
MIT 6.875

Lecture 6
Foundations of Cryptography



Roadmap of the Course: The Crypto Worlds

PRG

Secret-key 
encryptionPRF

Lecture 2-7, 11-12

Public-key 
encryptionLecture 8-10,…

…

Minicrypt:

Cryptomania:

MAC

OWF

Hashing

Digital 
Signatures

Bit 
Commitment

Zero-
Knowledge  
proofs

OWF

CCA-secure 
Secret-key enc.

(Stateful) 
Secret-key 
encryption



This Week

1. Define one-way functions (OWF). 

2. Define Hardcore bits (HCB). 

4. Goldreich-Levin Theorem: every OWF has a HCB.

3. Show that one-way functions* + HCB ⇒ PRG  



One-way Functions (Informally)
F

domain
range

Easy to 
compute

Hard to 
invert



One-way Functions (Take 1)

A function (family) 𝐹! !∈ℕ where 𝐹!: {0,1}!→ {0,1}$(!) is 
one-way if for every p.p.t. adversary 𝐴, there is a negligible 
function 𝜇 s.t.

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹! 𝑥 : 𝐴 1!, 𝑦 = 𝑥 ≤ 𝜇(𝑛)

Consider 𝑭𝒏 𝒙 = 𝟎 for all x. 

This is one-way according to the above definition. 
In fact, impossible to find the inverse even if 𝐴 has unbounded 
time.

Conclusion: not a useful/meaningful definition. 



One-way Functions (Take 1)

A function (family) 𝐹! !∈ℕ where 𝐹!: {0,1}!→ {0,1}$(!) is 
one-way if for every p.p.t. adversary 𝐴, there is a negligible 
function 𝜇 s.t.

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹! 𝑥 : 𝐴 1!, 𝑦 = 𝑥 ≤ 𝜇(𝑛)

The Right Definition: Impossible to find an inverse in p.p.t.



One-way Functions: The Definition

A function (family) 𝐹! !∈ℕ where 𝐹!: {0,1}!→ {0,1}$(!) is 
one-way if for every p.p.t. adversary 𝐴, there is a negligible 
function 𝜇 s.t.

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹! 𝑥 ; 𝐴 1!, 𝑦 = 𝒙(: 𝒚 = 𝑭𝒏 𝒙( ≤ 𝜇(𝑛)

One-way Permutations:
One-to-one one-way functions with 𝑚 𝑛 = 𝑛.

• Can always find an inverse with unbounded time

• … but should be hard with probabilistic polynomial time



Today

1. Define one-way functions (OWF). 

2. Define Hardcore bits (HCB). 

4. Goldreich-Levin Theorem: every OWF has a HCB.

3. Show that one-way permutations (OWP) ⇒ PRG  



Hardcore Bits

If 𝐹 is a one-way function, we know it’s hard to compute a 
pre-image of 𝐹 𝑥 for a randomly chosen 𝑥. 

How about computing partial information about an inverse?

Exercise: There are one-way functions for which it is easy to 
compute the first half of the bits of an inverse.



Hardcore Bits

If 𝐹 is a one-way function, we know it’s hard to compute a 
pre-image of 𝐹 𝑥 for a randomly chosen 𝑥. 

Nevertheless, there has to be a hardcore set of hard to invert 
inputs. Concretely: Does there necessarily exist some bit of 𝑥
that is hard to compute?

• Any bit can be guessed correctly w.p. 1/2 

• So, “hard to compute” → “hard to guess with 
probability non-negligibly better than 1/2” 

Nevertheless, there has to be a hardcore set of hard to invert 
inputs. Concretely: Does there exist some bit of 𝑥 that is hard 
to guess with probability non-negligibly better than 1/2?

HARDCORE BIT (Take 1)



Hardcore Bits

If 𝐹 is a one-way function, we know it’s hard to compute a 
pre-image of 𝐹 𝑥 for a randomly chosen 𝑥. 

HARDCORE BIT (Take 1)

For any function (family) 𝐹: {0,1}!→ {0,1}$, a bit 𝑖 = 𝑖(𝑛) is 
hardcore if for every p.p.t. adversary 𝐴, there is a negligible 
function 𝜇 s.t.

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹 𝑥 : 𝐴 𝑦 = 𝑥) ≤
1
2
+ 𝜇(𝑛)



Does every one-way function 
have a hardcore bit?

PS2: There are functions that are one-way, yet every bit is 
somewhat easy to predict (say, with probability *++ 1/𝑛).

So, we will generalize the notion of a hardcore “bit”. 



Hardcore Bits

HARDCORE PREDICATE (Definition)

For any function (family) 𝐹: {0,1}!→ {0,1}$, a function 
𝐵: {0,1}!→ {0,1} is a hardcore predicate if for every p.p.t. 
adversary 𝐴, there is a negligible function 𝜇 s.t.

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹 𝑥 : 𝐴 𝑦 = 𝐵(𝑥) ≤
1
2
+ 𝜇(𝑛)

For us, henceforth, a hardcore bit will mean a hardcore 
predicate.



Hardcore Predicate (in pictures)

x

Eas
y to 

compute

Easy to compute

F(x)

B(x)

Hard to 
compute



Discussion on the Definition
HARDCORE PREDICATE (Definition)

For any function (family) 𝐹: {0,1}!→ {0,1}$, a bit 𝐵: {0,1}!→
{0,1} is a hardcore predicate (HCP) if for every p.p.t. 
adversary 𝐴, there is a negligible function 𝜇 s.t.

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹 𝑥 : 𝐴 𝑦 = 𝐵(𝑥) ≤
1
2
+ 𝜇(𝑛)

1. Definition of HCP makes sense for any function family, not 
just one-way functions. 
2. Some functions can have information-theoretically hard to 
guess predicates (e.g., compressing functions)

3. We’ll be interested in settings where 𝑥 is uniquely determined 
given F(𝑥), yet B(𝑥) is hard to predict given F(𝑥)



Today

1. Define one-way functions (OWF). 

2. Define Hardcore bits (HCB). 

4. Goldreich-Levin Theorem: every OWF has a HCB.

3. Show that one-way permutations (OWP) ⇒ PRG  



OWP ⇒ PRG

Let 𝐹 be a one-way permutation, and 𝐵 an associated 
hardcore predicate for 𝐹.

CONSTRUCTION

Then, define 𝐺 𝑥 = F 𝑥 | B(𝑥) .

Theorem: 𝐺 is a PRG assuming 𝐹 is a one-way permutation.

(Note that 𝐺 stretches by one bit. We already know how to 
turn this into a 𝐺′ that stretches to any poly number of bits.)



OWP ⇒ PRG

Let 𝐹 be a one-way permutation, and 𝐵 an associated 
hardcore predicate for 𝐹.

CONSTRUCTION

Then, define 𝐺 𝑥 = F 𝑥 | B(𝑥) .

Theorem: 𝐺 is a PRG assuming 𝐹 is a one-way permutation.

Proof (next slide): Use next-bit unpredictability.



OWP ⇒ PRG

Theorem: 𝐺 is a PRG assuming 𝐹 is a one-way permutation.

Proof: Assume for contradiction that 𝐺 is not a PRG. 
Therefore, there is a next-bit predictor 𝐷, and index 𝑖, and a 
polynomial function 𝑝 such that

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐺 𝑥 : 𝐷 𝑦*…)-* = 𝑦) ≥
1
2 + 1/𝑝(𝑛)

Observation: The index 𝑖 has to be 𝑛 + 1. Do you see why? 

Hint: 𝐺 𝑥 = F 𝑥 | B(𝑥) and F is a one-way permutation.



OWP ⇒ PRG

Theorem: 𝐺 is a PRG assuming 𝐹 is a one-way permutation.

Proof: Assume for contradiction that 𝐺 is not a PRG. 
Therefore, there is a next-bit predictor 𝐷 and a polynomial 
function 𝑝 such that

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐺 𝑥 : 𝐷 𝑦*…! = 𝑦!.* ≥
1
2 + 1/𝑝(𝑛)



OWP ⇒ PRG

Theorem: 𝐺 is a PRG assuming 𝐹 is a one-way permutation.

Proof: Assume for contradiction that 𝐺 is not a PRG. 
Therefore, there is a next-bit predictor 𝐷 and a polynomial 
function 𝑝 such that

Pr 𝑥 ← 0,1 !: 𝐷(𝐹(𝑥)) = 𝐵(𝑥) ≥
1
2 + 1/𝑝(𝑛)

So, 𝐷 is a hardcore bit predictor! QED.



Today

1. Define one-way functions (OWF). 

2. Define Hardcore bits (HCB). 

4. Goldreich-Levin Theorem: every OWF has a HCB.

3. Show that one-way permutations (OWP) ⇒ PRG  



A Hardcore Predicate for all OWF

Let’s shoot for a universal hardcore predicate.

i.e., a single predicate 𝐵 where it is hard to guess 𝐵(𝑥) given F(𝑥)

Is this possible?

Turns out the answer is “no”. 

So, what is one to do?

You will tell me why in PS2.



Goldreich-Levin (GL) Theorem

Let {𝐵/: {0,1}!→ {0,1}} where

be a collection of predicates (one for each 𝑟). Then, a random
𝐵/ is hardcore for every one-way function 𝐹. That is, for every 
one-way function F, every PPT A, there is a negligible function 
𝜇 s.t.

𝐵/ 𝑥 = 𝑟, 𝑥 = ∑)0*! 𝑟)𝑥)mod 2

Pr 𝑥 ← 0,1 !; 𝑟 ← 0,1 !: 𝐴 𝐹 𝑥 , 𝑟 = 𝐵/(𝑥) ≤
1
2
+ 𝜇(𝑛)

Alternative Interpretation 1: For every one-way function 𝐹, 
there is a related one-way function 𝐹( 𝑥, 𝑟 = (𝐹 𝑥 , 𝑟) which 
has a deterministic hardcore predicate.



Goldreich-Levin (GL) Theorem

Let {𝐵/: {0,1}!→ {0,1}} where

be a collection of predicates (one for each 𝑟). Then, a random
𝐵/ is hardcore for every one-way function 𝐹. That is, for every 
one-way function F, every PPT A, there is a negligible function 
𝜇 s.t.

𝐵/ 𝑥 = 𝑟, 𝑥 = ∑)0*! 𝑟)𝑥)mod 2

Pr 𝑥 ← 0,1 !; 𝑟 ← 0,1 !: 𝐴 𝐹 𝑥 , 𝑟 = 𝐵/(𝑥) ≤
1
2
+ 𝜇(𝑛)

Alternative Interpretation 2: For every one-way function 𝐹, there 
exists (non-uniformly) a (possibly different) hardcore predicate 
𝑟1, 𝑥 .  (My favorite open problem: remove the non-uniformity)



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃

Pr 𝑥 ← 0,1 !; 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
1
2
+ 1/𝑝(𝑛)

We will need to show an inverter 𝐴 for 𝐹

Pr 𝑥 ← 0,1 ! ∶ 𝐴 𝐹 𝑥 = 𝑥(: 𝐹 𝑥( = 𝐹(𝑥) ≥ 1/𝑝′(𝑛)

Let’s make our lives easier: assume a perfect predictor 𝑃

Pr 𝑥 ← 0,1 !; 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 = 1



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃

The inverter 𝐴 works as follows: 

On input y = 𝐹 𝑥 , 𝐴 runs the predictor 𝑃 𝑛 times, on 
inputs 𝑦, 𝑒* , 𝑦, 𝑒+ , … , and (𝑦, 𝑒!) where 𝑒* =
100. . 0, 𝑒+ = 010…0,… are the unit vectors.

Let’s make our lives easier: assume a perfect predictor 𝑃

Pr 𝑥 ← 0,1 !; 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 = 1

Since 𝐴 is perfect, it returns 𝑒), 𝑥 = 𝑥), the 𝑖23 bit of 𝑥 on the 
𝑖23 invocation. 



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃

First, we need an averaging argument.

OK, now let’s assume less: assume a pretty good predictor 𝑃

Pr 𝑥 ← 0,1 !; 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
3
4
+ 1/𝑝(𝑛)

Claim: For at least a 1/2𝑝(𝑛) fraction of the 𝑥, 

Pr 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
3
4
+ 1/2𝑝(𝑛)

Call these the good 𝑥.

Proof: Exercise in counting.



Proof of GL Theorem

Pr 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
3
4
+ 1/2𝑝(𝑛)

For at least a 1/2𝑝(𝑛) fraction of the 𝑥, 

Key Idea: Linearity

Pick a random 𝑟 and ask 𝑃 to tells us 𝑟, 𝑥 and 𝑟 + 𝑒), 𝑥 . 
Subtract the two answers to get 𝑒), 𝑥 = 𝑥).

Proof: Pr[we compute 𝑥) correctly]
≥ Pr[P predicts 𝑟, 𝑥 and 𝑟 + 𝑒), 𝑥 correctly]
= 1 − Pr P predicts 𝑟, 𝑥 or 𝑟 + 𝑒), 𝑥 wrong
≥ 1 −(Pr P predicts 𝑟, 𝑥 wrong +

Pr P predicts 𝑟 + 𝑒), 𝑥 wrong )
≥ 1 − 2 [ *

4−
*

+5 ! = *
++ 1/𝑝(𝑛)

(by union bound)



Proof of GL Theorem

Pr 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
3
4
+ 1/2𝑝(𝑛)

For at least a 1/2𝑝(𝑛) fraction of the 𝑥, 

Pick a random 𝑟 and ask 𝑃 to tells us 𝑟, 𝑥 and 𝑟 + 𝑒), 𝑥 . 
Subtract the two answers to get a guess for 𝑥).

Repeat log 𝑛 ∗ 𝑝(𝑛) times: 

Compute the majority of all such guesses and set the bit as 𝑥)

Repeat for each 𝑖 ∈ 1,2, … , 𝑛 : 

Output the concatenation of all 𝑥) as 𝑥.

Inverter A:

Analysis: Chernoff + Union Bound



Real Proof (next lecture)

Pr 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
𝟏
𝟐
+ 1/2𝑝(𝑛)

Assume (after averaging) that for ≥ 1/2𝑝(𝑛) fraction of the 𝑥, 

Key Idea: Pairwise independence

Reference: Goldreich Book Part 1, Section 2.5.2.
http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/part2N.ps



The Coding-Theoretic View of GL

𝑥 → ( 𝑥, 𝑟 )/∈{7,*}! can be viewed as a highly redundant, 
exponentially long encoding of 𝑥 = the Hadamard code.

𝑃(𝐹 𝑥 , 𝑟) can be thought of as providing access to a noisy
codeword.

The real proof = list-decoding algorithm for Hadamard code with 
error rate *+− 1/𝑝(𝑛).

What we proved = unique decoding algorithm for Hadamard code 
with error rate *

4
− 1/𝑝(𝑛).



Recap

1. Defined one-way functions (OWF). 

2. Defined Hardcore bits (HCB). 

3. Goldreich-Levin Theorem: every OWF has a HCB.

4. Show that one-way permutations (OWP) ⇒ PRG  

(showed proof for an important special case)

(in fact, one-way functions ⇒ PRG, but that’s a 
much harder theorem)


