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Lecture 5
Foundations of Cryptography



TODAY
More Applications of PRFs:

a. Identification Protocols

b. Applications to Learning Theory

c. Authentication (EUF-CMA Security)

d. IND-CCA Security

Logistics: 
• Problem Set 1 is due today at 11:59:59pm. 
• Remember that you have 10 late days for this class, and you 

may use up to 5 for any one problem set.



Friend-or-Foe Identification

t Adversary: person-in-the-middle.

t Can listen to / modify the communications. Wants to 
impersonate Tim.



A Simple Lemma about Unpredictability

t Consider an adversary who requests and obtains 
𝑓! 𝑥" , … , 𝑓! 𝑥# for a polynomial 𝑞 = 𝑞 𝑛 .

t Can she predict 𝑓! 𝑥∗ for some 𝑥∗ of her choosing 
where 𝑥∗ ∉ {𝑥",…, 𝑥#}? How well can she do it?

Lemma: If she succeeds with probability "%! + 1/poly(𝑛), 
then she breaks PRF security. This is negligible in 𝑛 if 𝑚 is 
large enough, i.e. 𝜔(log 𝑛).

Let 𝑓!: {0,1}ℓ → {0,1}# be a pseudorandom function. 



A Simple Lemma about Unpredictability

Let 𝑓!: {0,1}ℓ → {0,1}# be a pseudorandom function. 

t Unpredictability ≡ Indistinguishability for bits (lecture 3)

t Indistinguishability ⟹ Unpredictability (but not vice versa).

t Can she predict 𝑓! 𝑥∗ for some 𝑥∗ of her choosing 
where 𝑥∗ ∉ {𝑥",…, 𝑥#}? How well can she do it?

t Consider an adversary who requests and obtains 
𝑓! 𝑥" , … , 𝑓! 𝑥# for a polynomial 𝑞 = 𝑞 𝑛 .



Challenge-Response Protocol

PRF Key 𝑠

(ID number 𝐼𝐷, PRF Key 𝑠)  

Random 𝑟

(𝐼𝐷, 𝑓! 𝑟 )

“Proof”: Adversary collects (𝑟., 𝑓! 𝑟. ) for poly many 𝑟.
(potentially of her choosing). She eventually has to produce 
𝑓! 𝑟∗ for a fresh random 𝑟∗ when she is trying to impersonate.

This is hard as long as the input and output lengths of the PRF 
are long enough, i.e. 𝜔(log 𝑛).



TODAY

More Applications of PRFs:

a. Identification Protocols

b. Applications to Learning Theory

c. Authentication (EUF-CMA Security)

d. IND-CCA Security



Negative Results in Learning Theory

Theorem [Kearns and Valiant 1994]: 
Assuming PRFs exist, there are hypothesis classes that cannot 
be learned by polynomial-time algorithms. 



Machine Learning 
and Cryptography
(A quick aside)



TODAY

More Applications of PRFs:

a. Identification Protocols

b. Applications to Learning Theory

c. Authentication (EUF-CMA Security)

d. IND-CCA Security



The authentication problem

Alice Bob

m

Key 𝑘 Key 𝑘

𝑚

This is known as a man-in-the-middle attack.
How can Bob check if the message is indeed from Alice?

𝑚′

Can also 
alter/inject 
more messages!



The authentication problem

Alice Bob

m

Key 𝑘 Key 𝑘

(𝑚, 𝑡)

We want Alice to generate a tag for the message m which 
is hard to generate without the secret key k.

𝑚, 𝑡 or ⊥

Can essentially 
only send it 
along!



A triple of algorithms (Gen, MAC, Ver):
• Gen(10): Produces a key 𝑘 ← 𝐾.
• MAC(𝑘,𝑚): Outputs a tag 𝑡 (may be deterministic).
• Ver(𝑘,𝑚, 𝑡): Outputs Accept or Reject.

Correctness: Pr[Ver 𝑘,𝑚,𝑀𝐴𝐶 𝑘,𝑚 = Accept] = 1 
Security: Hard to forge. Intuitively, it should be hard to 
come up with a new pair (m’, t’) such that Ver accepts.

Message Authentication Codes (MACs)



What is the power of the adversary?

Alice Bob

m

(𝑚,𝑀𝐴𝐶(𝑘,𝑚)) (𝑚,𝑀𝐴𝐶(𝑘,𝑚))
or ⊥

• Can see many pairs 𝑚,𝑀𝐴𝐶 𝑘,𝑚 .
• Can access a MAC oracle 𝑀𝐴𝐶(𝑘, / )
– Obtain tags for message of choice.

This is called a chosen message attack (CMA).



• Total break: The adversary should not be able to 
recover the key k.

• Universal break: The adversary can generate a valid 
tag for every message.

• Existential break: The adversary can generate a new
valid tag t for some message m. 

We will require MACs to be secure against the 
existential break!!

Defining MAC Security



Existentially Unforgeable against Chosen Message Attacks

EUF-CMA Security

𝑚$

𝑡$ = 𝑀𝐴𝐶(𝑘,𝑚$)

𝑚%

𝑡% = 𝑀𝐴𝐶(𝑘,𝑚%)

…
(𝑚, 𝑡)

𝑘 ← 𝐾

Accept if 𝑚, 𝑡 ≠
(𝑚& , 𝑡&) for all 𝑖, and 
𝑉𝑒𝑟 𝑘,𝑚, 𝑡 = 1.

Want: Pr( 𝑚, 𝑡 ← 𝐴"#$ %,' 1( , 𝑉𝑒𝑟 𝑘,𝑚, 𝑡 = 1 , 𝑚, 𝑡 ∉ 𝑄)) = 𝑛𝑒𝑔𝑙(𝑛).
where 𝑄 is the set of queries 𝑚), 𝑡) ) that 𝐴 makes.



Wait… Does encryption not solve this?

Alice Bob

m

Key 𝑘 Key 𝑘

𝐸𝑛𝑐(𝑘,𝑚)



Wait… Does encryption not solve this?

Alice Bob

m

Key 𝑘 Key 𝑘

𝑚⊕ 𝑘

One-time pad (and encryption schemes in general) 
are malleable.

𝑚′⊕ 𝑘

Can toggle 
between m 
and m’



Alice Bob

m

Key 𝑘 Key 𝑘

(𝑟, 𝑓%(𝑟) ⊕𝑚) (𝑟, 𝑓% 𝑟 ⊕𝑚*)

Can toggle 
between m 
and m’

One-time pad (and encryption schemes in general) 
are malleable.

Privacy and Integrity are very different goals!

Wait… Does encryption not solve this?



Constructing a MAC

Alice Bob

m

Key 𝑘 Key 𝑘

(𝑚,𝑀𝐴𝐶% 𝑚 )

Gen(1@): Produces a PRF key 𝑘 ← 𝐾.
MAC(𝑘,𝑚): Output 𝑓A(𝑚).
Ver(𝑘,𝑚, 𝑡): Accept if 𝑓A 𝑚 = 𝑡, reject otherwise.

Security: Our earlier unpredictability lemma about 
PRFs essentially proves that this is secure!



• The adversary could send an old valid (m, tag) at a 
later time.
– In fact, our definition of security does not rule this out.

• In practice:
– Append a time-stamp to the message. Eg. (m, T, MAC(m, 

T)) where T = 21 Sep 2022, 1:47pm.
– Sequence numbers appended to the message (this 

requires the MAC algorithm to be stateful).

Dealing with Replay Attacks



Privacy and Integrity!

Alice Bob

m

Keys 𝑘, 𝑘′ Keys 𝑘, 𝑘′

(𝑐 = 𝑥, 𝑓% 𝑥 ⨁𝑚 , tag = 𝑓%*(𝑐))

Solution: Encrypt, then MAC (More in Problem Set 2)

MACs give us integrity, but not necessarily privacy (why?)



Suppose we have PRF Family 𝑓J: 0,1 K → 0,1 L. 
How do we MAC long messages?  (Eg. A document) 

MACs for Long Messages

𝑀 𝑀$ 𝑀% 𝑀'…

Take 1: 𝑀𝐴𝐶 𝑘,𝑀M, 𝑀N, … ,𝑀O = 𝑓J(⊕P 𝑀P).

Issue: Can come up with MAC for anything with the 
same XOR.

𝐵 bits



Suppose we have PRF Family 𝑓J: 0,1 K → 0,1 L. 
How do we MAC long messages?  

MACs for Long Messages

𝑀 𝑀$ 𝑀% 𝑀'…

Issue: Can permute the messages and MAC it!

Take 2: 𝑀𝐴𝐶 𝑘,𝑀M, 𝑀N, … ,𝑀O =⊕P 𝑓J(𝑀P).

𝑓((𝑀$) 𝑓((𝑀%) 𝑓((𝑀')



Suppose we have PRF Family 𝑓J: 0,1 K → 0,1 L. 
How do we MAC long messages?  

MACs for Long Messages

𝑀 𝑀$ 𝑀% 𝑀%'…

Issue: Cut-and-paste attack.

Take 3:𝑀𝐴𝐶 𝑘,𝑀M, 𝑀N, … ,𝑀NO =⊕P 𝑓J( 𝑖 | 𝑀P ,
where 𝑖 is the 𝐵/2-bit representation of 𝑖.

𝑀) 𝑀* 𝑀%'+$

𝐵/2 bits𝑓((00. . 1||𝑀$) 𝑓((00. . 10||𝑀%)



MACs for Long Messages

Take 3:𝑀𝐴𝐶 𝑘,𝑀M, 𝑀N, … ,𝑀NO =⊕P 𝑓J( 𝑖 | 𝑀P ,
where 𝑖 is the 𝐵/2-bit representation of 𝑖.

A

B

C

b c

c

ba

a

𝑓((1| 𝐴 ⊕ 𝑓(2| 𝑏 ⊕ 𝑓(3||𝑐)

𝑓((1| 𝑎 ⊕ 𝑓(2| 𝐵 ⊕ 𝑓(3||𝑐)

𝑓((1| 𝑎 ⊕ 𝑓(2| 𝑏 ⊕ 𝑓(3||𝐶)

𝑓!(1| 𝐴
⊕ 𝑓!(2||𝐵)
⊕ 𝑓!(3| 𝐶
= 𝑀𝐴𝐶!(𝐴 𝐵 𝐶)

Issue: Cut-and-paste attack.



Suppose we have PRF Family 𝑓J: 0,1 K → 0,1 L. 
How do we MAC long messages?  

MACs for Long Messages

𝑀 𝑀$ 𝑀% 𝑀%'…

Randomised construction by Bellare, Guerin, Rogaway:

M𝐴𝐶J(𝑀M, 𝑀N, … ,𝑀NO; 𝑟) = (𝑟, 𝑓J(𝑟) ⊕ (⊕P 𝑓J 𝑖 𝑀P )

𝑀) 𝑀* 𝑀%'+$

𝐵/2 bits𝑓((00. . 1||𝑀$) 𝑓((00. . 10||𝑀%)

Proof: Exercise J (Similar to secret-key proof)



• Let 𝐻: 0,1 ∗ → 0,1 " be a collision resistant 
hash function (CRHF).
– Public function which compresses long messages 

to B bits.
– Hard to find 𝑥, 𝑥′ such that 𝐻 𝑥 = 𝐻 𝑥Q .

• 𝑀𝐴𝐶# 𝑚 = 𝑓# 𝐻 𝑚 .
• Exercise: Show that this is a EUF-CMA secure 

MAC!

Hash-then-Sign



TODAY

More Applications of PRFs:

a. Identification Protocols

b. Applications to Learning Theory

c. Authentication (EUF-CMA Security)

d. IND-CCA Security



• Indistinguishable against chosen-plaintext attack.
– i.e. Adversary has access to Enc oracle. 
– Exercise: This is equivalent to definition from Lec 4.

Recall IND-CPA Security

𝑚

𝐸𝑛𝑐(𝑘,𝑚)

𝑚,
∗ , 𝑚$

∗

𝑘 ← 𝐾

𝑏 ← {0,1}

𝑝𝑜𝑙𝑦(𝑛) times

𝑚

𝐸𝑛𝑐(𝑘,𝑚)𝑝𝑜𝑙𝑦(𝑛) times

𝐸𝑛𝑐(𝑘,𝑚.)

𝑏′ Accept if 𝑏/ = 𝑏



• Indistinguishable against chosen-ciphertext attack.
– i.e. Adversary has access to Enc and Dec oracle.

IND-CCA2 Security

𝑚, 𝑐

𝐸𝑛𝑐 𝑘,𝑚 , 𝐷𝑒𝑐(𝑘, 𝑐)

𝑚,
∗ , 𝑚$

∗

𝑘 ← 𝐾

𝑏 ← {0,1}

𝑝𝑜𝑙𝑦(𝑛) times

𝑝𝑜𝑙𝑦(𝑛) times

𝑐∗ = 𝐸𝑛𝑐(𝑘,𝑚.)

𝑏′ Accept if 𝑏/ = 𝑏

𝑚, 𝑐

𝐸𝑛𝑐 𝑘,𝑚 , 𝐷𝑒𝑐(𝑘, 𝑐)

Check 𝑐 ≠ 𝑐∗



• Given a decryption oracle, 𝐸𝑛𝑐 𝑘,𝑚; 𝑟 =
𝑟, 𝑓J 𝑟 ⊕𝑚 is not secure!

Our SKE is not IND-CCA2 Secure

𝑚,
∗ , 𝑚$

∗ 𝑘 ← 𝐾
𝑏 ← {0,1}

𝑐∗ = (𝑟, 𝑓 𝑟 ⊕𝑚.
∗ )

Accept if 𝑏/ = 𝑏

Check 𝑐 ≠ 𝑐∗𝑐 = (𝑟, 𝑓 𝑟 ⊕𝑚.
∗ ⊕ 𝑠)

Choose some 𝑠 ≠ 0
𝑚.
∗ ⊕ 𝑠Recover 𝑚.

∗

𝑏

If only it were hard to create a valid ciphertext to decrypt….



Let (Gen, Enc, Dec) be IND-CPA Secure.
A triple of algorithms (Gen, Enc’, Dec’):
• Gen(1!): Produces a secret key 𝑘 ← 𝐾"# and MAC key 
𝑘′ ← 𝐾$%& .

• 𝐸𝑛𝑐′(𝑘, 𝑘', 𝑚): Outputs 𝑐 = 𝐸𝑛𝑐(𝑘,𝑚) along with tag 
𝑡 = 𝑀𝐴𝐶 𝑘', 𝑐 .

• 𝐷𝑒𝑐′(𝑘, 𝑘', (𝑐, 𝑡)): If 𝑉𝑒𝑟 𝑘', 𝑐, 𝑡 = Reject, then output 
⊥. Otherwise, 𝐷𝑒𝑐 𝑘, 𝑐 .

Intuition: The decryption oracle is useless because it is 
difficult for valid tags 𝑡.

IND-CCA2 Secure SKE


