MIT 6.875

Foundations of Cryptography Lecture 9

Lectures 8-10

- <u>Key Agreement and Public-key Encryption</u>: Definition and Properties
- Constructions
 - 1: Diffie-Hellman/El Gamal
 - 2: Trapdoor Permutations (RSA)
 - 3: Quadratic Residuosity/Goldwasser-Micali
 - 4: Learning with Errors/Regev

The Multiplicative Group \mathbb{Z}_N^*

$$= \{1 \le x < N : gcd(x, N) = 1\}$$

<u>Theorem</u>: \mathbb{Z}_N^* is a group under multiplication mod N.

Inverses exist: since gcd(x, N) = 1, there exist integers a and b s.t.

$$ax + bN = 1$$
 (Bezout's identity)

Thus, $ax = 1 \pmod{N}$ or $a = x^{-1} \pmod{N}$.

The Multiplicative Group \mathbb{Z}_N^*

$$= \{1 \le x < N : gcd(x, N) = 1\}$$

Theorem: \mathbb{Z}_N^* is a group under multiplication mod N.

Order of \mathbb{Z}_N^* = Euler's totient function $\varphi(N)$.

$$\varphi(P) = P - 1 \text{ if } P \text{ prime.}$$

$$\varphi(N) = (P - 1)(Q - 1) \text{ if } N = PQ, P \neq Q \text{ primes.}$$

$$\varphi(N) = \prod_{i} P_i^{\alpha_i - 1}(P_i - 1) \text{ if } N = \prod_{i} P_i^{\alpha_i}.$$

Theorem [Lagrange, Euler]:

For every $a \in \mathbb{Z}_N^*$, $a^{\varphi(N)} = 1 \mod N$.

Examples

$$\mathbb{Z}_2^* = \{1\}$$
 $\mathbb{Z}_3^* = \{1, 2\}$
 $\mathbb{Z}_4^* = \{1, 3\}$
 $\mathbb{Z}_5^* = \{1, 2, 3, 4\}$
 $\mathbb{Z}_6^* = \{1, 5\}$
 $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6, 7\}$

The Multiplicative Group \mathbb{Z}_p^*

 \mathbb{Z}_p^* : ({1, ..., p - 1}, group operation: · mod p)

- Computing the group operation is easy.
- Computing inverses is easy: Extended Euclid.
- Exponentiation (given $g \in \mathbb{Z}_p^*$ and $x \in \mathbb{Z}_{p-1}$, find g^x mod p) is easy: **Repeated Squaring Algorithm.**
- The discrete logarithm problem (given a generator g and $h \in \mathbb{Z}_p^*$, find $x \in \mathbb{Z}_{p-1}$ s.t. $h = g^x$ mod p) is hard, to the best of our knowledge!

The Discrete Log Assumption

The discrete logarithm problem is: given a generator g and $h \in \mathbb{Z}_p^*$, find $x \in \mathbb{Z}_{p-1}$ s.t. $h = g^x$ mod p.

Distributions...

- 1. Is the discrete log problem hard for a random p? Could it be easy for some p?
- 2. Given p: is the problem hard for all generators g?
- 3. Given p and g: is the problem hard for all x?

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.

 $\Pr[A(p,g,g^x \bmod p) = x] > 1/\operatorname{poly}(\log p)$ for some p, random generator g of \mathbb{Z}_p^* , and random x in \mathbb{Z}_{p-1} , then there is a p.p.t. algorithm B s.t.

$$B(p, g, g^x \bmod p) = x$$

for all g and x.

Proof: On the board.

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.

 $\Pr[A(p,g,g^x \bmod p) = x] > 1/\operatorname{poly}(\log p)$ for some p, random generator g of \mathbb{Z}_p^* , and random x in \mathbb{Z}_{p-1} , then there is a p.p.t. algorithm B s.t.

$$B(p, g, g^x \bmod p) = x$$

for all g and x.

- 2. Given p: is the problem hard for all generators g?
 - ... as hard for any generator is it for a random one.
- 3. Given p and g: is the problem hard for all x?
 - ... as hard for any x is it for a random one.

Algorithms for Discrete Log

- Baby Step-Giant Step algorithm: time --- and space --- $O(\sqrt{p})$.
- Pohlig-Hellman algorithm: time $O(\sqrt{q})$ where q is the largest prime factor of p-1. That is, there are dlog-easy primes.

The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A, there is a negligible function μ s.t.

$$\Pr\left[\begin{matrix} p \leftarrow PRIMES_n; g \leftarrow GEN(\mathbb{Z}_p^*); \\ x \leftarrow \mathbb{Z}_{p-1}: A(p, g, g^x \bmod p) = x \end{matrix}\right] = \mu(n)$$

One-way Permutation (Family)

$$F(p, g, x) = (p, g, g^x \bmod p)$$

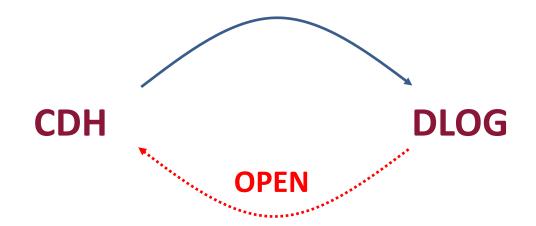
$$\mathcal{F}_{n} = \{F_{n,p,q}\} \text{ where } F_{n,p,q}(x) = (p, g, g^{x} \text{ mod p})$$

Theorem: Under the discrete log assumption, F is a one-way permutation (resp. \mathcal{F}_n is a one-way permutation family).

Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A, there is a negligible function μ s.t.

$$\Pr\left[\begin{matrix} p \leftarrow PRIMES_n; g \leftarrow GEN(\mathbb{Z}_p^*); \\ x, y \leftarrow \mathbb{Z}_{p-1}: A(p, g, g^x, g^y) = g^{xy} \end{matrix}\right] = \mu(n)$$



Diffie-Hellman Key Exchange

p, g: Generator of our group Z_p^st

$$g^x \mod p$$

 $g^y \mod p$

Pick a random number
$$x \in \mathbb{Z}_{p-1}$$

Pick a random number $y \in Z_{p-1}$

Shared key
$$K = g^{xy} \mod p$$

= $(g^y)^x \mod p$

Shared key
$$K = g^{xy} \mod p$$

= $(g^x)^y \mod p$

Diffie-Hellman/El Gamal Encryption

• $Gen(1^n)$: Generate an n-bit prime p and a generator g of Z_p^* . Choose a random number $x \in Z_{p-1}$

Let $pk = (p, g, g^x)$ and let sk = x.

- Enc(pk, m) where $m \in Z_p^*$: Generate random $y \in Z_{p-1}$ and output $(g^y, g^{xy} \cdot m)$
- Dec(sk = x, c): Compute g^{xy} using g^y and x and divide the second component to retrieve m.

How to make this really work? Is this Secure?

How to come up with a prime p

- (1) Prime number theorem: $\approx 1/n$ fraction of n-bit numbers are prime.
- (2) **Primality tests** [Miller'76, Rabin'80, Agrawal-Kayal-Saxena'02] Can test in time poly(n) if a given n-bit number is prime.

OPEN: Deterministically come up with an n-bit prime?

How to come up with a generator g

- (1) There are lots of generators: $\approx 1/\log n$ fraction of \mathbb{Z}_p^* are generators (where p is an n-bit prime).
- (2) Testing if g is a generator:

Theorem: let $q_1, ..., q_k$ be the prime factors of p-1. Then, g is a generator of \mathbb{Z}_p^* if and only if $g^{(p-1)/q_i} \neq 1 \pmod{p}$ for all i.

OPEN: Can you test if g is a generator without knowing the prime factorization of p-1?

OPEN: Deterministically come up with a generator?

To Summarize

- Pick a random prime p together with the prime factorization of p-1 (How? Adam Kalai 2000 paper)
- Pick a random element of \mathbb{Z}_p^* and test if it is a generator (using theorem from last slide).
- Continue step 2 until you hit a generator.

 We will see another, more commonly used method, soon.

Squares mod P

Let P be prime. $x \in Z_P^*$ is a squares mod P (also called a "quadratic residue") if there is a $y \in Z_P^*$ s.t.

$$x = y^2 \mod P$$
.

Theorem: Exactly half of Z_P^* are squares mod P.

Squares mod P: A Characterization

Claim: Fix any generator g. Then, $x \in \mathbb{Z}_P^*$ is a square iff $DLOG_a(x) \mod p - 1$ is even.

Proof (if)

If $x = g^a \mod P$ and a is even, then $g^{a/2} \mod P$ is a square root of x.

Proof (iff)

If $x = g^a = (g^b)^2 \mod P$, then $a = 2b \pmod{P-1}$. So, a is even.

Now, an Efficient Characterization...

Claim: $x \mod P$ is a square iff $x^{(P-1)/2} = 1 \mod P$

Proof (*iff*) If $x = y^2 \mod P$, $x^{(P-1)/2} = y^{(P-1)} = 1 \mod P$.

Proof (if) Show that the discrete log of x has to be even and therefore (by previous slide) x is a square.

So, it is easy to detect whether a number mod P is a square.

The Problem

Claim: Given p, g, $g^x \mod p$ and $g^y \mod p$, adversary can determine on p^x in family time about p is not post p in p p.

Corollary: Therefore, additionally given $g^{xy} \cdot m \mod p$, the adversary can determine whether m is a square mod p, violating "IND-CPA security".

The Problem

Claim: Given p, g, $g^x \mod p$ and $g^y \mod p$, adversary can determine if $g^{xy} \mod p$ is a square mod p.

 $g^{xy} \mod p$ is a square $\iff xy \pmod{p-1}$ is even

 $\Leftrightarrow xy$ is even

 $\Leftrightarrow x$ is even or y is even

 $\Leftrightarrow x \pmod{p-1}$ is even or $y \pmod{p-1}$ is even

 $\Leftrightarrow g^x \bmod p \text{ or } g^y \bmod p \text{ is a square}$

This can be checked in poly time!

Diffie-Hellman/El Gamal Encryption

Claim: Given p, g, $g^x \mod p$ and $g^y \mod p$, adversary can determine if $g^{xy} \mod p$ is a square mod p.

More generally, dangerous to work with groups that have non-trivial subgroups (in our case, the subgroup of all squares mod p)

Lesson: Best to work over a group of prime order. Such groups have no non-trivial subgroups.

An Example: Let p=2q+1 where q is a prime itself. Then, the group of squares mod p has order $\frac{(p-1)}{2}=q$.

Diffie-Hellman/El Gamal Encryption

• $Gen(1^n)$: Generate an n-bit "safe" prime p=2q+1 and a generator g of Z_p^* and let $h=g^2 \bmod p$ be a generator of QR_p . Choose a random number $x \in Z_q$.

Let $pk = (p, h, h^x)$ and let sk = x.

- Enc(pk, m) where $m \in QR_p$: Generate random $y \in Z_q$ and output $(g^y, g^{xy} \cdot m)$
- Dec(sk = x, c): Compute g^{xy} using g^y and x and divide the second component to retrieve m.

Decisional Diffie-Hellman Assumption

Decisional Diffie-Hellman Assumption (DDHA):

Hard to distinguish between g^{xy} and a uniformly random group element, given g, g^x and g^y

That is, the following two distributions are computationally indistinguishable:

$$(g, g^x, g^y, g^{xy}) \approx (g, g^x, g^y, u)$$

DH/El Gamal is IND-secure under the DDH assumption on the given group.

Which Group to Use?

(1) QR_P for a safe prime P=2Q+1 where Q is prime. The order of the group is Q.

Discrete log can be broken in *sub-exponential* time $2^{\sqrt{\log P \log \log P}}$ (better than $\operatorname{poly}(P)$ but worse than $\operatorname{poly}(\log P)$.)

(2) Elliptic Curve Groups. The set of solutions (x, y) to the equation $y^2 = x^3 + ax + b$ (mod P) together with a very cool group addition law.

Best known Discrete log algorithm: $O(\sqrt{P})$ time!

Much smaller keys: 160-bit P suffices for "80-bit security".