MIT 6.875

Foundations of Cryptography
Lecture 7

Recap + Today

/ Define one-way functions (OWEF).
 Define Hardcore bits (HCB).

«/ Show that one-way functions* + HCB = PRG

Goldreich-Levin Theorem: “every OWF has a HCB.”

Recap + Today

/ Define one-way functions (OWEF).
 Define Hardcore bits (HCB).

«/ Show that one-way functions* + HCB = PRG

Goldreich-Levin Theorem.: for every OWF/OWP F,
there is another OWF/OWP F’ which has a HCB.

Goldreich-Levin (GL) Theorem: Version 1

Let {B,: {0,1}"*— {0,1}} where
B,-(x) = (r,x) = Y.}-; 1r;x; mod 2
be a collection of predicates (one for each r). Then, for every

one-way function F, a random B,. is hardcore. That is, for
every one-way function F, every PPT A, there is a negligible

function u s.t.
Pr[x « {0,1}%r « {0,1}"": A(F(x),r) = B.(x)] < % + u(n)

GL Theorem: Version 2

For every one-way function F, there is a related
one-way function

F'(x,r) = (F(x),7)

which has a deterministic hardcore predicate. In particular,
the predicate B(x,r) = (r, x) mod 2 is hardcore for F'.

Prlx « {0,137 « {0,1}: A(F'(x,1)) = (1, x)] < %+ u(n)

Key Point:
This statement is sufficient to construct PRGs from any OWP.

If there are OWPs, then there are PRGs

CONSTRUCTION

Let FF be a one-way permutation, then ¢ defined below is a
PRG.

Then, define G(x,r) = F'(x,r) || (r,x) = F(x) || || {r, x) .

Theorem: (G is a PRG assuming F is a one-way permutation.

We proved a weaker version in L6:

Let’s assume a pretty good predictor P

Pr[x « {0,1}";r « {0, 1} P(F(x),r) =(r,x)] = % + 1/p(n)

Then there is a OWF inverter A.
Pr[x « {0,13" : A(F(x)) € F"Y(F(x))| = 1/p'(n)

We proved a weaker version in L6:

Let’s assume a pretty good predictor P

Pr[x « {0,1}";r « {0, 1} P(F(x),r) =(r,x)] = % + 1/p(n)

First, we used an averaging argument.

Claim: For at least a 1/2p(n) fraction of the x,

Prlr « {0,1}": P(F(x),r) = (r,x)] = % + 1/2p(n)

Call these the good x.

Proof: On the board.

We proved a weaker version in L6:

For at least a 1/2p(n) fraction of the x, ;
Pr[r « {0,1}*: P(F(x),r) = (r,x)] = 2 + 1/2p(n)

Key Idea: Linearity

Pick a random r and ask P to tells us (r, x) and (r + e;, x).
Subtract the two answers to get (e;, x) = x;.

Proof: Pr[we compute x; correctly]
> Pr[P predicts (r, x) and (r + e;, x) correctly]
= 1 — Pr|P predicts(r, x) or (r + e;, x) wrong]
> 1 — (Pr[P predicts(r, x) wrong] +
Pr[P predicts(r + e;, x) wrong]) (by union bound)

1 1 1
21_2'(Z_zp(n))_5+1/p(")

We proved a weaker version in L6:

For at least a 1/2p(n) fraction of the x, ;
Pr[r « {0,1}*: P(F(x),r) = (r,x)] = 2 + 1/2p(n)

Inverter A:

Repeat for eachi € {1,2, ...,n}:
Repeat O(logn (p(n))?) times:

Pick a random r and ask P to tells us (r, x) and (r + ¢;, x).
Subtract the two answers to get a guess for x;.

Compute the majority of all such guesses and set the bit as x;

Output the concatenation of all x; as x.

Analysis: Chernoff + Union Bound

Who's the culprit here?

For at least a 1/2p(n) fraction of the x, ;
Pr[r « {0,1}*: P(F(x),r) = (r,x)] = 2 + 1/2p(n)

Pick a random r and ask P to tells us (r, x) and (r + e;, x).
Subtract the two answers to get (e;, x) = x;.

Proof: Pr[we compute x; correctly]
> Pr[P predicts (r, x) and (r + e;, x) correctly]
= 1 — Pr|P predicts(r, x) or (r + e;, x) wrong]
> 1 — (Pr|P predicts(r, x) wrong| +
Pr[P predicts(r + e;, x) wrong]) (by union bound)

1 1 1
21_2'(Z_zp(n))_5+1/p(n)

The Real Proof of the GL Theorem

(attributed to Charlie Rackoff)

Assume (after averaging) that for = 1/2p(n) f
.

Pr[r < {0,1}: P(F(x),r) = (r,x)] = > + 1/
i\\h Aia :ii—- {
For a minute, assume we have a bit of help/ad 4 Vi

|

-

Pick a random r, ask the Oracle to tells us (r, x)
and ask P to tell us (r + e;, x). Subtract the two
answers to get (e;, x) = x;.

Proof: Pr[we compute x; correctly]
> Pr|P predicts(r + e;, x) correctly| > % + 1/2p(n)

The Real Proof of the GL Theorem

Assume (after averaging) that for = 1/2p(n) f

Pr[r « {0,1}": P(F(x),r) = (r,x)] = > + 1/

Pick a random r, guess (r, x) and ask P to tell us (r + ¢;, x).
Subtract the two to get (e;, x) = x;.

If our guesses are all correct, then the analysis works out just
as before.

But what’s the chance...?
The number of r’sism = O(nlogn (p(n))?).

Parsimony in Guessing

Pick random “seed vectors” sy, ..., Sjpg(m+1), and guess ¢; = (sj, x)

for allj.

The probability that all guesses are correct is zlog(1m+1) =1/(m+1)

which is not bad.

From the seed vectors, generate many more r;.

Let T4, ..., T;;, denote all possible non-empty subsets of
{1,2,...,log (m + 1)}. We will let

(4] :@jETi Sj and bi :@jETi Cj

Key Observation: If the guesses cy, ..., Clogm+1) are all correct,
then so are the by, ..., byy,.

The OWF Inverter

Generate random Sy, ..., Sjog(m+1) and bits ¢y, ..., Clogm+1)-

From them, derive 1y, ..., Nog(m+1) and bits by, ..., by, as in the
previous slide.

Repeat for each i € {1,2, ...,n}:
Repeat 100n(p(n))? times:

Ask P to tells us (r; + e;, x). XOR P’s reply with b; to get
a guess for x;.

Compute the majority of all such guesses and set the bit as x;

Output the concatenation of all x; as x.

Analysis of the Inverter

Let’s condition on the guesses cy, ..., Clog(m+1) being all correct.

The main issue: The r; are not independent (can’t do Chernoff)
Key Observation: The r; are pairwise independent.

Therefore, can apply Chebyshev!

We have that
p = Pr[Inverter succeeds | all guesses correct, good x| = 0.99.

(Pf. on the board, also in the next two slides)

Putting it all together

Pr|[Inverter succeeds]|
> Pr|[Inverter succeeds | all guesses correct, good x] -

Pr|[all guesses correct] - Pr[good x|
1 1
m+1 . 2p(n) P
1
2nZp(n)® P
So, it suffices to show that p is large.

By our calculation (on the board), p = 0.99, so we are done. .

Can also make the success probability = 1/p(n) by enumerating
over all the “guesses”. Each guess results in a supposed inverse,
but we can check which of them is the actual inverse!

The Coding-Theoretic View of GL

x = ({x,7))refo,1yn Can be viewed as a highly redundant,
exponentially long encoding of x =the Hadamard code.

P(F(x),r) can be thought of as providing access to a noisy
codeword.

What we proved:
* unique decoding algorithm for Hadamard code with error

rate i —1/p(n).
* list-decoding algorithm for Hadamard code with error rate

>~ 1/p(n).

Hardcore Predicates from any
List-Decodable Code

(due to Impagliazzo and Sudan)
x — C(x) is the encoding.

. . 1 . :
Given a C(x) thatis incorrect at il fraction of the locations, a
list-decoder outputs a list {x4, ..., x,,} of possibilities for x.

The hardcore predicate is
Bi(x) = C(x);.

A hardcore-bit predictor gives us access to a corrupted
codeword. Running the list-decoder on it gives us the list of
possible inverses. The fact that the OWF is easy to compute
means that we can filter out the bogus (non-)inverses.

Recap
1. Defined one-way functions (OWEF).
&. Defined Hardcore bits (HCB).

3. Goldreich-Levin Theorem: every OWF has a HCB.

(showed proof for an important special case)

4. Show that one-way permutations (OWP) = PRG

(in 1act, one-wagy functions = PRG, but that’s a
much harder theorem)

Universal Hardcore Predicate Conjecture 1

For every one-way function F,
there exists a circuit B s.t.
for every PPT Circuit/Turing Machine A,
there is a negligible function u s.t.

Pr[x « {0,13" : A(F(x)) = Br(x)| < % + u(n)

In fact: | conjecture that for every one-way function F, there
exists an 1 for which the predicate B, (x) = (rg, x) that is

hardcore.

Universal Hardcore Predicate Conjecture 2

For every one-way function F,
there is an efficiently generatable circuit By s.t.
for every PPT Circuit/Turing Machine A,
there is a negligible function u s.t.

Pr[x «{0,1}": A(F(x)) = BF(x)] < % + u(n)

Other Topics (Time permitting)

1. OWF = PRG?%

2. Pseudorandom Permutations from
Pseudorandom Functions
(the Luby-Rackoff construction)

Minicrypt:

Zero-
Knowledge CCA-secure
DI’OOfTS MAC]| secret-key enc.
Digital Bit 1
Signatures Commitment
Secret-key
PRF | encryption
PRG (Stateful)
Hashing —¥| Secret-key
encryption

N OWF

|

Candidate Constructions: from number theory, geometry, combinatorics,...

