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Foundations of Cryptography
Lecture 5



TODAY

More Applications of PRFs:

a. ldentification Protocols
b. Applications to Learning Theory

c. Authentication (EUF-CMA Security)
d. IND-CCA Security

Logistics:
* Problem Set 1 is due today at 11:59:59pm.

« Remember that you have 10 late days for this class, and you
may use up to 5 for any one problem set.



Friend-or-Foe Identification

¢ Adversary: person-in-the-middle.

4 Can listen to / modify the communications. Wants to
impersonate Tim.



A Simple Lemma about Unpredictability

Let £,:{0,1}* - {0,1}™ be a pseudorandom function.

¢ Consider an adversary who requests and obtains
fs(x1), ...,fg(xq) for a polynomial g = gq(n).

€ Can she predict f;(x*) for some x* of her choosing
where x* & {x4,..., Xq}? How well can she do it?

Lemma: If she succeeds with probability zim + 1/poly(n),

then she breaks PRF security. This is negligible inn if m is
large enough, i.e. w(logn).




A Simple Lemma about Unpredictability

Let £,:{0,1}* - {0,1}™ be a pseudorandom function.

¢ Consider an adversary who requests and obtains
fs(x1), ...,fg(xq) for a polynomial g = gq(n).

€ Can she predict f;(x*) for some x* of her choosing
where x* & {x4,..., Xq}? How well can she do it?

¢ Unpredictability = Indistinguishability for bits (lecture 3)

¢ Indistinguishability = Unpredictability (but not vice versa).



Challenge-Response Protocol

> ?H"i

PRF Key s

(ID number ID, PRF Key s)

“Proof”: Adversary collects (73, f;(1;)) for poly many r;
(potentially of her choosing). She eventually has to produce
f;(r*) for a fresh random r* when she is trying to impersonate.

This is hard as long as the input and output lengths of the PRF
are long enough, i.e. w(logn).



TODAY

More Applications of PRFs:

b. Applications to Learning Theory

c. Authentication (EUF-CMA Security)
d. IND-CCA Security



Negative Results in Learning Theory

Theorem [Kearns and Valiant 1994]:
Assuming PRFs exist, there are hypothesis classes that cannot
be learned by polynomial-time algorithms.
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TODAY

More Applications of PRFs:

c. Authentication (EUF-CMA Security)
d. IND-CCA Security



The authentication problem

. Bob

Alice Can also

Key k alter/inject Key k
more messages!

This is known as a man-in-the-middle attack.

How can Bob check if the message is indeed from Alice?



The authentication problem

)
(m,t) w (m,t) or L Q
= AN

. Bob

Alice Can essentially

Key k only send it Key k
along!

We want Alice to generate a tag for the message m which
is hard to generate without the secret key k.



Message Authentication Codes (MACs)

A triple of algorithms (Gen, MAC, Ver):

* Gen(1™): Produces akey k « K.

 MAC(k, m): Outputs a tag t (may be deterministic).
* Ver(k, m,t): Outputs Accept or Reject.

Correctness: Pr[Ver(k, m, MAC(k, m)) = Accept] =1

Security: Hard to forge. Intuitively, it should be hard to
come up with a new pair (m’, t’) such that Ver accepts.



What is the power of the adversary?

L
(m, MAC (k,m) (m, MAC (k,m))
.Q % orL

Alice Bob

* Can see many pairs (m, MAC (k, m)).
* Can access a MAC oracle MAC (k, -)

— Obtain tags for message of choice.

This is called a chosen message attack (CMA).



Defining MAC Security

* Total break: The adversary should not be able to
recover the key k.

* Universal break: The adversary can generate a valid
tag for every message.

* Existential break: The adversary can generate a new
valid tag t for some message m.

We will require MACs to be secure against the
existential break!!



EUF-CMA Security

Existentially Unforgeable against Chosen Message Attacks

? S

t, = MAC(k,my) kK

my

tz - MAC(k, mz)

Accept if (m,t) #
(my, t;) forall i, and
Ver(k,m,t) = 1.

(m; t)

Want: Pr((m, t) « AMACK) (1) Ver(k,m,t) = 1, (m,t) € Q)) = negl(n).
where Q is the set of queries {(m;, t;)}; that A makes.



Wait... Does encryption not solve this?

: Enc(k, m) Q

Alice Bob
Key k Key k



Wait... Does encryption not solve this?

ﬂ m @ k m @ k
g e g

; Bob
Alice Can toggle
Key k between m Key k
and m’

One-time pad (and encryption schemes in general)
are malleable.



Wait... Does encryption not solve this?

L
_Q , fr(r) GBm)w(r,fk(r) b m') Q
M Bob

Alice Can toggle
Key k between m Key k
and m’

One-time pad (and encryption schemes in general)
are malleable.

Privacy and Integrity are very different goals!



Constructing a MAC

0
Q (mr MA Ck (m))

2 - 2

Alice Bob
Key k Key k

Gen(1™): Produces a PRF key k < K.
MAC(k, m): Output f(m).
Ver(k, m, t): Accept if f,(m) = t, reject otherwise.

Security: Our earlier unpredictability lemma about
PRFs essentially proves that this is secure!



Dealing with Replay Attacks

 The adversary could send an old valid (m, tag) at a
later time.
— In fact, our definition of security does not rule this out.

* |n practice:

— Append a time-stamp to the message. Eg. (m, T, MAC(m,
T)) where T =21 Sep 2022, 1:47pm.

— Sequence numbers appended to the message (this
requires the MAC algorithm to be stateful).



Privacy and Integrity!

7]
: (c = (x, fr(x)dm), tag = fi,(c)) Q

Alice Bob
Keys k, k' Keys k, k'

MACs give us integrity, but not necessarily privacy (why?)

Solution: Encrypt, then MAC (More in Problem Set 2)



MACs for Long Messages

Suppose we have PRF Family f;: {0,1}% — {0,1}™.

How do we MAC long messages? (Eg. A document)

M 1\/11 1\/12 vee Mp

|
B bits

Take 1: MAC(k, My, My, ..., M,,) = f,(D; M;).

Issue: Can come up with MAC for anything with the
same XOR.



MACs for Long Messages

Suppose we have PRF Family f;: {0,1}% — {0,1}™.

How do we MAC long messages?

M M,

M,

My

l

fre(My)

!

fr(Mz)

1

frr (M)

Take 2: MAC(k, My, My, ..., M,,) =@®; fi (M)).

Issue: Can permute the messages and MAC it!




MACs for Long Messages

Suppose we have PRF Family f;: {0,1}% — {0,1}™.

How do we MAC long messages?

fi(00..1]|My)  £,(00..10]| M) B /2 bits

Take 3: MAC(k, My, My, ..., Myy,) =®; fr. ((D)|IM)),
where (i) is the B /2-bit representation of i.

Issue: Cut-and-paste attack.



MACs for Long Messages

A b c fe(1114) © F2I1D) ® fBlle) |
fe(1114)
. B c | raweraimeraio -SrGID
= MAC(A||BI|C)
: b c | Ao @reIn®raIc) |

Take 3: MAC(k, My, My, ..., My, ) =@®; fr. ()| IMy),
where (i) is the B /2-bit representation of i.

Issue: Cut-and-paste attack.



MACs for Long Messages

Suppose we have PRF Family f;: {0,1}% — {0,1}™.

How do we MAC long messages?

M M1 Mz M3 M4_ sz—l sz
fi(00..1]|My)  £,(00..10]| M) B /2 bits

Randomised construction by Bellare, Guerin, Rogaway:
MAC, (My, My, ..., Map; 1) = (7, fr.(r) © (D f (DIM;)))

Proof: Exercise © (Similar to secret-key proof)



Hash-then-Sign

e Let H:{0,1}* — {0,1}? be a collision resistant
hash function (CRHF).

— Public function which compresses long messages
to B bits.

— Hard to find x, x’ such that H(x) = H(x").

* MAC,(m) = fi,(H(m)).
* Exercise: Show that this is a EUF-CMA secure
MAC!



TODAY

More Applications of PRFs:

d. IND-CCA Security



Recall IND-CPA Security

* Indistinguishable against chosen-plaintext attack.

— i.e. Adversary has access to Enc oracle.
— Exercise: This is equivalent to definition from Lec 4.

@ : =

poly(n) times { ‘ Enc(k,m) k<K
(mg, m7) ‘ b < {0,1)
Enc(k,my)

m

poly(n) times { ‘ Enc(k, m)

b’ R Acceptif b’ =




IND-CCA2 Security

* Indistinguishable against chosen-ciphertext attack.

— i.e. Adversary has access to Enc and Dec oracle.

@

poly(n) times {
poly(n) times {

m, c

Enc(k,m), Dec(k,c)

(mg, m7)

c* = Enc(k,my)

m, c

Enc(k,m), Dec(k,c)

bl

b < {0,1}

Checkc # c*

Acceptif b’ = b



Our SKE is not IND-CCA2 Secure

* Given a decryption oracle, Enc(k,m;r) =
(1, fi (r) @ m) is not secure!

@ =

(mg, m3) k<K
] b « {0,1}

¢t = (r,f(r) @ my)

c=(f(r)PBm, Ps)

Choose some s # 0 > Checkc # c*

m, P s

Recover m;, <

b Acceptif b’ = b

If only it were hard to create a valid ciphertext to decrypt....



IND-CCA2 Secure SKE

Let (Gen, Enc, Dec) be IND-CPA Secure.

A triple of algorithms (Gen, Enc’, Dec’):

* Gen(1™): Produces a secret key k < K and MAC key
k' « Kqc -

e Enc'(k,k',m): Outputs ¢ = Enc(k, m) along with tag
t = MAC(k', c).

« Dec'(k, k', (c,t)): If Ver(k',c,t) = Reject, then output
L. Otherwise, Dec(k, c).

Intuition: The decryption oracle is useless because it is
difficult for valid tags t.



