and
space --- O0(/p) .

* Pohlig-Hellman algorithm: time O (/q) where q is
the largest prime factor of p — 1. That is, there
are dlog-easy primes.

The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A4,
there is a negligible function u s.t.

p « PRIMES,; g « GEN(Z});

P —
x Lp-1: A(p, g,9* modp) = x H(n)

One-way Permutation (Family)

F(p,g,x) = (p,g,9* mod p)

Fo = {Fupg) where F, , ,(x) = (p,g,9”" mod p)

Theorem: Under the discrete log assumption, F is a

one-way permutation (resp. F,, is a one-way
permutation family).

Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A4,
there is a negligible function u s.t.

[p « PRIMES,; g < GEN(Z});]
Pr y u(n)
X,y < Lyp_1: A(p,9,9% 9%) =

N

.
A J .
. K
0. *
.
. *
. .
- *
. .
. .
- *
- *
. OI EI u .
.
., .
. o
- .
‘e .*
... “‘
"taapmunn®

Diffie-Hellman Key Exchange

D, g: Generator of our group Z,,

g* mod p

g” mod p
Pick a random Pick a random
number x € Z,_, numbery € Z,,_4
Shared key K= g*Y mod p Shared key K= g*¥ mod p

=(g”)* modp =(9”*)” modp

Diffie-Hellman/El Gamal Encryption

* Gen(1™): Generate an n-bit prime p and a generator
g of Z;,. Choose a random number x € Z,,_4

Let pk = (p, g, 9”) and let sk = x.

* Enc(pk,m) wherem € Z;: Generate random y
€ Z,_, and output (g”, g™ - m)

* Dec(sk = x,c): Compute g*¥ using g”¥ and x and
divide the second component to retrieve m.

How to make this really work? Is this Secure?

How to come up with a prime p

(1) Prime number theorem: = 1/n fraction of n-bit
numbers are prime.

(2) Primality tests [Miller’76, Rabin’80, Agrawal-

Kayal-Saxena’02] Can test in time poly(n) if a given
n-bit number is prime.

OPEN: Deterministically come up with an n-bit prime?

How to come up with a generator g

(1) There are lots of generators: = 1/logn fraction
of Z,, are generators (where p is an n-bit prime).

(2) Testing if g is a generator:

Theorem: let q4, ..., g; be the prime factors of p — 1.
Then, g is a generator of Z,, if and only if

g®P~D/4i £ 1 (mod p) for all i.

OPEN: Can you test if g is a generator without knowing the
prime factorization of p-17?

OPEN: Deterministically come up with a generator?

To Summarize

* Pick a random prime p together with the prime
factorization of p-1 (How? Adam Kalai 2000 paper)

* Pick arandom element of Z,, and test if it is a
generator (using theorem from last slide).

 Continue step 2 until you hit a generator.

* We will see another, more commonly used method,
soon.

Squares mod P

Let P be prime. x € Z; is a squares mod P (also called a
“quadratic residue”) if thereisay € Z; s.t.
x = y% mod P.

Theorem: Exactly half of Z, are squares mod P.

Squares mod P: A Characterization

Claim: Fix any generator g. Then, x € Zp is a square iff
DLOG,(x) mod p — 1is even.

Proof (if)
If x = g®“ mod P and a is even, then g
root of x.

2/2 mod P is a square

Proof (iff)
If x = g% = (g)? mod P, then a = 2b (mod P — 1). So,
a is even.

Now, an Efficient Characterization...

Claim: x mod P is a square iff x(P~1/2 = 1 mod P

Proof (iff) If x = y? mod P, x(P~1/2 = y(P=1) = 1 mod P.

Proof (if) Show that the discrete log of x has to be even and
therefore (by previous slide) x is a square.

So, it is easy to detect whether a number mod P is a square.

The Problem

Claim: Given p, g, g* mod p and g” mod p, adversary can

detepuiia sdMme hitavdaticaaleatyg fifoded p.

Corollary: Therefore, additionally given g*” - m mod p, the
adversary can determine whether m is a square mod p,
violating “IND-CPA security”.

The Problem

Claim: Given p, g, g* mod p and g” mod p, adversary can

determine if g*¥ mod p is a square mod p.

g*Y mod p is a square & xy (mod p — 1) is even

& XYy Is even
& X iIseven or y is even
& x (modp—1)isevenory (modp — 1) is even

< g* mod p or g¥ mod p is a square

This can be checked in poly time!

Diffie-Hellman/El Gamal Encryption

Claim: Given p, g, g* mod p and g” mod p, adversary can

determine if g*¥ mod p is a square mod p.

More generally, dangerous to work with groups that have
non-trivial subgroups (in our case, the subgroup of all
squares mod p)

Lesson: Best to work over a group of prime order. Such
groups have no non-trivial subgroups.

An Example: Let p = 2q + 1 where q is a prime itself.
(p-1) _ q

Then, the group of squares mod p has order

Diffie-Hellman/El Gamal Encryption

* Gen(1™): Generate an n-bit “safe” primep = 2qg + 1
and a generator g of Z, and let h = g“mod p be a

generator of QR,, . Choose a random number x € Z,, .
Let pk = (p, h, h*) and let sk = x.

Enc(pk,m) where m € QR,, : Generate random y
€ Z,; and output (g7, g* - m)

* Dec(sk = x,c): Compute g*¥ using g¥ and x and
divide the second component to retrieve m.

Decisional Diffie-Hellman Assumption

Decisional Diffie-Hellman Assumption (DDHA):

Hard to distinguish between g*¥ and a uniformly
random group element, given g, g* and g”

That is, the following two distributions are
computationally indistinguishable:

(9,9%.9%,97) = (9,9%,9”,u)

DH/El Gamal is IND-secure under the DDH assumption
on the given group.

Which Group to Use?

(1) QRp for a safe prime P = 2Q + 1 where Q is prime.
The order of the group is Q.

Discrete log can be broken in sub-exponential time

2Vlog Ploglog P (hatter than poly(P) but worse than
poly(log P).)

(2) Elliptic Curve Groups. The set of solutions (x, y) to

the equation y? = x3 + ax + b (mod P) together with a
very cool group addition law.

Best known Discrete log algorithm: O(+/P) time!
Much smaller keys: 160-bit P suffices for “80-bit security”.

