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Secret-Key Encryption

sk sk

m

c ← Enc(sk,m)

The Key Agreement Problem:
How did Alice and Bob get the same sk to begin with?!

(also called symmetric encryption)



Secret-Key Encryption

The Key Agreement Problem:
How did Alice and Bob get the same sk to begin with?!

Physical Exchange of Keys is Clunky and Impractical:

• What if Alice and Bob have never met in person?

• Even so, what if they need to refresh their keys?

• Too expensive and cumbersome: 
Each user will need to store 𝑁 keys, too expensive!



Secret-Key Encryption

sk sk

c ← Enc(sk,m)

The Key Agreement Problem: Can Alice and Bob, who 
never previously met, exchange messages securely?



Lectures 8-10

• Key Agreement and Public-key Encryption: 
Definition and Properties 

• Constructions

2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

1: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev
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Topic: 
Project Proposal 

Establishing secure communications between seperate 

secure sites over insecure communication lines. 

Assumptions: No prior arrangements have been made between the two 

Method 1: 

sites, and it is assumed that any information known 

at either site is known to the enemy. The sites, 

however, are now secure, and any information will 

not be divulged. 

Guessing. Both sites guess at keywords. These 

guesses are one-way encrypted, and transmitted to the 

other site. If both sites should chance to guess at 

the same keyword, this fact will be discovered when 

the encrypted versions are compared, and this keyword 

will then be used to establish a communications link. 

Discussion: No, I am not joking . If the keyword space is of size 

N, then the probability that both sites will guess at 

a common keyword r&pidly approaches one after the number 

of guesses exceeds sqrt(N). Anyone listening in on the 

line must examine all N possibilities. In more concrete 

terms, if the two sites can process 1000 guesses per 

second, and desire to establish a link in roughly 10 

seconds, then they can use a keword space of size 

N=10,0002=108 • If the enemy is presumed to have 

a comprable technology, i.e., 1000 guesses/sec, then 

he can consider all 108 possibilities in 108/103 seconds, 

or 105 seconds, which is about one day. As the 

had the opportuni ty to prearrange an _- encr;y;pt1.on method, then they 

will be unable to communicate securely over an insecure channel. 

While this might seem intuitively obvious, r believe it is false. 

r believe that it is possible for two people to communicate securely 

without having made any prior arrangements that are not completely 

public. My quarter project would be to investigate any method by which 

this could be accomplished, and what advantages and disadvantages 

these methods might have over other ways of establishing secure 

communications. 
\ 
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Merkle’s Idea

Assume that 𝐻: 𝑛! → [𝑛!] is an injective OWF.

Pick 𝑛 random 
numbers 𝑥", … , 𝑥#

Pick 𝑛 random 
numbers 𝑦", … , 𝑦#

{𝐻 𝑥" , 𝐻 𝑥! , … , 𝐻 𝑥# }

{𝐻 𝑦" , 𝐻 𝑦! , … , 𝐻 𝑦# }



Merkle’s Idea
Assume that 𝐻: 𝑛! → [𝑛!]
is an injective OWF.

Pick 𝑛 random 
numbers 𝑥", … , 𝑥#

Pick 𝑛 random 
numbers 𝑦", … , 𝑦#

{𝑯 𝒙𝟏 , 𝐻 𝑥! , … , 𝐻 𝑥# }

{𝐻 𝑦" , 𝑯 𝒚𝟐 , … , 𝐻 𝑦# }

There is a common number (say 𝑥& = 𝑦' w.h.p.) 

Alice and Bob can detect it in time 𝑂(𝑛), and they 
set it as their shared key.



Merkle’s Idea
Assume that 𝐻: 𝑛! → [𝑛!]
is an injective OWF.

Pick 𝑛 random 
numbers 𝑥", … , 𝑥#

Pick 𝑛 random 
numbers 𝑦", … , 𝑦#

{𝑯 𝒙𝟏 , 𝐻 𝑥! , … , 𝐻 𝑥# }

{𝐻 𝑦" , 𝑯 𝒚𝟐 , … , 𝐻 𝑦# }

How long does it take Eve to compute the shared key?

She knows 𝑖 and 𝑗, but she needs to invert the OWF. 
Assuming the OWF is very strong, that is Ω(𝑛!) time!



Merkle’s Idea
Assume that 𝐻: 𝑛! → [𝑛!]
is an injective OWF.

Pick 𝑛 random 
numbers 𝑥", … , 𝑥#

Pick 𝑛 random 
numbers 𝑦", … , 𝑦#

{𝑯 𝒙𝟏 , 𝐻 𝑥! , … , 𝐻 𝑥# }

{𝐻 𝑦" , 𝑯 𝒚𝟐 , … , 𝐻 𝑦# }

Problem: Only protects against quadratic-time Eves 
(still an excellent idea) 
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New Directions in Cryptography 
Invited Paper 

WHITFIELD DIFFIE AND MARTIN E. HELLMAN, MEMBER, IEEE 

Abstract-Two kinds of contemporary developments in cryp- 
tography are examined. Widening applications of teleprocessing 
have given rise to a need for new types of cryptographic systems, 
which minimize the need for secure key distribution channels and 
supply the equivalent of a written signature. This paper suggests 
ways to solve these currently open problems. It also discusses how 
the theories of communication and computation are beginning to 
provide the tools to solve cryptographic problems of long stand- 
ing. 

I. INTRODUCTION 

W E STAND TODAY on the brink of a revolution in 
cryptography. The development of cheap digital 

hardware has freed it from the design limitations of me- 
chanical computing and brought the cost of high grade 
cryptographic devices down to where they can be used in 
such commercial applications as remote cash dispensers 
and computer terminals. In turn, such applications create 
a need for new types of cryptographic systems which 
minimize the necessity of secure key distribution channels 
and supply the equivalent of a written signature. At the 
same time, theoretical developments in information theory 
and computer science show promise of providing provably 
secure cryptosystems, changing this ancient art into a 
science. 

The development of computer controlled communica- 
tion networks pron$ses effortless and inexpensive contact 
between people or computers on opposite sides of the 
world, replacing most mail and many excursions with 
telecommunications. For many applications these contacts 
must be made secure against both eavesdropping.and the 
injection of illegitimate messages. At present, however, the 
solution of security problems lags well behind other areas 
of communications technology. Contemporary cryp- 
tography is unable to meet the requirements, in that its use 
would impose such severe inconveniences on the system 
users, as to eliminate many of the benefits of teleprocess- 
ing. 

Manuscript received June 3,1976. This work was partially supported 
by the National Science Foundation under NSF Grant ENG 10173. 
Portions of this work were presented at the IEEE Information Theory 
Workshop;Lenox , MA, June 23-25, 1975 and the IEEE International 
Symposium on Information Theory in Ronneby, Sweden, June 21-24, 
1976. 

W. Diffie is with the Department of Electrical Engineering, Stanford 
Universitv. Stanford. CA. and the St,anford Artificial IntelliPence Lab- 
oratory, g&ford, CIk 94.505. 

Y 

M. E. Hellman is with the Department of Electrical Engineering, 
Stanford University, Stanford, CA 94305. 

The best known cryptographic problem is that of pri- 
vacy: preventing the unauthorized extraction of informa- 
tion from communications over an insecure channel. In 
order to use cryptography to insure privacy, however, it is 
currently necessary for the communicating parties to share 
a key which is known to no one else. This is done by send- 
ing the key in advance over some secure channel such as 
private courier or registered mail. A private conversation 
between two people with no prior acquaintance-is a com- 
mon occurrence in business, however, and it is unrealistic 
to expect initial business contacts to be postponed long 
enough for keys to be transmitted by some physical means. 
The cost and delay imposed by this key distribution 
problem is a major barrier to the transfer of business 
communications to large teleprocessing networks. 

Section III proposes two approaches to transmitting 
keying information over public (i.e., insecure) channels 
without compromising the security of the system. In a 
public key cryptosystem enciphering and deciphering are 
governed by distinct keys, E and D, such that computing 
D from E is computationally infeasible (e.g., requiring 
lOloo instructions). The enciphering key E can thus be 
publicly disclosed without compromising the deciphering 
key D. Each user of the network can, therefore, place his 
enciphering key in a public directory. This enables any user 
of the system to send a message to any other user enci- 
phered in such a way that only the intended receiver is able 
to decipher it. As such, a public key cryptosystem is a 
multiple access cipher. A private conversation can there- 
fore be held between any two individuals regardless of 
whether they have ever communicated before. Each one 
sends messages to the other enciphered in the receiver’s 
public enciphering key and deciphers the messages he re- 
ceives using his own secret deciphering key. 

We propose some techniques for developing public key 
cryptosystems, but the problem is still largely open. 

Public key distribution systems offer a different ap- 
proach to eliminating the need for a secure key distribution 
channel. In such a system, two users who wish to exchange 
a key communicate back and forth until they arrive at a 
key in common. A third party eavesdropping on this ex- 
change must find it computationally infeasible to compute 
the key from the information overheard, A possible solu- 
tion to the public key distribution problem is given in 
Section III, and Merkle [l] has a partial solution of a dif- 
ferent form. 

A second problem, amenable to cryptographic solution, 
which stands in the way of replacing contemporary busi- 

. 

Diffie & Hellman 1976 

Marked the birth of public-key 
cryptography.

Invented the Diffie-Hellman key 
exchange (conjectured to be secure 
against all poly-time attackers unlike
Merkle).

Used to this day (e.g., TLS 1.3) albeit 
with different groups than what DH 
had in mind.

Turing Award 2015



Rivest, Shamir & Adleman 1978

Invented the RSA trapdoor 
permutation, public-key encryption 
and digital signatures.

RSA Signatures used to this day (e.g., 
TLS 1.3) in essentially the original 
form it was invented.

Turing Award 2002

I. Introduclion

Iccbnuiues
S I . , Ciraham. R
1 d i t o i s

A Method for Obtaining
Digital Signatures and Publie
Key Cryptos\'stems

R. 1., Ri\L'\!. A Shan"i)r. atid ! . Adlcniati
MI'I' LnhorahHA hit" Comptiici-
aiKl Dc'pannioiU oi Maihci

An cncrvpliuH iiuthod is prtserik<l \^i(h the no^el
property fhat publicly re^ialin^ an t n t n p l i o n key
does not thcrcb) repeal the corrcspondin;^ decryplion
ke>. Ihis has i^^o irnpetrtanl ionstijuonccs:
(1) ( 'ouriers or ojhcr secure means are no! needed lo
transmit ke \ s . since A inessai^e can be eitciphered
using an encryption key piihlkly revealed in Ihe
intended recipient. Onh he cati dtctpher (he oicssasie.
sinee on!y he krKivss Jhe corrcspcHidin}^ doiryplion key.
(2) A message can he "Sijined" usiii;^ a p rha l eh held
decryption ke>. \ n \ o n e c;ui %erif\ Oiis si^naliire usinj;
the eorrespondin^ puhlicl) repealed encryption k t ) .
Signatures cannot be !<!r}*ed, and a sij;iier cannot laJer
deny the validity of his signature. This has <»h\ious
applications in "'eleclronic rnail" and "electronic funds
transfer" svsteuis. A nussajie is enervpted h>
representing it as a number \ 1 , raising M to a publieh
specified power e. and then taking the remainder
when the result is divided by Ihc publicly specified
product. //. of two large secret prime numbers p and q.
Decryption is similar: only a difTerent. secret, power d
is used, where e d " Umod (p 11 (q - U ) . Ihe
security of the system rests in parJ on ihe difficulty of
factoring the published divisor, n.

Key Words and Phrases: digital signatures, pnblic-
key cryptosystenis, privacy, authentication, secnril \ .
factori/ation. prime number, electronic mail, message-
passing, electronic funds transfer, cryptograph).
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The era ot "elecfronic mail" [ill] may soon be upon
us: we must ensure that tvv<i important properties of
the eurrt-nt ' 'paper mail" system are preserved: (a)
messages jrc prn-air., and (h) messages ean be signed.
We demonstrate iri this paper how io build these
eapabiliiies into an electronie mail system.

At ihe heart ot our proposal is a new eneryption
method Ih i s method provides an implementation ot a
q-*ubl]e-ke\ crvptosvstem". an elegant eoneept in-

vented h\ Diffie and Hellman [1], Their article moti-
vated our research, sinec ihev presented ihe concept
but not an\ practical implementatuin of sue-h a system.
Readers taniiliar with | I | mav vMsh to skip direetly to
Seeni'ii ^' tor a iJeserinlion ol our method.

II. Public-Ke\ Cnpiosystonis

In a "pubhe-kev ^rvptosvstem"' eaeh user plaees in
a piihlu hie au enervption procedure h- That is, the
pubjii, file is a liueelorv eivinu Ihe enerxption proce-
dure uf eaeh user, ! he user keeps seeret the details of
his e! lirespufuJiue deerv plu.'ii procedure D. These pro-
eeduiLS have ihe toilovvinii lour properties:

laj I.)eeic>lK rinu the enciphered l\irui of a message M
orniallv,

M

(b) Both h and D are easv to compute,

{e) By pubheK reveahny I: tlie user does not reveal an
easv vvav to eouipute D. This means that in praetiee
oiilv he ean i.leervpt messages ener\pted vv ith I., or
couipute L) effieientU .

(di If a message M is first deciphered and then enei-
phercLi. M is the resulL bormallv-

dXMl) M (2)

Au euervphon (iu deeisplion) [iroeeckire t\pical!y
Lonsisis of a \it'nciid nwiluni aiul an otur\pii(>n ko\. "I he
geneiai nieifiod, under control of the k e \ . eueiphers a
message M lu obtain the enciphered form ol the
message, ealled fhe ciphcricxi ( ' . l : \ e r \one can use the
same geneial nielhod; the seeuritv of a given proeedure
will resi on the seeurit) of the kev . Revealing an
ener\ption algorithm ihen means revealing the key.

When ihe user reveals H he reveals a very mcfficieni
method of eoniputing D((_'); testing all possible mes-
sages M until one sueh that E(M) ^ C is found. If
pnipertv (el is satisfied the number of such messages to
lest will be so large that this approaeh is unpractical.

A luneiion V satisfying (a)-(e) is a ""trap-door otie-
way function;" if it also satisfies (d) it is a '"trap-door
one-way permutat ion." Diffie and Hellman [ 1 | intro-
duced the concept of trap-door one-way functions but

ot
Ihc .\CM

Fehruarv I'
Volume 21
Number 2



Goldwasser & Micali 1982
“Probabilistic Encryption”: defined 
what is now the gold-standard of 
security for public-key encryption (two 
equivalent defs: indistinguishability 
and semantic security) 

GM-encryption: based on the 
difficulty of the quadratic residuosity
problem, the first homomorphic 
encryption.

Turing Award 2012



The Secret History of Public-key Encryption
Claimed to be invented in secret in early 1970s at the GCHQ 
(British NSA) by James Ellis, Clifford Cocks and Malcolm 
Williamson.



Public-Key Encryption
(also called asymmetric encryption)

Anyone can encrypt to Bob.

Bob, and only Bob, can decrypt.
GOAL: 



Public-Key Encryption

❶ Bob generates a pair of keys, a public 
key pk, and a private (or secret) key sk.

❸ Alice encrypts m to Bob using pk

❷ Bob “publishes” pk and keeps sk to himself.

c ← Enc(pk,m)

❹ Bob decrypts using sk

sk

Bob pk

m ← Dec(sk,c)



Public-Key Encryption

• 𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛 1# .
PPT Key generation algorithm generates a public-private key pair.

• 𝑐 ← 𝐸𝑛𝑐 𝑝𝑘,𝑚 .
Encryption algorithm uses the public key to encrypt message 𝑚.

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐 .
Decryption algorithm uses the private key to decrypt ciphertext 𝑐.

Correctness: For all pk, sk, m: 𝐷𝑒𝑐 𝑠𝑘, 𝐸𝑛𝑐 𝑝𝑘,𝑚 = m.

A triple of PPT algorithms (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) s.t.



How to Define Security

c ← Enc(pk,m)
sk

Bob pk

Eve knows Bob’s public key pk

Eve sees polynomially many ciphertexts 𝑐", 𝑐!, … of 
messages 𝑚", 𝑚!, …
Given this: Eve should not get any partial information  
about the set of messages.



IND-Security (also called IND-CPA)

EveChallenger
𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛 1! 𝑝𝑘

𝑚" = (𝑚"
#, 𝑚"

$, … ,𝑚"
%)

𝑚# = (𝑚#
#, 𝑚#

$, … ,𝑚#
%)

𝑏 ← 0,1

𝑐& ← 𝐸𝑛𝑐(𝑝𝑘,𝑚'
& )

(𝑐#, 𝑐$, … , 𝑐%)

𝑏′

Eve wins if 𝑏' = 𝑏. The encryption scheme is IND-secure if no PPT 
Eve can win in this game with probability better than ()+ negl(𝑛).

𝒔. 𝒕. 𝒎𝟎
𝒊 = |𝒎𝟏

𝒊 | 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒊

This def is unachievable. 
Can you spot the issue?



“Semantic Security”: the computational analog of 
Shannon’s perfect secrecy definition.

An Alternative Definition

Turns out to be equivalent to IND-security (just as in Lec 1 
but the proof is more complex)

We will stick to IND-security as it’s easy to work with.



Simplifying the Definition: 
One Message to Many Message Security

EveChallenger
𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛 1! 𝑝𝑘

𝑏 ← 0,1

𝒄 ← 𝑬𝒏𝒄(𝒑𝒌,𝒎𝒃; 𝒓)
𝒄

𝑏′

Eve wins if 𝑏' = 𝑏. The encryption scheme is single-message-IND-
secure if no PPT Eve can win with prob. better than ()+ negl(𝑛).

𝒔. 𝒕. 𝒎𝟎 = |𝒎𝟏|𝒎𝟎,𝒎𝟏



Simplifying the Definition: 
One Message to Many Message Security

EveChallenger
𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛 1! 𝑝𝑘

𝑏 ← 0,1

𝑐 ← 𝐸𝑛𝑐(𝑝𝑘,𝑚')
𝒄

𝑏′

Theorem: A public-key encryption scheme is IND-
secure iff it is single-message IND-secure.

𝑠. 𝑡. 𝑚" = |𝑚#|𝑚", 𝑚#



Constructions of Public-key Encryption

2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

1: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev



Groups

Group 𝐺: (finite set 𝑆, group operation ∗: 𝑆×𝑆 → 𝑆)

Associative: 𝑔" ∗ 𝑔! ∗ 𝑔M = 𝑔" ∗ 𝑔! ∗ 𝑔M

Identity: Id ∗ 𝑔 = 𝑔 ∗ 𝐼𝑑 = 𝑔

Inverse: for every 𝑔, there is a 𝑔′ s.t.
𝑔 ∗ 𝑔N = 𝑔N ∗ 𝑔 = 𝐼𝑑

Commutative: 𝑔" ∗ 𝑔! = 𝑔! ∗ 𝑔"



Order
Order of a Group 𝐺 =  (𝑆, ∗) is simply 𝑆

(sometimes we will just write |𝐺|).

Order of an element g ∈ 𝐺 , denoted 𝑜𝑟𝑑(𝑔) is the 
minimum 𝑛 > 0 s.t.

𝑔 ∗ 𝑔 ∗ ⋯∗ 𝑔 = 𝐼𝑑

Lagrange’s Theorem:  𝑜𝑟𝑑(𝑔) always divides 𝐺 .

A generator is an element of order 𝐺 .

A cyclic group is one that has a generator. 



The Additive Group ℤ𝑵
ℤO: ({0,1, … , N − 1}, group operation: + mod 𝑁)

• Order? 𝑁

• Generators? 
Every x that is relatively prime to N is a generator. 



The Additive Group ℤ𝑵
ℤO: ({0,1, … , N − 1}, group operation: + mod 𝑁)

• Computing the group operation is easy 
(= poly(log𝑁) time).

• Computing inverses is easy.

• Iterated group operations (“exponentiation”) is easy.

Given 𝑔 ∈ ℤO and 𝑛 ∈ ℤ, compute 𝑔 + 𝑔 +⋯+ 𝑔
𝑛 times



The Additive Group ℤ𝑵
ℤO: ({0,1, … , N − 1}, group operation: + mod 𝑁)

• Computing the group operation is easy (=poly time).

• Computing inverses is easy.

• Exponentiation is easy.

• The discrete logarithm problem is easy.

Given 𝑔, ℎ ∈ ℤP, find 𝑛 ∈ ℤ, s.t. ℎ = 𝑔 + 𝑔 +⋯+ 𝑔
𝑛 times= 𝑛𝑔 (mod 𝑁)

Extended Euclidean algorithm: 𝑛 = ℎ𝑔Q"(mod 𝑁)



The Multiplicative Group ℤ𝒑∗

ℤP∗ : ({1, … , p − 1}, group operation: _ mod 𝑝): p prime

• Order the group = 𝜑 𝑝 = 𝑝 − 1

(Euler’s totient function 𝜑 𝑁 = | 1 ≤ x < N: gcd x, N = 1 |

• If p is prime, ℤP∗ is cyclic.



The Multiplicative Group ℤ𝒑∗

ℤP∗ : ({1, … , p − 1}, group operation: _ mod 𝑝)

• Computing the group operation is easy.

• Computing inverses is easy: Extended Euclid.

• Exponentiation (given 𝑔 ∈ ℤP∗ and 𝑥 ∈ ℤPQ", find 
𝑔S mod p) is easy: Repeated Squaring Algorithm.

• The discrete logarithm problem given 𝑔, ℎ ∈ ℤP∗ , 
find 𝑥 ∈ ℤPQ" s.t. h = 𝑔S mod p) is hard, to the 
best of our knowledge!



Diffie-Hellman Key Exchange

(𝑔S)T = (𝑔T)SCommutativity in the exponent:

So, you can compute 𝑔ST given either 𝑔S and 𝑦, or 
𝑔T and 𝑥.

Hard to compute 𝑔ST given only 𝑔, 𝑔S and 𝑔T
Diffie-Hellman Assumption (DHA):

(where 𝑔 is an element of some group)



Diffie-Hellman Key Exchange

Hard to compute it given only 𝑔, 𝑔S and 𝑔T
Diffie-Hellman Assumption (DHA):

We know that if discrete log is easy, DHA is false.

Major Open Problem:  
Are discrete log and DHA equivalent?



Diffie-Hellman Key Exchange

Pick a random 
number 𝑥 ∈ 𝑍PQ"

𝑔S mod 𝑝

𝑝, 𝑔:Generator of our group 𝑍*∗

Pick a random 
number y ∈ 𝑍PQ"

𝑔T mod 𝑝

Shared key K = 𝑔ST mod 𝑝
= (𝑔T)S mod 𝑝

Shared key K = 𝑔ST mod 𝑝
= (𝑔S)T mod 𝑝



Diffie-Hellman/El Gamal Encryption

• 𝐺𝑒𝑛 1# : Generate an 𝑛-bit prime 𝑝 and a generator 
𝑔 of 𝑍P∗ . Choose a random number 𝑥 ∈ 𝑍PQ"

Let 𝑝𝑘 = (𝑝, 𝑔, 𝑔S) and let 𝑠𝑘 = 𝑥.

• 𝐸𝑛𝑐 𝑝𝑘,𝑚 where 𝑚 ∈ 𝑍P∗ : Generate random 𝑦 ∈
𝑍PQ" and output (𝑔T , 𝑔ST _ 𝑚)

• 𝐷𝑒𝑐 𝑠𝑘 = 𝑥, 𝑐 : Compute 𝑔ST using 𝑔T and 𝑥 and 
divide the second component to retrieve 𝑚.

Is this Secure?How to make this really work?



How to come up with a prime p 

• How to come up with a group ℤP∗ = how to 
generate a large prime 𝑝?  

(1) Prime number theorem: ≈ 1/𝑛 fraction of 𝒏-bit 
numbers are prime.

(2) Primality tests [Miller’76, Rabin’80, Agrawal-
Kayal-Saxena’02] Can test in time poly(𝑛) if a given 
𝑛-bit number is prime. 



How to come up with a generator g 

• How to come up with a generator of ℤP∗ ?

(1) There are lots of generators: ≈ 1/𝑛 fraction of 𝒏-
bit numbers are prime.

(2) Testing if 𝒈 is a generator: 

• If p is prime, ℤP∗ is cyclic (so generators exist).

Theorem: let 𝑞", … , 𝑞U be the prime factors of 𝑝. 
Then, g is a generator of ℤP∗ if and only if  

𝑔(PQ")/W! ≠ 1 (mod 𝑝) for all i.



To Summarize

• Pick a random prime p together with its prime 
factorization (Adam Kalai 2000 paper)

• Another, more commonly used method, in the next 
lecture.

• Pick a random element of ℤP∗ and test if it is a 
generator (using theorem from last slide). 

• Continue this process until you hit a generator. The 
density of generators is large enough that this will 
converge in expected poly(log p) time.



Next Lecture: More on Diffie-Hellman 
Key Exchange 


