MIT 6.875

Foundations of Cryptography Lecture 7

Recap + Today

Define one-way functions (OWF).

Define Hardcore bits (HCB).

Show that one-way functions* $+\mathrm{HCB} \Rightarrow$ PRG

Goldreich-Levin Theorem: "every OWF has a HCB."

Recap + Today

Define one-way functions (OWF).

Define Hardcore bits (HCB).

Show that one-way functions* $+\mathrm{HCB} \Rightarrow \mathrm{PRG}$

Goldreich-Levin Theorem: for every OWF/OWP F, there is another OWF/OWP F^{\prime} which has a HCB.

Goldreich-Levin (GL) Theorem: Version 1

Let $\left\{B_{r}:\{0,1\}^{n} \rightarrow\{0,1\}\right\}$ where

$$
B_{r}(x)=\langle r, x\rangle=\sum_{i=1}^{n} r_{i} x_{i} \bmod 2
$$

be a collection of predicates (one for each r). Then, for every one-way function F, a random B_{r} is hardcore. That is, for every one-way function F, every PPT A, there is a negligible function μ s.t.
$\operatorname{Pr}\left[x \leftarrow\{0,1\}^{n} ; r \leftarrow\{0,1\}^{n}: A(F(x), r)=B_{r}(x)\right] \leq \frac{1}{2}+\mu(n)$

GL Theorem: Version 2

For every one-way function
F, there is a related one-way function

$$
F^{\prime}(x, r)=(F(x), r)
$$

which has a deterministic hardcore predicate. In particular, the predicate $B(x, r)=\langle r, x\rangle \bmod 2$ is hardcore for F^{\prime}.
$\operatorname{Pr}\left[x \leftarrow\{0,1\}^{n} ; r \leftarrow\{0,1\}^{n}: A\left(F^{\prime}(x, r)\right)=\langle r, x\rangle\right] \leq \frac{1}{2}+\mu(n)$

Key Point:

This statement is sufficient to construct PRGs from any OWP.

If there are OWPs, then there are PRGs

CONSTRUCTION

Let F be a one-way permutation, then G defined below is a PRG.

Then, define $G(x, r)=\mathrm{F}^{\prime}(\mathrm{x}, \mathrm{r})\|\langle r, x\rangle=\mathrm{F}(x)\| r \|\langle r, x\rangle$.

Theorem: G is a PRG assuming F is a one-way permutation.

We proved a weaker version in L6:

Let's assume a pretty good predictor P

$$
\operatorname{Pr}\left[x \leftarrow\{0,1\}^{n} ; r \leftarrow\{0,1\}^{n}: P(F(x), r)=\langle r, x\rangle\right] \geq \frac{\mathbf{3}}{\mathbf{4}}+1 / p(n)
$$

Then there is a OWF inverter A.

$$
\operatorname{Pr}\left[x \leftarrow\{0,1\}^{n}: A(F(x)) \in F^{-1}(F(x))\right] \geq 1 / p^{\prime}(n)
$$

We proved a weaker version in L6:

Let's assume a pretty good predictor P
$\operatorname{Pr}\left[x \leftarrow\{0,1\}^{n} ; r \leftarrow\{0,1\}^{n}: P(F(x), r)=\langle r, x\rangle\right] \geq \frac{\mathbf{3}}{\mathbf{4}}+1 / p(n)$

First, we used an averaging argument.
Claim: For at least a $1 / 2 p(n)$ fraction of the x,

$$
\operatorname{Pr}\left[r \leftarrow\{0,1\}^{n}: P(F(x), r)=\langle r, x\rangle\right] \geq \frac{3}{4}+1 / 2 p(n)
$$

Call these the good x.
Proof: On the board.

We proved a weaker version in L6:

For at least a $1 / 2 p(n)$ fraction of the x,

$$
\operatorname{Pr}\left[r \leftarrow\{0,1\}^{n}: P(F(x), r)=\langle r, x\rangle\right] \geq \frac{3}{4}+1 / 2 p(n)
$$

Key Idea: Linearity

Pick a random r and ask P to tells us $\langle r, x\rangle$ and $\left\langle r+e_{i}, x\right\rangle$. Subtract the two answers to get $\left\langle e_{i}, x\right\rangle=x_{i}$.

Proof: $\operatorname{Pr}\left[\right.$ we compute x_{i} correctly]
$\geq \operatorname{Pr}\left[\mathrm{P}\right.$ predicts $\langle r, x\rangle$ and $\left\langle r+e_{i}, x\right\rangle$ correctly]
$=1-\operatorname{Pr}\left[\mathrm{P}\right.$ predicts $\langle r, x\rangle$ or $\left\langle r+e_{i}, x\right\rangle$ wrong $]$
$\geq 1-(\operatorname{Pr}[\mathrm{P}$ predicts $\langle r, x\rangle$ wrong] + $\operatorname{Pr}\left[\mathrm{P}\right.$ predicts $\left\langle r+e_{i}, x\right\rangle$ wrong]) (by union bound)
$\geq 1-2 \cdot\left(\frac{1}{4}-\frac{1}{2 p(n)}\right)=\frac{1}{2}+1 / p(n)$

We proved a weaker version in L6:

For at least a $1 / 2 p(n)$ fraction of the x,

$$
\operatorname{Pr}\left[r \leftarrow\{0,1\}^{n}: P(F(x), r)=\langle r, x\rangle\right] \geq \frac{3}{4}+1 / 2 p(n)
$$

Inverter A:
Repeat for each $i \in\{1,2, \ldots, n\}$:
Repeat $\mathrm{O}\left(\log n(p(n))^{2}\right)$ times:
Pick a random r and ask P to tells us $\langle r, x\rangle$ and $\left\langle r+e_{i}, x\right\rangle$. Subtract the two answers to get a guess for x_{i}.

Compute the majority of all such guesses and set the bit as x_{i} Output the concatenation of all x_{i} as x.

Analysis: Chernoff + Union Bound

Who's the culprit here?

For at least a $1 / 2 p(n)$ fraction of the x,

$$
\operatorname{Pr}\left[r \leftarrow\{0,1\}^{n}: P(F(x), r)=\langle r, x\rangle\right] \geq \frac{3}{4}+1 / 2 p(n)
$$

Pick a random r and ask P to tells us $\langle r, x\rangle$ and $\left\langle r+e_{i}, x\right\rangle$. Subtract the two answers to get $\left\langle e_{i}, x\right\rangle=x_{i}$.

Proof: $\operatorname{Pr}\left[\right.$ we compute x_{i} correctly]
$\geq \operatorname{Pr}\left[\mathrm{P}\right.$ predicts $\langle r, x\rangle$ and $\left\langle r+e_{i}, x\right\rangle$ correctly]
$=1-\operatorname{Pr}\left[\mathrm{P}\right.$ predicts $\langle r, x\rangle$ or $\left\langle r+e_{i}, x\right\rangle$ wrong $]$
$\geq 1-(\operatorname{Pr}[$ P predicts $\langle r, x\rangle$ wrong $]+$ $\operatorname{Pr}\left[\mathrm{P} \text { predicts }\left\langle r+e_{i}, x\right\rangle \text { wrong] }\right)_{(\text {by union bound) }}$
$\geq 1-2 \cdot\left(\frac{1}{4}-\frac{1}{2 p(n)}\right)=\frac{1}{2}+1 / p(n)$

The Real Proof of the GL Theorem

 (attributed to Charlie Rackoff)Assume (after averaging) that for $\geq 1 / 2 p(n) \mathrm{f}$ $\operatorname{Pr}\left[r \leftarrow\{0,1\}^{n}: P(F(x), r)=\langle r, x\rangle\right] \geq \frac{1}{2}+1 /$

For a minute, assume we have a bit of help/ad
Pick a random r, ask the Oracle to tells us $\langle r, x\rangle$ and ask P to tell us $\left\langle r+e_{i}, x\right\rangle$. Subtract the two answers to get $\left\langle e_{i}, x\right\rangle=x_{i}$.

Proof: Pr [we compute x_{i} correctly]
$\geq \operatorname{Pr}\left[\mathrm{P}\right.$ predicts $\left\langle r+e_{i}, x\right\rangle$ correctly $] \geq \frac{1}{2}+1 / 2 p(n)$

The Real Proof of the GL Theorem

Assume (after averaging) that for $\geq 1 / 2 p(n) \mathrm{f}$

$$
\operatorname{Pr}\left[r \leftarrow\{0,1\}^{n}: P(F(x), r)=\langle r, x\rangle\right] \geq \frac{1}{2}+1 /
$$

Pick a random r, guess $\langle r, x\rangle$ and ask P to tell us $\left\langle r+e_{i}, x\right\rangle$. Subtract the two to get $\left\langle e_{i}, x\right\rangle=x_{i}$.

If our guesses are all correct, then the analysis works out just as before.

But what's the chance...?
The number of $r^{\prime} \mathrm{s}$ is $m=\mathrm{O}\left(n \log n(p(n))^{2}\right)$.

Parsimony in Guessing

Pick random "seed vectors" $s_{1}, \ldots, s_{\log (m+1)}$, and guess $c_{j}=\left\langle s_{j}, x\right\rangle$ for all j.
The probability that all guesses are correct is $\frac{1}{2^{\log (m+1)}}=1 /(m+1)$ which is not bad.

From the seed vectors, generate many more r_{i}.
Let T_{1}, \ldots, T_{m} denote all possible non-empty subsets of
$\{1,2, \ldots, \log (m+1)\}$. We will let

$$
r_{i}=\bigoplus_{j \in T_{i}} s_{j} \quad \text { and } \quad b_{i}=\bigoplus_{j \in T_{i}} c_{j}
$$

Key Observation: If the guesses $c_{1}, \ldots, c_{\log (m+1)}$ are all correct, then so are the b_{1}, \ldots, b_{m}.

The OWF Inverter

Generate random $s_{1}, \ldots, s_{\log (m+1)}$ and bits $c_{1}, \ldots, c_{\log (m+1)}$.
From them, derive $r_{1}, \ldots, r_{\log (m+1)}$ and bits b_{1}, \ldots, b_{m} as in the previous slide.

Repeat for each $i \in\{1,2, \ldots, n\}$:
Repeat $100 \boldsymbol{n}(\boldsymbol{p}(\boldsymbol{n}))^{2}$ times:
Ask P to tells us $\left\langle r_{i}+e_{i}, x\right\rangle$. XOR P's reply with b_{i} to get a guess for x_{i}.

Compute the majority of all such guesses and set the bit as x_{i} Output the concatenation of all x_{i} as x.

Analysis of the Inverter

Let's condition on the guesses $c_{1}, \ldots, c_{\log (m+1)}$ being all correct.

The main issue: The r_{i} are not independent (can't do Chernoff)

Key Observation: The r_{i} are pairwise independent.
Therefore, can apply Chebyshev!

We have that
$p:=\operatorname{Pr}[$ Inverter succeeds \mid all guesses correct, $\operatorname{good} \mathrm{x}] \geq 0.99$.
(Pf. on the board, also in the next two slides)

Putting it all together

$\operatorname{Pr}[$ Inverter succeeds]
$\geq \operatorname{Pr}[$ Inverter succeeds | all guesses correct, good $x]$. $\operatorname{Pr}[$ all guesses correct $] \cdot \operatorname{Pr}[\operatorname{good} x]$
$=\frac{1}{m+1} \cdot \frac{1}{2 p(n)} \cdot p$
$=\frac{1}{2 n^{2} p(n)^{3}} \cdot p$
So, it suffices to show that p is large.

By our calculation (on the board), $p \geq 0.99$, so we are done.

Can also make the success probability $\approx 1 / p(n)$ by enumerating over all the "guesses". Each guess results in a supposed inverse, but we can check which of them is the actual inverse!

The Coding-Theoretic View of GL

$x \rightarrow(\langle x, r\rangle)_{r \in\{0,1\}^{n}}$ can be viewed as a highly redundant, exponentially long encoding of $x=$ the Hadamard code.
$P(F(x), r)$ can be thought of as providing access to a noisy codeword.

What we proved:

- unique decoding algorithm for Hadamard code with error rate $\frac{1}{4}-1 / p(n)$.
- list-decoding algorithm for Hadamard code with error rate $\frac{1}{2}-1 / p(n)$.

Hardcore Predicates from any

List-Decodable Code

(due to Impagliazzo and Sudan)
$x \rightarrow C(x)$ is the encoding.
Given a $C(x)$ that is incorrect at $\frac{1}{2}-\varepsilon$ fraction of the locations, a list-decoder outputs a list $\left\{x_{1}, \ldots, x_{m}\right\}$ of possibilities for x.

The hardcore predicate is

$$
B_{i}(x)=C(x)_{i}
$$

A hardcore-bit predictor gives us access to a corrupted codeword. Running the list-decoder on it gives us the list of possible inverses. The fact that the OWF is easy to compute means that we can filter out the bogus (non-)inverses.

Recap

l. Defined one-way functions (OWF).
2. Defined Hardcore bits (HCB).
3. Goldreich-Levin Theorem: every OWF has a HCB. (showed proof for an important special case)
4. Show that one-way permutations (OWP) \Rightarrow PRG
(in fact, one-way functions \Rightarrow PRG, but that's a much harder theorem)

Universal Hardcore Predicate Conjecture 1

For every one-way function F,
there exists a circuit B_{F} s.t.
for every PPT Circuit/Turing Machine A, there is a negligible function μ s.t.

$$
\operatorname{Pr}\left[x \leftarrow\{0,1\}^{n}: A(F(x))=B_{F}(x)\right] \leq \frac{1}{2}+\mu(n)
$$

In fact: I conjecture that for every one-way function F, there exists an r_{F} for which the predicate $B_{r_{F}}(x)=\left\langle r_{F}, x\right\rangle$ that is hardcore.

Universal Hardcore Predicate Conjecture 2

For every one-way function F, there is an efficiently generatable circuit B_{F} s.t. for every PPT Circuit/Turing Machine A, there is a negligible function μ s.t.

$$
\operatorname{Pr}\left[x \leftarrow\{0,1\}^{n}: A(F(x))=B_{F}(x)\right] \leq \frac{1}{2}+\mu(n)
$$

Other Topics (Time permitting)

1. $\mathrm{OWF} \Rightarrow \mathrm{PRG}$?
2. Pseudorandom Permutations from Pseudorandom Functions (the Luby-Rackoff construction)

Minicrypt:

Candidate Constructions: from number theory, geometry, combinatorics,...

