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Lecture 7
Foundations of Cryptography



Recap + Today

Define one-way functions (OWF). 

Define Hardcore bits (HCB). 

Goldreich-Levin Theorem: “every OWF has a HCB.”

Show that one-way functions* + HCB ⇒ PRG  



Recap + Today

Define one-way functions (OWF). 

Define Hardcore bits (HCB). 

Goldreich-Levin Theorem: for every OWF/OWP 𝐹, 
there is another OWF/OWP 𝐹′ which has a HCB.

Show that one-way functions* + HCB ⇒ PRG  



Goldreich-Levin (GL) Theorem: Version 1

Let {𝐵!: {0,1}"→ {0,1}} where

be a collection of predicates (one for each 𝑟). Then, for every
one-way function 𝐹, a random 𝐵! is hardcore. That is, for 
every one-way function F, every PPT A, there is a negligible 
function 𝜇 s.t.

𝐵! 𝑥 = 𝑟, 𝑥 = ∑#$%" 𝑟#𝑥#mod 2

Pr 𝑥 ← 0,1 "; 𝑟 ← 0,1 ": 𝐴 𝐹 𝑥 , 𝑟 = 𝐵!(𝑥) ≤
1
2
+ 𝜇(𝑛)



GL Theorem: Version 2

For every one-way function/permutation 𝐹, there is a related 
one-way function/permutation

Pr 𝑥 ← 0,1 "; 𝑟 ← 0,1 ": 𝐴 𝐹′ 𝑥, 𝑟 = 𝑟, 𝑥 ≤
1
2
+ 𝜇(𝑛)

𝐹& 𝑥, 𝑟 = (𝐹 𝑥 , 𝑟)

which has a deterministic hardcore predicate. In particular, 
the predicate 𝐵 𝑥, 𝑟 = 𝑟, 𝑥 mod 2 is hardcore for 𝐹&.

Key Point:  
This statement is sufficient to construct PRGs from any OWP. 



If there are OWPs, then there are PRGs

Let 𝐹 be a one-way permutation, then 𝐺 defined below is a 
PRG.

CONSTRUCTION

Then, define 𝐺 𝑥, 𝑟 = F& x, r || 𝑟, 𝑥 = F 𝑥 || 𝑟 || 𝑟, 𝑥 .

Theorem: 𝐺 is a PRG assuming 𝐹 is a one-way permutation.



Let’s assume a pretty good predictor 𝑃

Pr 𝑥 ← 0,1 "; 𝑟 ← 0,1 ": 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
𝟑
𝟒
+ 1/𝑝(𝑛)

We proved a weaker version in L6:

Then there is a OWF inverter 𝑨. 

Pr 𝑥 ← 0,1 " ∶ 𝐴 𝐹 𝑥 ∈ 𝐹'% 𝐹 𝑥 ≥ 1/𝑝′(𝑛)



First, we used an averaging argument.

Let’s assume a pretty good predictor 𝑃

Pr 𝑥 ← 0,1 "; 𝑟 ← 0,1 ": 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
𝟑
𝟒
+ 1/𝑝(𝑛)

Claim: For at least a 1/2𝑝(𝑛) fraction of the 𝑥, 

Pr 𝑟 ← 0,1 ": 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
3
4
+ 1/2𝑝(𝑛)

Call these the good 𝒙.

We proved a weaker version in L6:

Proof: On the board.



Pr 𝑟 ← 0,1 ": 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
3
4
+ 1/2𝑝(𝑛)

For at least a 1/2𝑝(𝑛) fraction of the 𝑥, 

Key Idea: Linearity

Pick a random 𝑟 and ask 𝑃 to tells us 𝑟, 𝑥 and 𝑟 + 𝑒#, 𝑥 . 
Subtract the two answers to get 𝑒#, 𝑥 = 𝑥#.

Proof: Pr[we compute 𝑥# correctly]
≥ Pr[P predicts 𝑟, 𝑥 and 𝑟 + 𝑒#, 𝑥 correctly]
= 1 − Pr P predicts 𝑟, 𝑥 or 𝑟 + 𝑒#, 𝑥 wrong
≥ 1 −(Pr P predicts 𝑟, 𝑥 wrong +

Pr P predicts 𝑟 + 𝑒#, 𝑥 wrong )
≥ 1 − 2 T %

(−
%

)* " = %
)+ 1/𝑝(𝑛)

(by union bound)

We proved a weaker version in L6:



Pr 𝑟 ← 0,1 ": 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
3
4
+ 1/2𝑝(𝑛)

For at least a 1/2𝑝(𝑛) fraction of the 𝑥, 

Pick a random 𝑟 and ask 𝑃 to tells us 𝑟, 𝑥 and 𝑟 + 𝑒#, 𝑥 . 
Subtract the two answers to get a guess for 𝑥#.

Repeat O(log 𝑛 (𝑝(𝑛)))) times: 

Compute the majority of all such guesses and set the bit as 𝑥#

Repeat for each 𝑖 ∈ 1,2, … , 𝑛 : 

Output the concatenation of all 𝑥# as 𝑥.

Inverter A:

Analysis: Chernoff + Union Bound

We proved a weaker version in L6:



Pr 𝑟 ← 0,1 ": 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
3
4
+ 1/2𝑝(𝑛)

For at least a 1/2𝑝(𝑛) fraction of the 𝑥, 

Pick a random 𝑟 and ask 𝑃 to tells us 𝑟, 𝑥 and 𝑟 + 𝑒#, 𝑥 . 
Subtract the two answers to get 𝑒#, 𝑥 = 𝑥#.

Proof: Pr[we compute 𝑥# correctly]
≥ Pr[P predicts 𝑟, 𝑥 and 𝑟 + 𝑒#, 𝑥 correctly]
= 1 − Pr P predicts 𝑟, 𝑥 or 𝑟 + 𝑒#, 𝑥 wrong
≥ 1 −(𝑷𝒓 P predicts 𝒓, 𝒙 wrong +

𝑷𝒓 P predicts 𝒓 + 𝒆𝒊, 𝒙 wrong )
≥ 1 − 2 T %

(−
%

)* " = %
)+ 1/𝑝(𝑛)

(by union bound)

Who’s the culprit here?



The Real Proof of the GL Theorem

Pr 𝑟 ← 0,1 ": 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
𝟏
𝟐
+ 1/2𝑝(𝑛)

Assume (after averaging) that for ≥ 1/2𝑝(𝑛) fraction of the 𝑥, 

For a minute, assume we have a bit of help/advice. 

Pick a random 𝑟, ask the Oracle to tells us 𝑟, 𝑥
and ask 𝑃 to tell us  𝑟 + 𝑒#, 𝑥 . Subtract the two 
answers to get 𝑒#, 𝑥 = 𝑥#.

Proof: Pr[we compute 𝑥# correctly]
≥ 𝑷𝒓 P predicts 𝒓 + 𝒆𝒊, 𝒙 correctly ≥ %

)
+ 1/2𝑝(𝑛)

(attributed to Charlie Rackoff)



The Real Proof of the GL Theorem

Pr 𝑟 ← 0,1 ": 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
𝟏
𝟐
+ 1/2𝑝(𝑛)

Assume (after averaging) that for ≥ 1/2𝑝(𝑛) fraction of the 𝑥, 

Pick a random 𝑟, guess 𝑟, 𝑥 and ask 𝑃 to tell us  𝑟 + 𝑒#, 𝑥 . 
Subtract the two to get 𝑒#, 𝑥 = 𝑥#.

If our guesses are all correct, then the analysis works out just 
as before. 

But what’s the chance…?  
The number of 𝑟’s is 𝑚 = O(𝑛 log 𝑛 (𝑝(𝑛)))).



Parsimony in Guessing
Pick random “seed vectors” 𝑠%, … , 𝑠,-.(01%), and guess 𝑐3 = 𝑠3, 𝑥
for all j.

The probability that all guesses are correct is %
)!"#(%&') = 1/(𝑚 + 1)

which is not bad.

From the seed vectors, generate many more 𝒓𝒊. 

Let 𝑇%, … , 𝑇0 denote all possible non-empty subsets of 
{1,2, … , log (𝑚 + 1)}. We will let 

𝑟! =⊕"∈$! 𝑠" and          𝑏! =⊕"∈$! 𝑐"

Key Observation:  If the guesses 𝑐%, … , 𝑐,-.(01%) are all correct, 
then so are the 𝑏%, … , 𝑏0.



Ask 𝑃 to tells us 𝑟# + 𝑒#, 𝑥 . XOR P’s reply with 𝑏# to get 
a guess for 𝑥#.

Repeat 𝟏𝟎𝟎𝒏(𝒑(𝒏))𝟐 times: 

Compute the majority of all such guesses and set the bit as 𝑥#

Repeat for each 𝑖 ∈ 1,2, … , 𝑛 : 

Output the concatenation of all 𝑥# as 𝑥.

The OWF Inverter

Generate random 𝑠%, … , 𝑠,-.(01%) and bits 𝑐%, … , 𝑐,-.(01%).

From them, derive 𝑟%, … , 𝑟,-.(01%) and bits 𝑏%, … , 𝑏0 as in the 
previous slide.



Analysis of the Inverter

Let’s condition on the guesses 𝑐%, … , 𝑐,-.(01%) being all correct.

The main issue:  The 𝑟# are not independent (can’t do Chernoff)

Key Observation:  The 𝑟# are pairwise independent.

Therefore, can apply Chebyshev! 

(Pf. on the board, also in the next two slides)

We have that  
𝑝 ≔ Pr[Inverter succeeds | all guesses correct, good x] ≥ 0.99.



Putting it all together
Pr[Inverter succeeds]
≥ Pr[Inverter succeeds | all guesses correct, good x] T

Pr[all guesses correct] T Pr[good	x]
=	 %
01% T

%
)*(") T 𝑝

=	 %
)")* " * T 𝑝

So,	it	suffices	to	show	that	𝑝 is	large.	

By	our	calculation	(on	the	board),	𝑝 ≥ 0.99,	so	we	are	done.	

Can	also	make	the	success	probability	≈ 1/𝑝(𝑛) by	enumerating	
over	all	the	“guesses”.		Each	guess	results	in	a	supposed	inverse,	
but	we	can	check	which	of	them	is	the	actual	inverse!



The Coding-Theoretic View of GL

𝑥 → ( 𝑥, 𝑟 )!∈{7,%}+ can be viewed as a highly redundant, 
exponentially long encoding of 𝑥 = the Hadamard code.

𝑃(𝐹 𝑥 , 𝑟) can be thought of as providing access to a noisy
codeword.

What we proved: 
• unique decoding algorithm for Hadamard code with error 

rate %
(
− 1/𝑝(𝑛).

• list-decoding algorithm for Hadamard code with error rate 
%
)− 1/𝑝(𝑛).



Hardcore Predicates from any 
List-Decodable Code

𝑥 → 𝐶(𝑥) is the encoding.

Given a 𝐶(𝑥) that is incorrect at %
)
− 𝜀 fraction of the locations, a 

list-decoder outputs a list {𝑥%, … , 𝑥0} of possibilities for 𝑥.

The hardcore predicate is 
𝑩𝒊 𝒙 = 𝑪(𝒙)𝒊.

A hardcore-bit predictor gives us access to a corrupted 
codeword. Running the list-decoder on it gives us the list of 
possible inverses.  The fact that the OWF is easy to compute 
means that we can filter out the bogus (non-)inverses.

(due to Impagliazzo and Sudan)



Recap

1. Defined one-way functions (OWF). 

2. Defined Hardcore bits (HCB). 

3. Goldreich-Levin Theorem: every OWF has a HCB.

4. Show that one-way permutations (OWP) ⇒ PRG  

(showed proof for an important special case)

(in fact, one-way functions ⇒ PRG, but that’s a 
much harder theorem)



Universal Hardcore Predicate Conjecture 1

For every one-way function 𝐹, 
there exists a circuit 𝐵: s.t.

for every PPT Circuit/Turing Machine A, 
there is a negligible function 𝜇 s.t.

Pr 𝑥 ← 0,1 " ∶ 𝐴 𝐹 𝑥 = 𝐵:(𝑥) ≤
1
2 + 𝜇(𝑛)

In fact: I conjecture that for every one-way function 𝐹, there 
exists an 𝑟: for which the predicate 𝐵!, 𝑥 = 𝑟:, 𝑥 that is 
hardcore.



Universal Hardcore Predicate Conjecture 2

For every one-way function 𝐹, 
there is an efficiently generatable circuit 𝐵: s.t.

for every PPT Circuit/Turing Machine A, 
there is a negligible function 𝜇 s.t.

Pr 𝑥 ← 0,1 " ∶ 𝐴 𝐹 𝑥 = 𝐵:(𝑥) ≤
1
2 + 𝜇(𝑛)



Other Topics (Time permitting)

1. OWF ⇒ PRG?

2. Pseudorandom Permutations from 
Pseudorandom Functions 
(the Luby-Rackoff construction)



PRG

Secret-key 
encryptionPRF

Minicrypt:

MAC

OWF

Hashing

Digital 
Signatures

Bit 
Commitment

Zero-
Knowledge  
proofs

OWF

CCA-secure 
Secret-key enc.

(Stateful) 
Secret-key 
encryption

Candidate Constructions: from number theory, geometry, combinatorics,…


