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Lecture 2 Recap

t Computational Indistinguishability: 
a new definition of security for secret-key encryption.

t Consequence: Shannon’s impossibility no longer applies!

t New Notion: Pseudorandom Generator (PRG)

t PRG ⇒ Can encrypt a single message longer than the key.

t We saw a construction of PRG (based on subset sum). 
Many more later in the course.

(new notions: p.p.t. adversaries, negligible functions,…)



TODAY
How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.
Theorem: If there is a PRG  that stretches by one bit, 
there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Theorem (next lec): If there is a PRG, then there is a PRF.

Consequence: Stateless encryption of poly many messages.

New Proof Technique: Hybrid Arguments.



But first, let’s do some prep work…



Three Definitions of Pseudorandomness

Def 1 [Indistinguishability]
“No polynomial-time algorithm can distinguish between the output 
of a PRG on a random seed vs. a truly random string”
= “as good as” a truly random string for all practical purposes. 

Def 2 [Next-bit Unpredictability]
“No polynomial-time algorithm can predict the (i+1)th bit of the 
output of a PRG given the first i bits, better than chance”

Def 3 [Incompressibility]
“No polynomial-time algorithm can compress the output of the 
PRG into a shorter string”

ALL DEFS ARE EQUIVALENT!



PRG Def 1 (Recap): Indistinguishability

Notation: Un (resp. Um) denotes the random distribution on n-bit 
(resp. m-bit) strings.

Definition [Indistinguishability]: 
A deterministic polynomial-time computable function G: {0,1}n→

{0,1}m is indistinguishable (or, secure against any statistical test) if:
for every PPT algorithm D (called a distinguisher) if there is a 
negligible function 𝝁 such that:

| Pr[ 𝑫(𝑮(𝑼𝒏)) = 𝟏 ] – Pr[ 𝑫(𝑼𝒎) = 𝟏 ] | = 𝝁(𝒏)



PRG Def 2: Next-bit Unpredictability
Definition [Next-bit Unpredictability]: 
A deterministic polynomial-time computable function G: {0,1}n→

{0,1}m is next-bit unpredictable if:
for every PPT algorithm P (called a next-bit predictor) and every 𝑖 ∈
1,… ,𝑚 , if there is a negligible function 𝝁 such that:

𝐏𝐫 𝒚 ← 𝑮 𝑼𝒏 : 𝑷 𝒚𝟏𝒚𝟐…𝒚𝒊%𝟏 = 𝒚𝒊 =
𝟏
𝟐
+ 𝝁(𝒏)

Notation: 𝒚𝟏, 𝒚𝟐 , … 𝒚𝒎 are the bits of the m-bit string 𝒚.



Def 1 and Def 2 are Equivalent

Theorem: 
A PRG G is indistinguishable if and only if it is next-
bit unpredictable.



Def 1 and Def 2 are Equivalent

Theorem: 
A PRG G passes all (poly-time) statistical tests if and only 
if it passes (poly-time) next-bit tests.



NBU and Indistinguishability

t Next-bit Unpredictability (NBU): Seemingly much weaker 
requirement. Only says that next bit predictors, a 
particular type of distinguishers, cannot succeed.

t Yet, surprisingly, Next-bit Unpredictability (NBU) = 
Indistinguishability.

t NBU often much easier to use.



1. Indistinguishability ⟹ NBU

Suppose for contradiction that there is a p.p.t. predictor 𝑃, a 
polynomial function 𝑝 and	an	𝑖 ∈ 1,… ,𝑚 s.t.

Pr 𝑦 ← 𝐺 𝑈& : 𝑃 𝑦'𝑦(…𝑦)%' = 𝑦) ≥
1
2
+ 1/𝑝(𝑛)

Proof: by contradiction.

Then, I claim that 𝑃 essentially	gives	us	a	distinguisher	D!

Consider 𝐷 which gets an m-bit string 𝑦 and does the following: 

1. Run 𝑃 on the (𝑖 − 1)-bit prefix 𝑦'𝑦(…𝑦)%'. 

2. If 𝑃 returns the 𝑖-th bit 𝑦), then output 1 (“PRG”) else output 0 
(“Random”).

If 𝑷 is p.p.t. so is 𝑫. 



1. Indistinguishability ⟹ NBU
Consider 𝐷 which gets an m-bit string 𝑦 and does the following: 

1. Run 𝑃 on the (𝑖 − 1)-bit prefix 𝑦'𝑦(…𝑦)%'. 

2. If 𝑃 returns the 𝑖-th bit 𝑦), then output 1 (= “PRG”) else 
output 0 (= “Random”).

We want to show: there is a polynomial 𝑝′ s.t.

| Pr[𝑦 ← 𝐺 𝑈& : 𝐷(𝑦) = 1 ]
– Pr[𝑦 ← 𝑈𝑚: 𝐷(𝑦) = 1 ] | ≥ 1/𝑝′(𝑛)



1. Indistinguishability ⟹ NBU
Consider 𝐷 which gets an m-bit string 𝑦 and does the following: 

1. Run 𝑃 on the (𝑖 − 1)-bit prefix 𝑦'𝑦(…𝑦)%'. 

= Pr[𝑦 ← 𝐺 𝑈& : 𝑃 𝑦'𝑦(…𝑦)%' = 𝑦)]

≥
1
2
+ 1/𝑝(𝑛)

Pr[𝑦 ← 𝐺 𝑈& : 𝐷(𝑦) = 1 ]

(by construction of D)

(by assumption on P)

2. If 𝑃 returns the 𝑖-th bit 𝑦), then output 1 (= “PRG”) else 
output 0 (= “Random”).



1. Indistinguishability ⟹ NBU
Consider 𝐷 which gets an m-bit string 𝑦 and does the following: 

1. Run 𝑃 on the (𝑖 − 1)-bit prefix 𝑦'𝑦(…𝑦)%'. 

≥
1
2
+ 1/𝑝(𝑛)Pr[𝑦 ← 𝐺 𝑈& : 𝐷(𝑦) = 1 ]

2. If 𝑃 returns the 𝑖-th bit 𝑦), then output 1 (= “PRG”) else 
output 0 (= “Random”).

Pr 𝑦 ← 𝑈*: 𝐷 𝑦 = 1

= Pr[𝑦 ← 𝑈*: 𝑃 𝑦'𝑦(…𝑦)%' = 𝑦)]

=
1
2

(by construction of D)

(since y is random)



1. Indistinguishability ⟹ NBU
Consider 𝐷 which gets an m-bit string 𝑦 and does the following: 

1. Run 𝑃 on the (𝑖 − 1)-bit prefix 𝑦'𝑦(…𝑦)%'. 

≥
1
2
+ 1/𝑝(𝑛)Pr[𝑦 ← 𝐺 𝑈& : 𝐷(𝑦) = 1 ]

2. If 𝑃 returns the 𝑖-th bit 𝑦), then output 1 (= “PRG”) else 
output 0 (= “Random”).

Pr 𝑦 ← 𝑈*: 𝐷 𝑦 = 1 =
1
2

So, | Pr[𝑦 ← 𝐺 𝑈& : 𝐷(𝑦) = 1 ]
– Pr[𝑦 ← 𝑈𝑚: 𝐷(𝑦) = 1 ] | ≥ 1/𝑝(𝑛)



2. NBU ⟹ Indistinguishability

Suppose for contradiction that there is a distinguisher 𝐷, and a 
polynomial function 𝑝 s.t.

Proof: by contradiction (again!)

| Pr[𝑦 ← 𝐺 𝑈& : 𝐷(𝑦) = 1 ]
– Pr[𝑦 ← 𝑈𝑚: 𝐷(𝑦) = 1 ] | ≥ 1/𝑝′(𝑛)

I want to construct a next bit predictor 𝑃 out	of	𝐷.	

But how?!



2. NBU ⟹ Indistinguishability

Suppose for contradiction that there is a distinguisher 𝐷, and a 
polynomial function 𝑝 s.t.

Proof: by contradiction (again!)

Pr[𝑦 ← 𝐺 𝑈& : 𝐷(𝑦) = 1 ]
– Pr[𝑦 ← 𝑈𝑚: 𝐷(𝑦) = 1 ] ≥ 1/𝑝′(𝑛)

I want to construct a next bit predictor 𝑃 out	of	𝐷.	

TWO STEPS:

• STEP 1: HYBRID ARGUMENT

• STEP 2: From Distinguishing to Predicting

: = 𝜀



Before we go there, a puzzle…

Lemma: Let 𝑝$, 𝑝%, 𝑝&, … , 𝑝' be real numbers s.t.

𝒑𝒎 − 𝒑𝟎 ≥ 𝜺.

Then, there is an index 𝑖 such that 𝒑𝒊 − 𝒑𝒊*𝟏 ≥ 𝜺/𝐦.

Proof: 

𝑝* − 𝑝+ = 𝑝* − 𝑝*%' + 𝑝*%' − 𝑝*%( +⋯+ (𝑝' − 𝑝+)

≥ 𝜀

At least one of the 𝑚 terms has to be at least 𝜀/𝑚 (averaging).



Define Hybrid Distributions:

H0 = Um:

Hm = G(Un):

Hi:

Hi-1:

... 
... 

... 
... 

random
pseudorandom

Hm-1:

Pr 𝐷 𝐻! = 1
– Pr[𝐷(𝐻") = 1] ≥ 𝜀

D distinguishes 
between Hm and H0
with advantage 𝜀

∃i such that D 
distinguishes 
between Hi-1 and 
Hi with advantage  
≥ε / m

Pr 𝐷 𝐻# = 1
– Pr[𝐷(𝐻#$%) = 1] ≥ 𝜀/𝑚



Hi:

Hi-1:

random
pseudorandom

≥ε / m

• Let’s define 𝑝: = Pr[𝐷 𝐻: = 1].

𝑝+ = Pr 𝐷 𝑈* = 1 and 𝑝* = Pr 𝐷 𝐺(𝑈&) = 1

• By the hybrid argument, we have: 𝑝: − 𝑝:*% ≥ 𝜀/𝑚.

• Key Intuition: 𝐷 outputs 1 more often given a 
pseudorandom 𝑖-th bit than a random 𝑖-th bit.

• So, 𝐷 gives us a “signal” as to whether a given bit is 
the correct 𝑖-th bit or not.

Hybrid Distributions:



Hi:

Hi-1:

random
pseudorandomLet’s dig a bit more.

𝑦#

𝑢

𝑝: Pr[𝐷 𝐻 = 1]

𝑢: random bit
𝑦#: i-th pseudorandom bit

𝑝)%'

𝑝)

We know: 𝑝) − 𝑝)%' ≥ 𝜀/𝑚.

Define
𝐻): 𝑦#

𝑦# = 1 − 𝑦#
e𝑝) = Pr[D 𝐻) = 1]

e𝑝)

Claim: 𝑝:*% = (𝑝: + 8𝑝:)/2

Corollary (*): 𝑝: − 8𝑝: ≥ 2𝜀/𝑚.

So, Takeaway: D says “1” more often when fed 
with the “right bit” than the “wrong bit”.



Our Predictor P

The Idea: The predictor is given the first 𝑖 − 1 pseudorandom 
bits (call it 𝑦'𝑦(…𝑦)%') and needs to guess the 𝑖-th bit. 

The Predictor P works as follows:
Pick a random bit 𝑏;

If 𝐷 says “1”, output b as the prediction for 𝑦) and if 𝐷 says 
“0”, output i𝑏 as the predic[on for 𝑦)

Feed 𝐷 with input 𝑦'𝑦(…𝑦)%' b 𝑢),'… 𝑢* (𝑢’s are random) 



Analysis of the Predictor P

Pr 𝑥 ← 0,1 &; 𝑦 = 𝐺(𝑥): 𝑃 𝑦'𝑦(…𝑦)%' = 𝑦)
= Pr 𝐷 𝑦'𝑦(…𝑦)%'𝑏… = 1| 𝑏 = 𝑦) Pr 𝑏 = 𝑦) +
Pr 𝐷 𝑦'𝑦(…𝑦)%'𝑏… = 0| 𝑏 ≠ 𝑦) Pr 𝑏 ≠ 𝑦)

=
1
2
(Pr[𝐷 𝑦'𝑦(…𝑦)%'𝑏… = 1| 𝑏 = 𝑦)] +
Pr 𝐷 𝑦'𝑦(…𝑦)%'𝑏… = 0| 𝑏 ≠ 𝑦) )

=
1
2
(Pr 𝐷 𝑦'𝑦(…𝑦)%'𝑦)… = 1 +
Pr 𝐷 𝑦'𝑦(…𝑦)%' e𝑦)… = 0 )

=
1
2
(Pr 𝐷 𝑦'𝑦(…𝑦)%'𝑦)… = 1 + 1 −
Pr 𝐷 𝑦'𝑦(…𝑦)%' e𝑦)… = 1 )

=
𝟏
𝟐
(𝟏 +(∗)) ≥

𝟏
𝟐
+𝟏/(𝒎 q 𝒑 𝒏 )



Recap: NBU and Indistinguishability

t Next-bit Unpredictability (NBU): Seemingly much weaker 
requirement, only says that next bit predictors, a 
particular type of distinguishers, cannot succeed.

t Yet, surprisingly, Next-bit Unpredictability (NBU) = 
Indistinguishability.

t Exercise: Previous-bit Unpredictability (NBU) = 
Indistinguishability.

t NBU often much easier to use.



TODAY
How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.
Theorem: If there is a PRG  that stretches by one bit, 
there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Theorem (next lec): If there is a PRG, then there is a PRF.

Consequence: Stateless encryption of poly many messages.

New Proof Technique: Hybrid Arguments.



Length extension: One bit to Many bits

Let G: {0,1}& → {0,1}&,' be a pseudorandom generator.

Goal: use G to generate many pseudorandom bits. 



Let G: {0,1}& → {0,1}&,' be a pseudorandom generator.

Goal: use G to generate poly many pseudorandom bits. 

Length extension: One bit to Many bits



Let G: {0,1}& → {0,1}&,' be a pseudorandom generator.

G
𝑠𝑒𝑒𝑑 = 𝑠+ 𝑦' = 𝐺(𝑠+)

Construction of G’(𝑠+)

Goal: use G to generate poly many pseudorandom bits. 

Length extension: One bit to Many bits



Let G: {0,1}& → {0,1}&,' be a pseudorandom generator.

G
𝑠𝑒𝑒𝑑 = 𝑠+ 𝑦'

Construction of G’(𝑠+)

Goal: use G to generate poly many pseudorandom bits. 

Length extension: One bit to Many bits

= 𝑏' || 𝑠'



Let G: {0,1}& → {0,1}&,' be a pseudorandom generator.

G
𝑠𝑒𝑒𝑑 = 𝑠+

𝑏'

Construction of G’(𝑠+)

Goal: use G to generate poly many pseudorandom bits. 

Length extension: One bit to Many bits

𝑠'
G

𝑠(

𝑏(

G
𝑠-%'

𝑏-%'

…

Output 𝑏' 𝑏( 𝑏. 𝑏/ 𝑏0 …𝑠-.

Also called a stream cipher by the practitioners.

G

𝑏-

𝑠-



Proof of Security (exercise): 

G
𝑠𝑒𝑒𝑑 = 𝑠+

𝑏'

Construction of G’(𝑠+)

Use next-bit (or previous-bit?) unpredictability!

Length extension: One bit to Many bits

𝑠'
G

𝑠(

𝑏(

G
𝑠-%'

𝑏-%'

…

Output 𝑏' 𝑏( 𝑏. 𝑏/ 𝑏0 …𝑠-.

G

𝑏-

𝑠-



Stateful Encryption of Many Messages

Alice Bob

1-bit m

Initial state = 𝑠" Initial state = 𝑠"

G
𝑠+

𝑏'

𝑠'
G

𝑠(

𝑏(

G
𝑠.

𝑏.

G

𝑏/

𝑠0

𝑚⊕ 𝑏%

State = 𝑠% State = 𝑠%

𝑠/
G

𝑏0



State = 𝑠%State = 𝑠%

Stateful Encryption of Many Messages

Alice Bob

3-bit m’
𝑚′⊕ 𝑏&𝑏'𝑏(

State = 𝑠(State = 𝑠(

G
𝑠+

𝑏'

𝑠'
G

𝑠(

𝑏(

G
𝑠.

𝑏.

G

𝑏/

𝑠0𝑠/
G

𝑏0



State = 𝑠(State = 𝑠(

Stateful Encryption of Many Messages

Alice Bob

1-bit m’’
𝑚′′ ⊕ 𝑏)

State = 𝑠)State = 𝑠)

G
𝑠+

𝑏'

𝑠'
G

𝑠(

𝑏(

G
𝑠.

𝑏.

G

𝑏/

𝑠0𝑠/
G

𝑏0



Stateful Encryption of Many Messages

o PLUS: Alice and Bob can keep encrypting as many bits 
as they wish. 

o MINUS: Alice and Bob have to keep their states in 
perfect synchrony. They cannot transmit simultaneously.

IF NOT: 
Correctness goes down the drain, so does security.



How to be Stateless? Here is an idea…

Alice Bob

Key k = 𝑠" Key k = 𝑠"

𝑏% 𝑏& 𝑏' 𝑏( 𝑏) … 𝑏*!""$% 𝑏*!"" 𝑏% 𝑏& 𝑏' 𝑏( 𝑏) … 𝑏*!""$% 𝑏*!""

1-bit m pick a random index, say 5
(5,𝑚⊕ 𝑏))

DOES THIS WORK?

Collisions! Pr[Alice’s first two indices collide] ≥ 1/𝑛'++

⟹ Alice is using the same one-time pad bit twice! 



Here is another idea…

Alice Bob

Key k = 𝑠" Key k = 𝑠"

𝑏% 𝑏& 𝑏' 𝑏( 𝑏) … 𝑏&#$% 𝑏&# 𝑏% 𝑏& 𝑏' 𝑏( 𝑏) … 𝑏&#$% 𝑏&#

1-bit m pick a random index, say 5
(5,𝑚⊕ 𝑏))

Pr[∃ collision in 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) indices] ≤ 𝑡(/2& = negl(𝑛)

BUT: Alice and Bob are not poly-time!



But these are good bad ideas…
Key k = 𝑠"

𝑏% 𝑏& 𝑏' … 𝑏+ … 𝑏&#$% 𝑏&#

Goal: Never compute this exponentially long string explicitly!

Instead, we want a function 𝒇𝒌 𝒙 = 𝒃𝒙, the 𝑥34 bit in the 
implicitly defined (pseudorandom) string. 

𝒙

Computable in time 𝑝𝑜𝑙𝑦 𝑥 = 𝑝𝑜𝑙𝑦(𝑛).

|𝑥| = 𝑛 = length of the string 𝑥.

𝒇𝒌 𝒙𝟏 , 𝒇𝒌 𝒙𝟐 , … computationally indistinguishable from 
random bits, for random (or any distinct) 𝒙𝟏, 𝒙𝟐,…

Pseudorandom Functions



TODAY
How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.
Theorem: If there is a PRG  that stretches by one bit, 
there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Theorem (next lec): If there is a PRG, then there is a PRF.

Consequence: Stateless encryption of poly many messages.

New Proof Technique: Hybrid Arguments.



Pseudorandom Functions

𝐆𝐞𝐧 1& : Generate a random 𝑛-bit key 𝑘. 

𝐄𝐯𝐚𝐥 𝑘, 𝑥 is a poly-time algorithm that outputs 𝑓8 𝑥 .

Collection of functions ℱℓ = {𝑓8: {0,1}ℓ → {0,1}*}8∈{+,'}!

• indexed by a key 𝑘

• 𝑛: key length, ℓ: input length, 𝑚: output length.

• Independent parameters, all poly(sec-param) = poly(𝑛) 

• #functions in ℱℓ ≤ 2& (singly exponential in 𝑛)



Pseudorandom Functions

Collection of functions ℱℓ = {𝑓8: {0,1}ℓ → {0,1}*}8∈{+,'}!

• indexed by a key 𝑘

• 𝑛: key length, ℓ: input length, 𝑚: output length.

• Independent parameters, all poly(sec-param) = poly(𝑛) 

• #functions in ℱℓ ≤ 2& (singly exponential in 𝑛)

≈
Collection of ALL functions 𝐴𝐿𝐿ℓ = {𝑓: {0,1}ℓ → {0,1}*}

• #functions in 𝐴𝐿𝐿ℓ ≤ 2*(
ℓ (doubly exponential in ℓ)



Pseudorandom Functions should be “indistinguishable” from 
random

𝑓 ← ℱℓ

Distinguisher D 

The pseudorandom world 

Pr[𝑓 ← ℱℓ: 𝐷> 1& = 1]

𝑥 𝑓(𝑥)

The random world 

𝑓 ← 𝐴𝐿𝐿ℓ

Distinguisher D 

𝑥 𝑓(𝑥)

Pr[𝑓 ← 𝐴𝐿𝐿ℓ: 𝐷> 1& = 1]

0/1 0/1

−| | ≤ 𝜇(𝑛)

For all ppt D, there is a negligible function 𝜇 s.t.



PRF ⟹ Stateless Secret-key Encryption
𝐺𝑒𝑛 1& : Generate a random 𝑛-bit key k that defines  

𝐸𝑛𝑐 𝑘,𝑚 : Pick a random 𝑥 and 
let the ciphertext 𝑐 be the pair  (𝑥, 𝑦 = 𝑓8 𝑥 ⨁𝑚).

𝐷𝑒𝑐 𝑘, 𝑐 = (𝑥, 𝑦) :

𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐧𝐞𝐬𝐬:
𝐷𝑒𝑐 𝑘, 𝑐 outputs 𝑓8 𝑥 ⨁𝑦 = 𝑓8 𝑥 ⨁𝑓8 𝑥 ⨁m = m.

𝑓8: {0,1}ℓ → {0,1}*

(the domain size, 2ℓ, had better be super-polynomially large in n) 

Output 𝑓8 𝑥 ⨁𝑦.



NEXT LECTURE
How to encrypt (poly) many messages with a fixed key?

1. PRG length extension.
Theorem: If there is a PRG  that stretches by one bit, 
there is one that stretches by poly many bits

Consequence: Stateful encryption of poly many messages.

2. Another new notion: Pseudorandom Functions (PRF).

Theorem (next lec): If there is a PRG, then there is a PRF.

Consequence: Stateless encryption of poly many messages.

New Proof Technique: Hybrid Arguments.


