MIT 6.875/6.5620/18.425

Foundations of Cryptography
Lecture 3

Course website: https://mit6875.github.io/

Lecture 2 Recap

¢ Computational Indistinguishability:
a new definition of security for secret-key encryption.

(new notions: p.p.t. adversaries, negligible functions,...)

¢ Consequence: Shannon’s impossibility no longer applies!
¢ New Notion: Pseudorandom Generator (PRG)
¢ PRG = Can encrypt a single message longer than the key.

¢ We saw a construction of PRG (based on subset sum).
Many more later in the course.

TODAY

How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.

Theorem: If there is a PRG that stretches by one bit,
there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Consequence: Stateless encryption of poly many messages.

Theorem (next lec): If there is a PRG, then there is a PRF.

New Proof Technique: Hybrid Arguments. X

But first, let’'s do some prep work...

Three Definitions of Pseudorandomness

Def 1 [Indistinguishability]

“No polynomial-time algorithm can distinguish between the output
of a PRG on a random seed vs. a truly random string”

= “as good as” a truly random string for all practir§\\ ,0ses.

N

S
Def 2 [Next-bit Unpredictability] Q
“No polynomial-time algorithm c> ng .t the (i+1)t bit of the

output of a PRG given the firs* 'Qq, Jsetter than chance”

N
v\,\a

PRG Def 1 (Recap): Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function G: {0,1}" =
{0,1}™ is indistinguishable (or, secure against any statistical test) if:

for every PPT algorithm D (called a distinguisher) if there is a
negligible function u such that:

| Pr[D(G(Uy)) =1]-Pr[DUy) =1]| = pun)

Notation: U, (resp. U,,) denotes the random distribution on n-bit
(resp. m-bit) strings.

PRG Def 2: Next-bit Unpredictability

Definition [Next-bit Unpredictability]:

A deterministic polynomial-time computable function G: {0,1}" =
{0,1}™ is next-bit unpredictable if:

for every PPT algorithm P (called a next-bit predictor) and every i €
{1, ..., m}, if there is a negligible function u such that:

1
Prly « G(U,):P(y1y2 - Yi-1) = Yil = 5t p(n)

Notation: y4, v, , ... y,,, are the bits of the m-bit string y.

Def 1 and Def 2 are Equivalent

Theorem:
A PRG G is indistinguishable if and only if it is next-
bit unpredictable.

Def 1 and Def 2 are Equivalent

Theorem:
A PRG G passes all (poly-time) statistical tests if and only
if it passes (poly-time) next-bit tests.

NBU and Indistinguishability

¢ Next-bit Unpredictability (NBU): Seemingly much weaker
requirement. Only says that next bit predictors, a
particular type of distinguishers, cannot succeed.

¢ Yet, surprisingly, Next-bit Unpredictability (NBU) =
Indistinguishability.

¢ NBU often much easier to use.

1. Indistinguishability = NBU

Proof: by contradiction.

Suppose for contradiction that there is a p.p.t. predictor P, a
polynomial functionpand ani € {1, ..., m} s.t.

1
Prly « G(Up): P(y1y2 - Yi—1) = yil = 5 +1/p(n)
Then, I claim that P essentially gives us a distinguisher D!
Consider D which gets an m-bit string y and does the following:

1. Run P on the (i — 1)-bit prefix y1y, ... yi_1.

2. If P returns the i-th bit y;, then output 1 (“PRG”) else output O
(“Random”).

If P is p.p.t. sois D.

1. Indistinguishability = NBU

Consider D which gets an m-bit string y and does the following:
1. Run P on the (i — 1)-bit prefix y1y, ... y;i_1.

2. If P returns the i-th bit y;, then output 1 (= “PRG”) else
output 0 (= “Random”).

We want to show: there is a polynomial p’ s.t.

Prly « G(Up): D(y) =1]

1. Indistinguishability = NBU

Consider D which gets an m-bit string y and does the following:
1. Run P on the (i — 1)-bit prefix y1y, ... y;i_1.

2. If P returns the i-th bit y;, then output 1 (= “PRG”) else
output 0 (= “Random”).

Prly « G(Uyp): D(y) =1]
= Prly « G(Up): P(y1y32 ... Yi-1) = Yi]

(by construction of D)

1
E + 1/p(n) (by assumption on P)

1. Indistinguishability = NBU

Consider D which gets an m-bit string y and does the following:
1. Run P on the (i — 1)-bit prefix y1y, ... y;i_1.

2. If P returns the i-th bit y;, then output 1 (= “PRG”) else
output 0 (= “Random”).

1

Prly « G(Up): D(y) =1] = 1/p(n)

Prly « Upn: D(y) = 1]

= Prly « U,y: P(y1yy ... Vi_1) = y;] (by construction of D)
1

= — (since y is random)

2

1. Indistinguishability = NBU

Consider D which gets an m-bit string y and does the following:

1. Run P on the (i — 1)-bit prefix y1y, ... y;i_1.

2. If P returns the i-th bit y;, then output 1 (= “PRG”) else
output 0 (= “Random”).

Prly « G(Up): D(y) =1] ==+ 1/p(n)

N = DN =

Prly « Upy: D(y) = 1]

So, | Prly « G(Uyp): D(y) =1]
-Prly< U, D(y) =1]|=1/p(n)

2. NBU = Indistinguishability

Proof: by contradiction (again!)

Suppose for contradiction that there is a distinguisher D, and a
polynomial function p s.t.

| Prly « G(Up): D(y) =1]
-Prly<U,:D(y) =1]|=1/p'(n)

| want to construct a next bit predictor P out of D.

o)

But how?! @

2. NBU = Indistinguishability

Proof: by contradiction (again!)

Suppose for contradiction that there is a distinguisher D, and a
polynomial function p s.t.

Prly « G(Uy): D(y) =1]
-Prly< U, D) =1]=21/p'(n) :=¢

| want to construct a next bit predictor P out of D.

TWO STEPS:

 STEP 1: HYBRID ARGUMENT

 STEP 2: From Distinguishing to Predicting

Before we go there, a puzzle...

Lemma: Let Pg, D1, P2, -.-» Pm be real numbers s.t.

pm_pOZa

Then, there is an index [such that p; — P;_1 = &/m.

Proof:

Pm — Po = Om — Pm-1) + Pm-1 — Pm—-2) + -+ (1 — Po)

= £

At least one of the m terms has to be at least ¢/m (averaging). .

Define Hybrid Distributions: = ;aslizr;andom

Ji such that D
distinguishes
between H;_; and

e | " 2t
" D distinguishes

H; PN [T 17 1] between Ho and i
P ayantage ¢

RSy = = o/
: - Pr[D(Hy) =1] = ¢
I_lm-1: _ /

Hybrid Distributions: Bl random
] pseudorandom

i B LT
R P LT

>c/m

e Let’s define p; = Pr[D(H;) = 1].
po = Pr[D(Uy,) = 1] and pp, = Pr[D(G(Uy)) = 1}
e By the hybrid argument, we have: p; — p;_; = ¢/m.

e Key Intuition: D outputs 1 more often given a
pseudorandom i-th bit than a random i-th bit.

e So, D gives us a “signal” as to whether a given bit is
the correct i-th bit or not.

. _ I random
Let’s dig a bit more. B pseudorandom

We know: p; — p;_1 = &/m. -

Pi

i IR - B

p:Pr[D(H) = 1]

& I . v
Cle?ﬁlnrg Pi-1 (pl + pl)/z
Gorollary (.
u: random bit

Sﬁi’ laﬂ&q@\(\iﬁy@ §3ys “1” more often when fed y .. i-th pseudorandom bit
with the “right bit” than the “wrong bit”. yi=1—1y;

Our Predictor P

The Idea: The predictor is given the first i — 1 pseudorandom
bits (call it y;y, ... ¥;_1) and needs to guess the i-th bit.

The Predictor P works as follows:
Pick a random bit b;

Feed D with input y;v5 ... y;_1| b | 4j41... Uy, (u’s are random)

If D says ”1”Loutput b as the prediction for y; and if D says
“0”, output b as the prediction for y;

Analysis of the Predictor P

Prlx <« {0,1}";y = G(x): P(y1y2 .. Vi-1) = Yi]
= Pr[D(y1y3 ...Yi—1b ...) = 1| b = y;] Pr[b = y;] +
Pr[D(y1y; ...¥i—1b ...) = 0| b # y;| Pr[b # y;]
1
= E(PF[D(YLVZ wYi-1b...) =1 b =y;] +
Pr[D(y1y; ...¥i—1b ...) = 0] b # y;])

1
=3 (PrID(y1y2 - Yic1Yi) = 1] +
Pr[D(y1y; ... ¥i-1¥i -.) = 0])

1
= E(PF[D(%}’Z wYicVi) =11 +1—
Pr[D(y1yz .. ¥i-1¥;) = 1])

1 1
=2 (1+(x) 25 +1/n pm)

Recap: NBU and Indistinguishability

¢ Next-bit Unpredictability (NBU): Seemingly much weaker
requirement, only says that next bit predictors, a
particular type of distinguishers, cannot succeed.

¢ Yet, surprisingly, Next-bit Unpredictability (NBU) =
Indistinguishability.

¢ NBU often much easier to use.

¢ Exercise: Previous-bit Unpredictability (NBU) =
Indistinguishability.

TODAY

How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.

Theorem: If there is a PRG that stretches by one bit,
there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Consequence: Stateless encryption of poly many messages.

Theorem (next lec): If there is a PRG, then there is a PRF.

Length extension: One bit to Many bits

Let G: {0,1}" - {0,1}"*! be a pseudorandom generator.

Goal: use G to generate many pseudorandom bits.

Length extension: One bit to Many bits

Let G: {0,1}" - {0,1}"*! be a pseudorandom generator.

Goal: use G to generate poly many pseudorandom bits.

Length extension: One bit to Many bits

Let G: {0,1}" - {0,1}"*! be a pseudorandom generator.

Goal: use G to generate poly many pseudorandom bits.

Construction of G’(sg)

seed = s, Y1 = G(So)
—{e

Length extension: One bit to Many bits

Let G: {0,1}" - {0,1}"*! be a pseudorandom generator.

Goal: use G to generate poly many pseudorandom bits.

Construction of G’(sg)

seed = s Y1 =0>bq || 51
—e—

Length extension: One bit to Many bits

Let G: {0,1}" - {0,1}"*! be a pseudorandom generator.

Goal: use G to generate poly many pseudorandom bits.
Construction of G’(sg) Output by b, b3 by bs ...5s;.

seed = s 51 52 Sp—1 SL
[

\ | | \
b1 b2 bL—l bL

Also called a stream cipher by the practitioners.

Length extension: One bit to Many bits

Proof of Security (exercise):

Use next-bit (or previous-bit?) unpredictability!
Construction of G’(sg) Output by b, b3 by bs ...5s;.

seed = s 51 52 Sp—1 SL
[

\ | | \
b1 b2 bL—l bL

Stateful Encryption of Many Messages

1-bit m
N m @ bl
b 4 - 8
Alice Bob
Initgadtstate,= s Inigedidate = s

Stateful Encryption of Many Messages

3-bit m’
N m' @ b2 b3 b4_
= - 8
Alice Bob
State = s, State = s,

Stateful Encryption of Many Messages

1-bit m”’
mll @ b5 \/
= Q
Alice Bob
State = sy State = s5

Stateful Encryption of Many Messages

o PLUS: Alice and Bob can keep encrypting as many bits
as they wish.

o MINUS: Alice and Bob have to keep their states in
perfect synchrony. They cannot transmit simultaneously.

IF NOT:
Correctness goes down the drain, so does security.

How to be Stateless? Here is an idea...

1-bit \n/1 pick a random index, say 5

'Q‘ (5.m @ bs) Q

Alice Bob
Key k = s Key k = s

b1 bz b3 b4_ b5 bn100_1 bn1oo b1 bz b3 b4_ b5 bn100_1 bn100

DOES THIS WORK? O
Collisions! Pr[Alice’s first two indices collide] > 1/n1° -

— Alice is using the same one-time pad bit twice!

Here is another idea...

1-bit \n/1 pick a random index, say 5

'Q‘ (5.m @ bs) Q

Alice Bob
Key k = s, Key k = s
by by, by by bs * byn_y bon by b, bz by bs

Pr[3 collision in t = poly(n) indices] < t?/2™ = negl(n)

BUT: Alice and Bob are not poly-time!

BuR atied orandgvo d Wackidess...

Keyk = Sy

P

b]_ bz b3 bx bzn_l bz‘n

Goal: Never compute this exponentially long string explicitly!

Instead, we want a function f,(x) = b,, the xt"* bit in the
implicitly defined (pseudorandom) string.

Computable in time poly(|x|) = poly(n).

fr(x1), fx(x2), ... computationally indistinguishable from
random bits, for random (or any distinct) xq, x-,...

x| =n = length of the string x.

TODAY

How to encrypt (poly) many messages with a fixed key?

2. Another new notion: Pseudorandom Functions (PRF).

Consequence: Stateless encryption of poly many messages.

Theorem (next lec): If there is a PRG, then there is a PRF.

Pseudorandom Functions

Collection of functions F, = {f}:{0,1}* - {0,1} ™ }keq0,13m

* indexed by a key k
* n: key length, €: input length, m: output length.

* Independent parameters, all poly(sec-param) = poly(n)

» #functions in F, < 2" (singly exponential in n)

Gen(1™): Generate a random n-bit key k.

Eval(k, x) is a poly-time algorithm that outputs f; (x).

Pseudorandom Functions

Collection of functions F, = {fy:{0,1}* - {0,1} ™ }keq0,13m

* indexed by a key k
* n: key length, €: input length, m: output length.

* Independent parameters, all poly(sec-param) = poly(n)

» #functions in F, < 2" (singly exponential in n)

NS
"N

Collection of ALL functions ALL, = {f: {0,1}{) - {0,1}"}

e #functionsin ALL, < gm2* (doubly exponential in)

Pseudorandom Functions should be “indistinguishable” from

random
The pseudorandom world The random world
X l f(x) X ' f(x)
Distinguisher D Distinguisher D
§on §on

For all ppt D, there 1s a negligible function u s.t.
| Pr[f « Fp:Df(1") = 1] — Pr[f « ALLp: D/ (1) = 1] < p(n)

PRF = Stateless Secret-key Encryption

Gen(1™): Generate a random n-bit key k that defines
fi: {0,13¢ = {0,13™

(the domain size, 2%, had better be super-polynomially large in n)

Enc(k,m): Pick arandom x and
let the ciphertext ¢ be the pair (x,y = fi,(x)®m).

Dec(k,c = (x,y)): Output f; (x)Dy.

Correctness:

Dec(k, c) outputs fi.(x)By = fr,(x)Df,(x)Pm = m.

NEXT LECTURE

How to encrypt (poly) many messages with a fixed key?

Theorem (next lec): If there is a PRG, then there is a PRF.

