MIT 6.875

Foundations of Cryptography Lecture 5

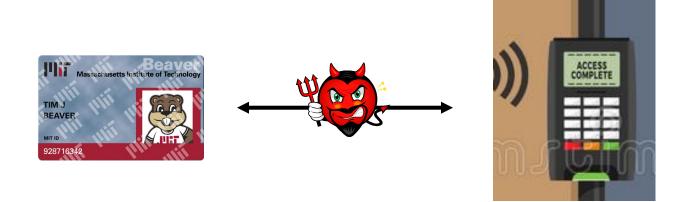
More Applications of PRFs:

- a. Identification Protocols
- b. Applications to Learning Theory
- c. Authentication (EUF-CMA Security)
- d. IND-CCA Security

Logistics:

- Problem Set 1 is due today at 11:59:59pm.
- Remember that you have 10 late days for this class, and you may use up to 5 for any one problem set.

Friend-or-Foe Identification



Adversary: person-in-the-middle.

 Can listen to / modify the communications. Wants to impersonate Tim.

A Simple Lemma about Unpredictability

Let $f_s: \{0,1\}^{\ell} \to \{0,1\}^m$ be a pseudorandom function.

Consider an adversary who requests and obtains $f_s(x_1), ..., f_s(x_q)$ for a polynomial q = q(n).

♦ Can she predict $f_s(x^*)$ for some x^* of her choosing where $x^* \notin \{x_1, ..., x_q\}$? How well can she do it?

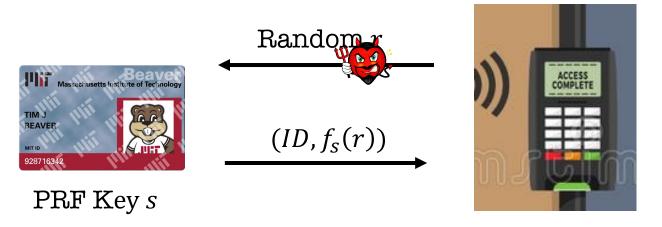
Lemma: If she succeeds with probability $\frac{1}{2^m} + 1/\text{poly}(n)$, then she breaks PRF security. This is negligible in n if m is large enough, i.e. $\omega(\log n)$.

A Simple Lemma about Unpredictability

Let $f_s: \{0,1\}^{\ell} \to \{0,1\}^m$ be a pseudorandom function.

- Consider an adversary who requests and obtains $f_s(x_1), ..., f_s(x_q)$ for a polynomial q = q(n).
- ♦ Can she predict $f_s(x^*)$ for some x^* of her choosing where $x^* \notin \{x_1, ..., x_q\}$? How well can she do it?
- Unpredictability \equiv Indistinguishability *for bits* (lecture 3)
- Indistinguishability \implies Unpredictability (*but not vice versa*).

Challenge-Response Protocol



(ID number *ID*, PRF Key *s*)

"Proof": Adversary collects $(r_i, f_s(r_i))$ for poly many r_i (potentially of her choosing). She eventually has to produce $f_s(r^*)$ for a fresh random r^* when she is trying to impersonate.

This is hard as long as the input and output lengths of the PRF are long enough, i.e. $\omega(\log n)$.

More Applications of PRFs:

- a. Identification Protocols
- b. Applications to Learning Theory
- c. Authentication (EUF-CMA Security)
- d. IND-CCA Security

Negative Results in Learning Theory

Theorem [Kearns and Valiant 1994]:

Assuming PRFs exist, there are hypothesis classes that cannot be learned by polynomial-time algorithms.

Planting Undetectable Backdoors in Machine Learning Models

Shafi Goldwasser UC Berkeley Michael P. Kim UC Berkeley Vinod Vaikuntanathan MIT Or Zamir IAS

Machine Learning and Cryptography (A quick aside)

On the Cryptographic Hardness of Learning Single Periodic Neurons

Min Jae Song* Courant Institute New York University M minjae.song@nyu.edu

Ilias Zadik* Department of Mathematics Massachusetts Institute of Technology izadik@mit.edu

Joan Bruna Courant Institute Center for Data Science New York University

bruna@cims.nyu.edu

Continuous LWE is as Hard as LWE

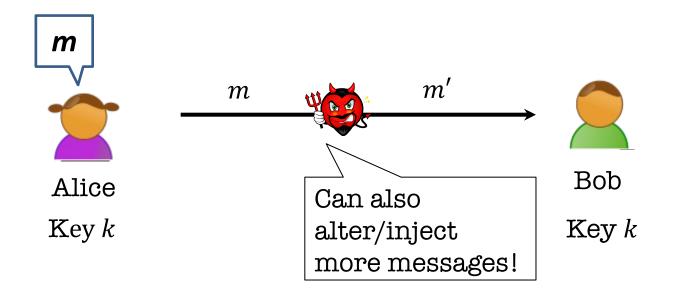
& Applications to Learning Gaussian Mixtures

Aparna Gupte* MIT agupte@mit.edu Neekon Vafa[†] MIT nvafa@mit.edu Vinod Vaikuntanathan[‡] MIT vinodv@mit.edu

More Applications of PRFs:

- a. Identification Protocols
- b. Applications to Learning Theory
- c. Authentication (EUF-CMA Security)
- d. IND-CCA Security

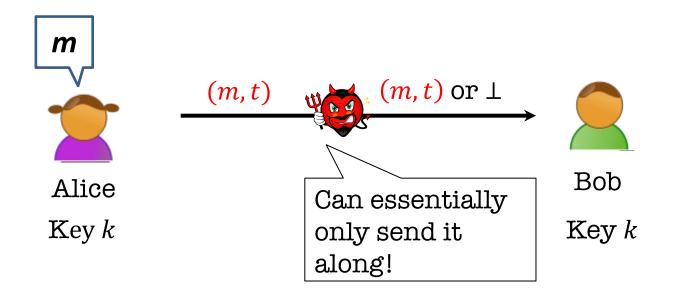
The authentication problem



This is known as a **man-in-the-middle attack**.

How can Bob check if the message is indeed from Alice?

The authentication problem



We want Alice to generate a tag for the message *m* which is hard to generate without the secret key *k*.

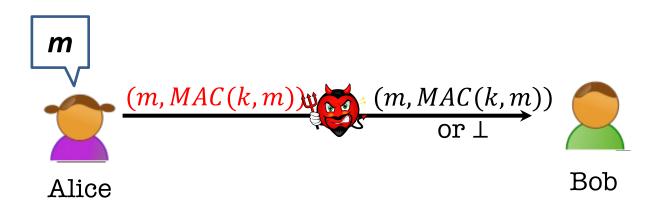
Message Authentication Codes (MACs)

A triple of algorithms (Gen, MAC, Ver):

- Gen (1^n) : Produces a key $k \leftarrow K$.
- MAC(k, m): Outputs a tag t (may be deterministic).
- Ver(k, m, t): Outputs Accept or Reject.

Correctness: Pr[Ver(k, m, MAC(k, m)) = Accept] = 1**Security**: *Hard to forge*. Intuitively, it should be hard to come up with a new pair (m', t') such that Ver accepts.

What is the power of the adversary?



- Can see many pairs (m, MAC(k, m)).
- Can access a MAC oracle $MAC(k, \cdot)$
 - Obtain tags for message of choice.

This is called a *chosen message attack (CMA)*.

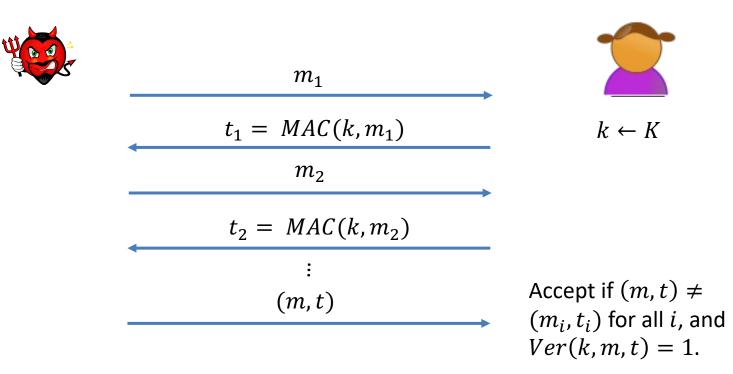
Defining MAC Security

- **Total break:** The adversary should not be able to recover the key *k*.
- Universal break: The adversary can generate a valid tag for every message.
- Existential break: The adversary can generate a new valid tag t for some message m.

We will require MACs to be secure against the existential break!!

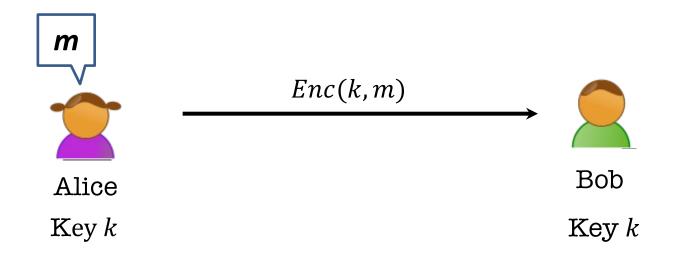
EUF-CMA Security

<u>Existentially</u> <u>Unforgeable</u> against <u>Chosen</u> <u>Message</u> <u>Attacks</u>

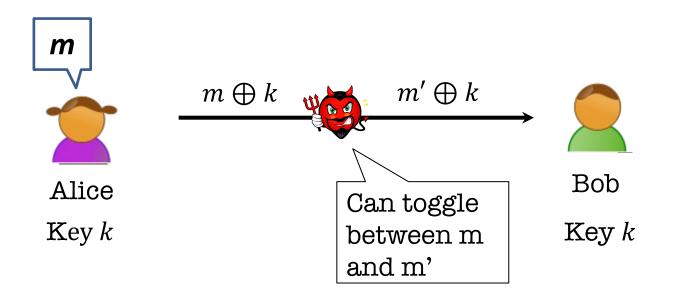


Want: $Pr((m, t) \leftarrow A^{MAC(k, \cdot)}(1^n), Ver(k, m, t) = 1, (m, t) \notin Q)) = negl(n).$ where Q is the set of queries $\{(m_i, t_i)\}_i$ that A makes.

Wait... Does encryption not solve this?

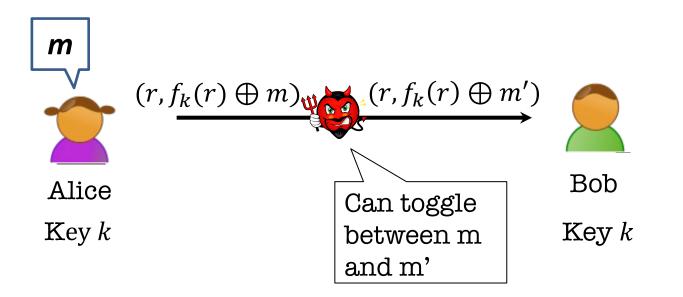


Wait... Does encryption not solve this?



One-time pad (and encryption schemes in general) are *malleable*.

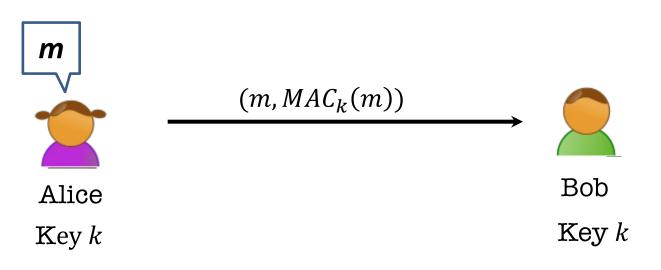
Wait... Does encryption not solve this?



One-time pad (and encryption schemes in general) are *malleable*.

Privacy and Integrity are very different goals!

Constructing a MAC



Gen (1^n) : Produces a PRF key $k \leftarrow K$. MAC(k, m): Output $f_k(m)$. Ver(k, m, t): Accept if $f_k(m) = t$, reject otherwise.

Security: Our earlier unpredictability lemma about PRFs essentially proves that this is secure!

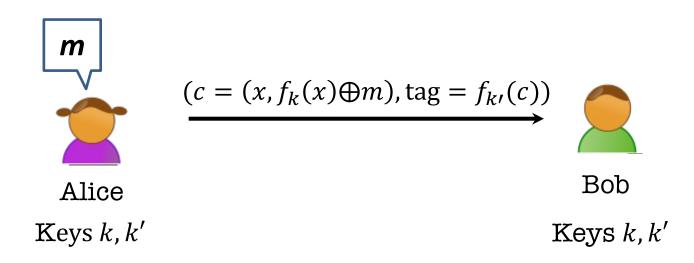
Dealing with Replay Attacks

- The adversary could send an old valid (*m*, *tag*) at a later time.
 - In fact, our definition of security does not rule this out.

• In practice:

- Append a time-stamp to the message. Eg. (m, T, MAC(m, T)) where T = 21 Sep 2022, 1:47pm.
- Sequence numbers appended to the message (this requires the MAC algorithm to be *stateful*).

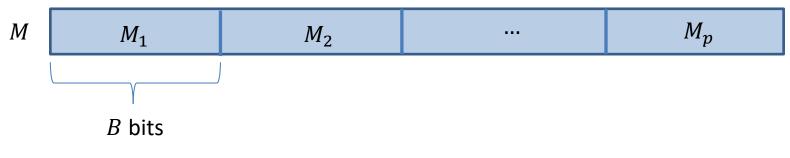
Privacy and Integrity!



MACs give us integrity, but not necessarily privacy (why?)

Solution: Encrypt, then MAC (More in Problem Set 2)

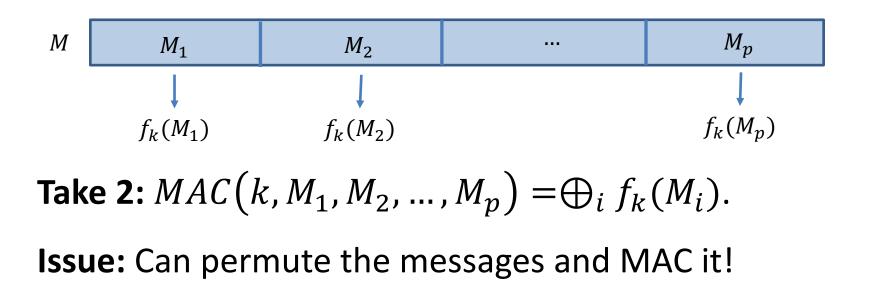
Suppose we have PRF Family f_k : $\{0,1\}^B \rightarrow \{0,1\}^m$. How do we MAC long messages? (Eg. A document)



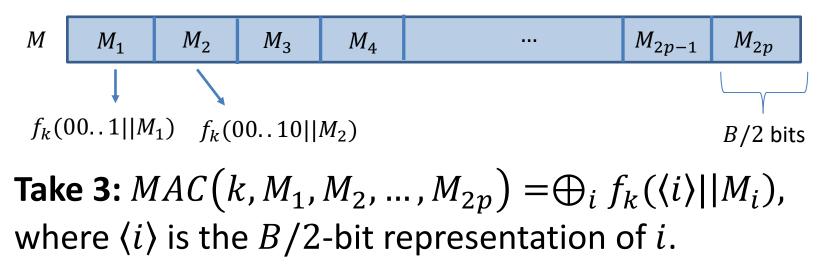
Take 1:
$$MAC(k, M_1, M_2, ..., M_p) = f_k(\bigoplus_i M_i).$$

Issue: Can come up with MAC for anything with the same XOR.

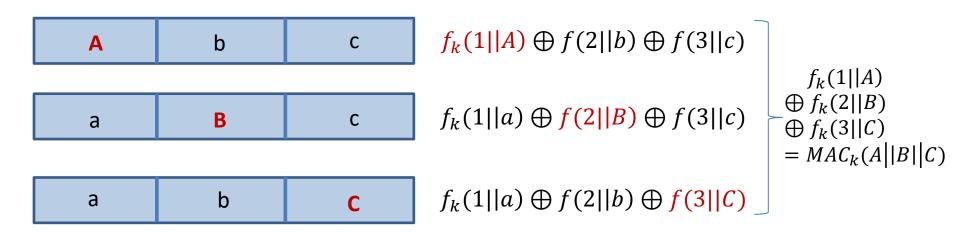
Suppose we have PRF Family f_k : $\{0,1\}^B \rightarrow \{0,1\}^m$. How do we MAC long messages?



Suppose we have PRF Family f_k : $\{0,1\}^B \rightarrow \{0,1\}^m$. How do we MAC long messages?

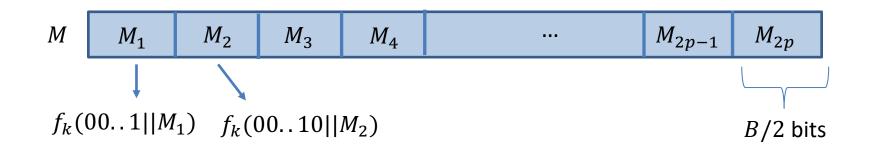


Issue: Cut-and-paste attack.



Take 3: $MAC(k, M_1, M_2, ..., M_{2p}) = \bigoplus_i f_k(\langle i \rangle || M_i)$, where $\langle i \rangle$ is the B/2-bit representation of i. **Issue:** Cut-and-paste attack.

Suppose we have PRF Family f_k : $\{0,1\}^B \rightarrow \{0,1\}^m$. How do we MAC long messages?



Randomised construction by Bellare, Guerin, Rogaway:

 $\mathsf{MAC}_k(M_1, M_2, \dots, M_{2p}; \mathbf{r}) = (\mathbf{r}, f_k(\mathbf{r}) \bigoplus (\bigoplus_i f_k(\langle i \rangle || M_i)))$

Proof: Exercise ③ (Similar to secret-key proof)

Hash-then-Sign

- Let $H: \{0,1\}^* \rightarrow \{0,1\}^B$ be a collision resistant hash function (CRHF).
 - Public function which compresses long messages to B bits.
 - Hard to find x, x' such that H(x) = H(x').
- $MAC_k(m) = f_k(H(m)).$
- Exercise: Show that this is a EUF-CMA secure MAC!

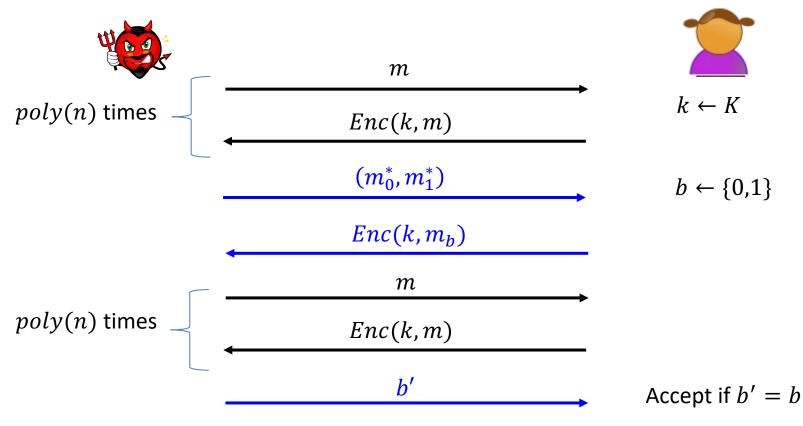
TODAY

More Applications of PRFs:

- a. Identification Protocols
- b. Applications to Learning Theory
- c. Authentication (EUF-CMA Security)
- d. IND-CCA Security

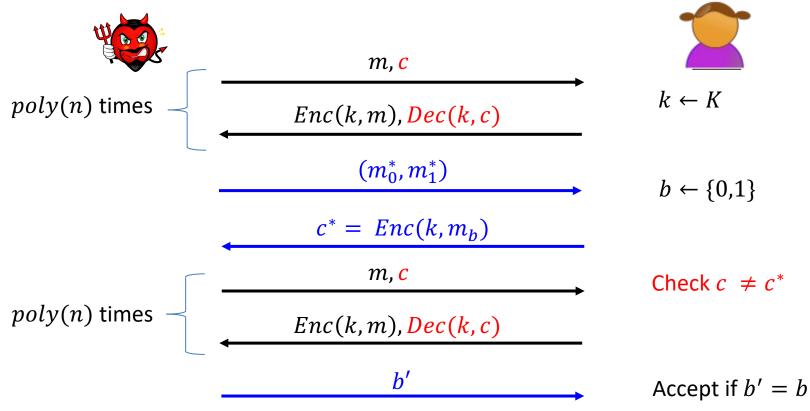
Recall IND-CPA Security

- Indistinguishable against chosen-plaintext attack.
 - i.e. Adversary has access to Enc oracle.
 - Exercise: This is equivalent to definition from Lec 4.



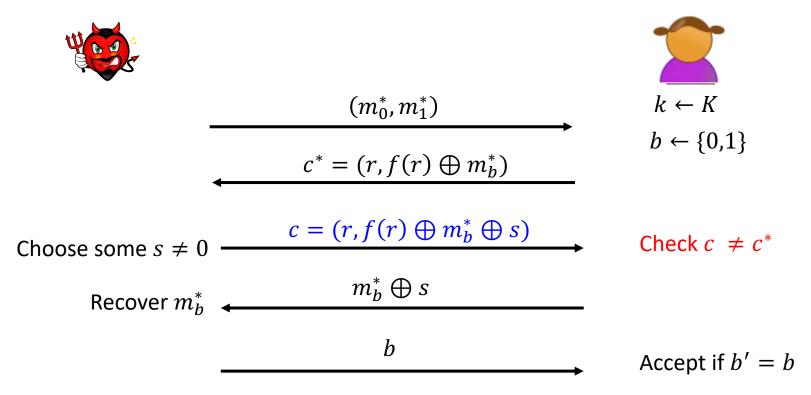
IND-CCA2 Security

- Indistinguishable against chosen-ciphertext attack.
 - i.e. Adversary has access to Enc and Dec oracle.



Our SKE is not IND-CCA2 Secure

• Given a decryption oracle, $Enc(k,m;r) = (r, f_k(r) \bigoplus m)$ is not secure!



If only it were hard to create a valid ciphertext to decrypt....

IND-CCA2 Secure SKE

Let (Gen, Enc, Dec) be IND-CPA Secure.

A triple of algorithms (Gen, Enc', Dec'):

- Gen (1^n) : Produces a secret key $k \leftarrow K_{sk}$ and MAC key $k' \leftarrow K_{mac}$.
- Enc'(k, k', m): Outputs c = Enc(k, m) along with tag t = MAC(k', c).
- Dec'(k, k', (c, t)): If Ver(k', c, t) =Reject, then output \bot . Otherwise, Dec(k, c).

Intuition: The decryption oracle is useless because it is difficult for valid tags *t*.