MIT 6.875/6.5620/18.425

Foundations of Cryptography Lecture 3

Course website: https://mit6875.github.io/

Lecture 2 Recap

 Computational Indistinguishability: a new definition of security for secret-key encryption. (new notions: p.p.t. adversaries, negligible functions,...)

Consequence: Shannon's impossibility no longer applies!

New Notion: Pseudorandom Generator (PRG)

 \blacklozenge PRG \Rightarrow Can encrypt **a single message** longer than the key.

We saw a construction of PRG (based on subset sum). Many more later in the course.

TODAY

How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits

Consequence: *Stateful* encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Consequence: Stateless encryption of poly many messages.

Theorem (next lec): If there is a PRG, then there is a PRF.

New Proof Technique: Hybrid Arguments.

But first, let's do some prep work...

Three Definitions of Pseudorandomness

Def 1 [Indistinguishability]

"No polynomial-time algorithm can distinguish between the output of a PRG on a random seed vs. a truly random string"

= "as good as" a truly random string for all practic it. , oses. Def 2 [Next-bit Unpredictability]

ARE ct the (i+1)th bit of the "No polynomial-time algorithm car output of a PRG given the first Jetter than chance"

Def 3 [Incompressi

"No polynomial-time algorithm can compress the output of the PRG into a shorter string"

PRG Def 1 (Recap): Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function G: $\{0,1\}^n \rightarrow \{0,1\}^m$ is indistinguishable (or, secure against any statistical test) if: for every PPT algorithm D (called a distinguisher) if there is a negligible function μ such that:

$$|\Pr[D(G(U_n)) = 1] - \Pr[D(U_m) = 1]| = \mu(n)$$

<u>Notation</u>: U_n (resp. U_m) denotes the random distribution on n-bit (resp. m-bit) strings.

PRG Def 2: Next-bit Unpredictability

Definition [Next-bit Unpredictability]:

A deterministic polynomial-time computable function G: $\{0,1\}^n \rightarrow \{0,1\}^m$ is next-bit unpredictable if:

for every PPT algorithm P (called a next-bit predictor) and every $i \in \{1, ..., m\}$, if there is a negligible function μ such that:

$$\Pr[y \leftarrow G(U_n): P(y_1y_2 \dots y_{i-1}) = y_i] = \frac{1}{2} + \mu(n)$$

<u>Notation</u>: y_1 , y_2 , ..., y_m are the bits of the m-bit string y.

Def 1 and Def 2 are Equivalent

Theorem:

A PRG G is indistinguishable if and only if it is nextbit unpredictable.

Def 1 and Def 2 are Equivalent

Theorem:

A PRG G passes all (poly-time) statistical tests if and only if it passes (poly-time) next-bit tests.

NBU and Indistinguishability

- Next-bit Unpredictability (NBU): Seemingly much weaker requirement. Only says that next bit predictors, a particular type of distinguishers, cannot succeed.
- Yet, surprisingly, Next-bit Unpredictability (NBU) = Indistinguishability.
- NBU often much easier to use.

Proof: by contradiction.

Suppose for contradiction that there is a p.p.t. predictor P, a polynomial function p and an $i \in \{1, ..., m\}$ *s.t.*

$$\Pr[y \leftarrow G(U_n): P(y_1y_2 \dots y_{i-1}) = y_i] \ge \frac{1}{2} + 1/p(n)$$

1

Then, I claim that *P* essentially gives us a distinguisher D!

Consider D which gets an m-bit string y and does the following:

1. Run P on the (i - 1)-bit prefix $y_1y_2 \dots y_{i-1}$.

2. If P returns the *i*-th bit y_i , then output 1 ("PRG") else output 0 ("Random").

If P is p.p.t. so is D.

Consider D which gets an m-bit string y and does the following:

1. Run P on the (i - 1)-bit prefix $y_1y_2 \dots y_{i-1}$.

2. If *P* returns the *i*-th bit y_i , then output 1 (= "PRG") else output 0 (= "Random").

We want to show: there is a polynomial p' s.t.

$$|\Pr[y \leftarrow G(U_n): D(y) = 1] |$$

-
$$\Pr[y \leftarrow U_m: D(y) = 1] | \ge 1/p'(n)$$

Consider D which gets an m-bit string y and does the following:

1. Run P on the (i - 1)-bit prefix $y_1y_2 \dots y_{i-1}$.

2. If P returns the *i*-th bit y_i , then output 1 (= "PRG") else output 0 (= "Random").

$$Pr[y \leftarrow G(U_n): D(y) = 1]$$

= $Pr[y \leftarrow G(U_n): P(y_1y_2 \dots y_{i-1}) = y_i]$
(by construction of D)
 $\geq \frac{1}{2} + 1/p(n)$ (by assumption on P)

Consider *D* which gets an m-bit string *y* and does the following:

1. Run P on the (i - 1)-bit prefix $y_1y_2 \dots y_{i-1}$.

2. If *P* returns the *i*-th bit y_i , then output 1 (= "PRG") else output 0 (= "Random").

$$Pr[y \leftarrow G(U_n): D(y) = 1] \ge \frac{1}{2} + 1/p(n)$$

$$Pr[y \leftarrow U_m: D(y) = 1]$$

$$= Pr[y \leftarrow U_m: P(y_1y_2 \dots y_{i-1}) = y_i] \quad (by \text{ construction of D})$$

$$= \frac{1}{2} \quad (since y \text{ is random})$$

1

Consider D which gets an m-bit string y and does the following:

1. Run P on the (i - 1)-bit prefix $y_1y_2 \dots y_{i-1}$.

2. If P returns the *i*-th bit y_i , then output 1 (= "PRG") else output 0 (= "Random").

$$\Pr[y \leftarrow G(U_n): D(y) = 1] \ge \frac{1}{2} + 1/p(n)$$
$$\Pr[y \leftarrow U_m: D(y) = 1] = \frac{1}{2}$$

So, $|\Pr[y \leftarrow G(U_n): D(y) = 1]$ - $\Pr[y \leftarrow U_m: D(y) = 1] | \ge 1/p(n)$

2. NBU \implies Indistinguishability

Proof: by contradiction (again!)

Suppose for contradiction that there is a distinguisher D, and a polynomial function p s.t.

$$|\Pr[y \leftarrow G(U_n): D(y) = 1] - \Pr[y \leftarrow U_m: D(y) = 1]| \ge 1/p'(n)$$

I want to construct a next bit predictor P out of D.

But how?!

2. NBU \implies Indistinguishability

Proof: by contradiction (again!)

Suppose for contradiction that there is a distinguisher D, and a polynomial function p s.t.

$$\Pr[y \leftarrow G(U_n): D(y) = 1] - \Pr[y \leftarrow U_m: D(y) = 1] \ge 1/p'(n) := \varepsilon$$

I want to construct a next bit predictor P out of D.

TWO STEPS:

- **STEP 1:** HYBRID ARGUMENT
- **STEP 2:** From Distinguishing to Predicting

Before we go there, a puzzle...

Lemma: Let $p_0, p_1, p_2, \dots, p_m$ be real numbers s.t.

 $p_m - p_0 \geq \varepsilon$.

Then, there is an index i such that $p_i - p_{i-1} \ge \varepsilon/m$.

Proof:

$$p_m - p_0 = (p_m - p_{m-1}) + (p_{m-1} - p_{m-2}) + \dots + (p_1 - p_0)$$
$$\geq \varepsilon$$

At least one of the m terms has to be at least ε/m (averaging).

Define Hybrid Distributions:

∃i such that D distinguishes between H_{i-1} and H_i with advantage $\oint_{E} distinguishes$ between H_m and H₀ P_{i} μ_{i} μ_{i $\Pr[D(H_{i-1}) = 1] \ge \varepsilon/m$ $\Pr[D(H_m) = 1]$ $-\Pr[D(H_0) = 1] \ge \varepsilon$

• Let's define $p_i = \Pr[D(H_i) = 1]$.

 $p_0 = \Pr[D(U_m) = 1] \text{ and } p_m = \Pr[D(G(U_n)) = 1]$

- By the **hybrid argument**, we have: $p_i p_{i-1} \ge \varepsilon/m$.
- Key Intuition: *D* outputs 1 more often given a pseudorandom *i*-th bit than a random *i*-th bit.
- So, *D* gives us a "signal" as to whether a given bit is the correct *i*-th bit or not.

Our Predictor P

<u>The Idea</u>: The predictor is given the first i - 1 pseudorandom bits (call it $y_1y_2 \dots y_{i-1}$) and needs to guess the *i*-th bit.

The Predictor P works as follows:

Pick a random bit *b*;

Feed D with input $y_1y_2 \dots y_{i-1} | b | u_{i+1} \dots u_m$ (u's are random)

If *D* says "1", output b as the prediction for y_i and if *D* says "0", output \overline{b} as the prediction for y_i

Analysis of the Predictor P

$$Pr[x \leftarrow \{0,1\}^n; y = G(x): P(y_1y_2 \dots y_{i-1}) = y_i] = Pr[D(y_1y_2 \dots y_{i-1}b \dots) = 1 | b = y_i] Pr[b = y_i] + Pr[D(y_1y_2 \dots y_{i-1}b \dots) = 0 | b \neq y_i] Pr[b \neq y_i] = \frac{1}{2}(Pr[D(y_1y_2 \dots y_{i-1}b \dots) = 1 | b = y_i] + Pr[D(y_1y_2 \dots y_{i-1}b \dots) = 0 | b \neq y_i]) = \frac{1}{2}(Pr[D(y_1y_2 \dots y_{i-1}y_i \dots) = 1] + Pr[D(y_1y_2 \dots y_{i-1}\overline{y_i} \dots) = 0]) = \frac{1}{2}(Pr[D(y_1y_2 \dots y_{i-1}\overline{y_i} \dots) = 1] + 1 - Pr[D(y_1y_2 \dots y_{i-1}\overline{y_i} \dots) = 1]) = \frac{1}{2}(1 + (*)) \geq \frac{1}{2} + 1/(m \cdot p(n))$$

Recap: NBU and Indistinguishability

- Next-bit Unpredictability (NBU): Seemingly much weaker requirement, only says that next bit predictors, a particular type of distinguishers, cannot succeed.
- Yet, surprisingly, Next-bit Unpredictability (NBU) = Indistinguishability.
- NBU often much easier to use.

Exercise: Previous-bit Unpredictability (NBU) = Indistinguishability.

TODAY

How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits

Consequence: *Stateful* encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Consequence: Stateless encryption of poly many messages.

Theorem (next lec): If there is a PRG, then there is a PRF.

New Proof Technique: Hybrid Arguments.

Let G: $\{0,1\}^n \rightarrow \{0,1\}^{n+1}$ be a pseudorandom generator.

Goal: use G to generate **many** pseudorandom bits.

Let G: $\{0,1\}^n \rightarrow \{0,1\}^{n+1}$ be a pseudorandom generator.

Goal: use G to generate **poly many** pseudorandom bits.

Let G: $\{0,1\}^n \rightarrow \{0,1\}^{n+1}$ be a pseudorandom generator.

Goal: use G to generate **poly many** pseudorandom bits.

<u>Construction of $G'(s_0)$ </u>

seed =
$$s_0$$
 $y_1 = G(s_0)$ $\xrightarrow{}$ G

Let G: $\{0,1\}^n \rightarrow \{0,1\}^{n+1}$ be a pseudorandom generator.

Goal: use G to generate **poly many** pseudorandom bits.

<u>Construction of $G'(s_0)$ </u>

seed =
$$s_0$$
 $y_1 = b_1 || s_1$ \rightarrow G \rightarrow $Y_1 = b_1 || s_1$

Let G: $\{0,1\}^n \rightarrow \{0,1\}^{n+1}$ be a pseudorandom generator.

Goal: use G to generate **poly many** pseudorandom bits.

<u>Construction of G'(s_0)</u> Output $b_1 b_2 b_3 b_4 b_5 \dots s_L$.

Also called a stream cipher by the practitioners.

Proof of Security (exercise):

Use next-bit (or previous-bit?) unpredictability!

<u>Construction of G'(s_0)</u> Output $b_1 b_2 b_3 b_4 b_5 \dots s_L$.

- PLUS: Alice and Bob can keep encrypting as many bits as they wish.
- **MINUS:** Alice and Bob have to keep their states in perfect synchrony. They cannot transmit simultaneously.

IF NOT:

Correctness goes down the drain, so does security.

How to be Stateless? Here is an idea...

DOES THIS WORK?

Collisions! Pr[Alice's first two indices collide] $\ge 1/n^{100}$ \Rightarrow Alice is using the same one-time pad bit twice!

Here is another idea...

Goal: Never compute this exponentially long string explicitly!

Instead, we want a function $f_k(x) = b_x$, the x^{th} bit in the implicitly defined (pseudorandom) string.

Computable in time poly(|x|) = poly(n).

 $f_k(x_1), f_k(x_2), \dots$ computationally indistinguishable from random bits, for random (or any distinct) x_1, x_2, \dots

|x| = n =length of the string x.

TODAY

How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Consequence: *Stateless* encryption of poly many messages.

Theorem (next lec): If there is a PRG, then there is a PRF.

New Proof Technique: Hybrid Arguments.

Pseudorandom Functions

Collection of functions $\mathcal{F}_{\ell} = \{f_k : \{0,1\}^{\ell} \to \{0,1\}^m\}_{k \in \{0,1\}^n}$

- indexed by a key k
- n: key length, ℓ : input length, m: output length.
- Independent parameters, all poly(sec-param) = poly(n)
- #functions in $\mathcal{F}_{\ell} \leq 2^n$ (singly exponential in *n*)

Gen(1^{*n*}): Generate a random *n*-bit key *k*. **Eval**(k, x) is a poly-time algorithm that outputs $f_k(x)$.

Pseudorandom Functions

Collection of functions $\mathcal{F}_{\ell} = \{f_k : \{0,1\}^{\ell} \to \{0,1\}^m\}_{k \in \{0,1\}^n}$

- indexed by a key k
- n: key length, ℓ : input length, m: output length.
- Independent parameters, all poly(sec-param) = poly(n)
- #functions in $\mathcal{F}_{\ell} \leq 2^n$ (singly exponential in *n*)

\approx

Collection of ALL functions $ALL_{\ell} = \{f: \{0,1\}^{\ell} \rightarrow \{0,1\}^{m}\}$

• #functions in $ALL_{\ell} \leq 2^{m2^{\ell}}$ (doubly exponential in ℓ)

Pseudorandom Functions should be "indistinguishable" from random

For all ppt D, there is a negligible function μ s.t. $\left|\Pr[f \leftarrow \mathcal{F}_{\ell}: D^{f}(1^{n}) = 1] - \Pr[f \leftarrow ALL_{\ell}: D^{f}(1^{n}) = 1]\right| \leq \mu(n)$

PRF \implies Stateless Secret-key Encryption

 $Gen(1^n)$: Generate a random *n*-bit key k that defines

$$f_k: \{0,1\}^\ell \to \{0,1\}^m$$

(the domain size, 2^{ℓ} , had better be super-polynomially large in n)

Enc(*k*,*m*): Pick a random *x* and let the ciphertext *c* be the pair $(x, y = f_k(x) \oplus m)$.

Dec(k, c = (x, y)): Output $f_k(x) \oplus y$.

Correctness:

Dec(k,c) outputs $f_k(x) \oplus y = f_k(x) \oplus f_k(x) \oplus m = m$.

NEXT LECTURE

How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Consequence: Stateless encryption of poly many messages.

Theorem (next lec): If there is a PRG, then there is a PRF.

New Proof Technique: Hybrid Arguments.

