MIT 6.875

Foundations of Cryptography
Lecture 25

Credit: Some slides adapted from Raluca Ada Popa and Vinod Vaikuntanathan

O(1)-Round
Two-Party Computation

Secure Two-Party Computation

Input: x Input: y

{) «—

Alice

« Alice and Bob want to compute F(x, y).

Semi-honest Security:

Parties should not learn anything more than their inputs
and F(x,y).

Secure Two-Party Computation

REAL Input: x
WORLD:

Secure Two-Party Computation

Input: x

{) «—

Alice

There exists a PPT simulator SIM, such that for any x
and y:

SIM,(x, F(x,y)) = View,(x,y)

Secure Two-Party Computation

Input: x

{) «—

Alice

There exists a PPT simulator SIMg such that for any x
and y:

SIMg(y,F(x,y)) = Viewg(x,y)

Secure MIPC

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any multi-party computation problem.

One year before ‘87...
Theorem (Yao'86):

OT+OWEF solve any two-party computation problem.

e

O

\/

Secure 2PC from OT

omputing on encrypted data
. Secure functlon evaluatlon
Parallel cryptography
bling as Randomized Encodin;

/ /I / 3 // \
<\ \ \ \ |
N Q \ y

J
4

@

Secure Function Evaluation

Alice’s private input is C: {0,1}" - x
Bob’s private input is x

Q: Is i0 a solution?

A: depends...
X SFE needs interaction
But SFE gives one-time evaluation only.

Secure 2PC from OT

* Constant Round!!
* Groundbreaking generic solution
* Inspired GMW’87 and more
* Beyond secure computation
 Computing on encrypted data
e Secure function evaluation
* Parallel cryptography
* Garbling as Randomized Encoding of
functions [IK'00,IK’02,AIK’04,AIK’06]...

Parallel Cryptography

Can we do super-fast cryptography?

I Information Securi 0
I
\

Cryptography
in Constant

polynomial

Parallel Time

constant
depth

Complexity of the 2-party solution

f computed by circuit C
C(x,y):{0,1}"%{0,1}" — {0,1}™

2PC efficiency GMW’87 Garbled Circuit
0c# 1)

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR
(+ mod 2) and AND (X mod 2) gates.

0
|]
o
[|
Goal: Compute every gate without knowing what the
inputs and outputs are

Tool: Oblivious Transfer (OT)

X0
Choice bit: b
X1
Sender Receiver

« Sender holds two bits x5 and x;.
 Receiver holds a choice bit b.

* Receiver should learn x;, sender should learn nothing.

What if we have 1-out-of-2™ OT?

Choice index:
y € {0,1}"

Sender Receiver

L

= PIR except we also require that
receiver learns nothing but x,,.

y1

OT on Truth table?

f(x,0M)
f(x, 0" '1)

Input: x € {0,1}" fx,0"7710) Input: y € {0,1}"

g f(x, 1)

Alice

Gate by-gate on CIrCUIt of f |

1LSCIHT 1S dITEJdAY ITICHTICICTIL:

Instead of deriving the OT-by-OT protocol of GMW’87...

Fun with Lockboxes

Physical 2PC

Input: x € {0,1} Input: y € {0,1}
PRI
> . - o
B, o
5
P~

Possession of or is information!

Physical 2PC

or

— / means 1/0, but keyson —
. different wires, even with same colors,
— are different

\x\=(’1
0 0
P~
xAy=0 0 0 —_
0 0 0 0»
y=>0

Key Invariant: For each wire w of the circuit, generate a pair

of keys k2, kL. The possession of k2 & the value carried on
the wire is b.

Key Invariant: For each wire w of the circuit, generate a pair

of keys k2, kL. The possession of k2 & the bit b is carried
on w.

Garbled Evaluation

Crypto Lockboxes

Input: y € {0,1}%

»

Input: x € {0,1}"

0 ~ AND(x,0)

w Y AND(x,l)a
AND(x, 0)
AND(x,l)G

>
 Alice puts results RIRLPEEAN=TTea" (o]

« Bob gets key via some OT mechanism

« Bob tries to open both boxes using the key he received.

What about last point?

Tool: Special CPA Encryption

CPA-secure secret-key encryption (Gen, Enc, Dec) that

satisfies

1. Elusive range --- Let k <, Gen(1"). Any p.p.t.
adversary A cannot generate ciphertext encrypted
under k, w/o k.

2. Efficiently verifiable range --- there exists an algo

Check(1", k, c) that checks if ¢ is encrypted under k.

Tool: Special CPA Encryption

1. Elusive range --- Let k <, Gen(1"). Any p.p.t.
adversary A cannot generate ciphertext encrypted
under k, w/o k.

2. Efficiently verifiable range --- there exists an algo

Check(1", k, c) that checks if ¢ is encrypted under k.

Construction:
Let F: {0,1}™" - {0,1}?™ be a PRF,
E,(m;r) = F,(r) @ (m]|0").

Crypto Lockboxes
Garbled gate

Y Z

1 1 (Eki(k%))
1 (Ek;())
0 » (Ekg,())
0

(Ekg())

Efficiently verifiable range

Check(1", k, c) checks if ¢ is encrypted under k.

Protocol Sketch

Yao’s protocol: Garbling

Keys generation: For each wire w of C, Alice generates a
pair of keys kY, k1.

Gate Garbling: For each gate z « G(x,y), compute the
tables.

R]
A v o Garbled gate
‘C‘ - Garbled gate (E,1 (k1))
. y
1 B (Exg ()
C.
; (Ekg()
C.
2 (Ekg()
Ci

Yao’s protocol: Evaluator Bob

Key Invariant: For each wire w of the circuit, Bob can obtain
exactly one of the two keys from k2, ki .

ix1=a

y1=>b

Yao’s protocol: Evaluator Bob

Base case:
* Alice’sinput x; € {0,1}: Alice send the correct key kl?ci.
* Bob’sinput y; € {0,1}: they runs OT on ((k?, k), y;).

Yao’s protocol: Evaluator Bob

Inductive step:
Assume: Bob has one key for each input wire
» Bob can get exactly=enalavfarthe output wire by
. . k(x1+x2)(x1/\x2)
trying all four ciph] “o

/J\

Efficiently verifiable range
Check(1™ k,c) € {0,1} checks if

c is encrypted under k.

;Ikgll Ikgl W ;“kﬁfl |k13V,2 Ig

Evaluating One Gate

Oops..

This procedure, as-is, is actually insecure.

Garbled gate

Recall: Ek}c(Ek},(kl))
b L (kO

Given k%, k), Pra(Big (1))
| 0

> Try all four rows Fe (Brg U2))
b, A\b E,o(k))

to obtain k,* 7 Prp(BigUe2))

Reconstructing Output

Key Invariant: For each wire of the circuit, Bob can obtain
exactly one of the two keys associated with each wire.

After evaluation, Bob » Bob simply asks Alice if
learns k, € {k3,k}}. cis kY or k.

k£x1+x2)(x1/\x2)

Can we avoid this final round?

Garbling as a Standalone Tool

Q: Difference with i0?

* Input: Boolean circuit C: {0,1}"* - {0,1}
e Output: Garbled circuit G(C) and input labels {(L?,L}), ..., (L%, L1)}

C(xqy; xp) C(xq1: xp)

Randomized
C garbling procedure G (C)

I
X4 ceeeee b ~ . Xn
ik n L1 L

n
Goal: Given G(C) and L7, ..., L™ For example, for
' ' x = 010, labels are
* Itis possible to compute C(xq -*- x},) 10 2,1 10
)) 3

* Itis not possible to learn any additional information
other than size of circuit or input

2PC Using Garbled Circuits

Input will be x, y

N

Common input: C: {0,1}?" - {0,1}

ﬂ Garbled circuit G (C)

Input labels L7?, ..., L™ for x

Input: x € {0,1}" > Input: v € {0,1}"
Compute G(C) and
labels {(L?»L%)}ie[m] OT foreach i € [n]oin palraIIeI:
* Alice’s input: (Ly;, L) Compute C(x,y)
* Bob’sinput: y; using G(C) and
X Xn 1Yy Yn
LR Sl LR F4

Clx,y)

Simulation Proof Sketch

Simulating Alice

Imagine that the parties have access to an OT angel
» Implemented by secure simulatable OT.

Simulating Alice

Imagine that the parties have access to an OT angel.

Input will be x, y

Common input: C: {0,1}*" - {0,1}

il

Input: x € {0,1}"
Compute G(C) and

labels {(L?, L%)}iE[Zn] OT for each i € [n] in parallel:
* Alice’sinput: (L%, L}, ;)

e Bob’s input: y;

C(x,y)

Simulating Alice

Alice’s View ~_ 'sim(C x (x,7)) :
e OT transcripts”™ ~~ () ,y)

C(x,v) Output @
® x’ y
{{SlmOT (Ln+ L’ n+ 1))
f(xy)}
OT for each i € [n] in parallel:
Alice’s input: (L(,)l+ Lh.i)
Bob’s input: y;

Clx,y)

Simulating Bob

Imagine that the parties have access to an OT angel.

Input will be x, y

Common input: C: {0,1}*" - {0,1}

Garbled circuit G(C)

Input labels L7?, ..., L," for x
- > Input: y € {0,1}"

OT for each i € [n] in parallel:

 Alice’s input: (L?m-, L}m) Compute C(x,y)

* Bob’sinput: y; using G(C) and
X Xn y Yn
LI il PR F4d

Simulating Bob

OT Simulation:

: B o Qi;mB n ., JYi
Viewgr = SlmOT(l ,yl,Lnﬂ.).

OT for each i € [n] in parallel:

e Alice’s input: (L?Hi, L}m’)

* Bob’s input: y;

Assume we already simulated L%, ; with the correct distribution.

Simulating Bob

Input will be x, y

Common input: C: {0,1}*" - {0,1}

Garbled circuit G(C)

Input labels L7, ..., L™ for

Input: y € {0,1}"

Compute C(x,y)
using G(C) and

X1 X Y1 Yy
LTI bailll LA £

Simulating Bob

Garbled circuit G(C) g
Input labels L7, ..., L™ for X

> Input: y € {0,1}"

Step 1: Generate Dummy Labels

* Label generation: For each wire w of C, generates a pair
of keys LY, LL .

* Label simulation: For all input wire i, let Lfi = L7,

Sanity Check:
This replacement is fine because keys are randomly
generated.

Step 2.a: Simulate Fake Gates

* Garbled gate simulation: Replace intermediate
ciphertexts with junks.

Garbled gate
Gar(bled(ga’;j (E;z (L)
E o((Lg))
ELO ((L) TN te)
g - —~_ (ELO (LO))
(Eg (L2)) E;o (Epo (L9))
EL%(ELg(LZ)) L N

* the rows are randomly permuted (g, T € Perm([4]))
 onlyarandom row can be decrypted
 the junk entries are w.h.p. non-decryptable.

Step 2.b: Simulate Output

* Generate the following decoding table

Output label Decoded result
Lo C(x,y)

Sanity Check: This is fine because the label L might as
well be encoding

lllrlub Iuvewiv u1 ’--l’LJn vl /v
- »

Input: y € {0,1}"

Simulating Bob
Bob’s View _— Sim(C, y, f(x, y)) :

 Wire labels

 Garbled tables

* Final decoding
table

* OT transcripts

» Simulate labels

> Sim§ (L)

» Simulate garbled
gates

» Simulate final
decoding table.

Efficiency

Garbling is parallelizable

ety (D
0 - @ @ Q_P

(<)
AN (D) A ()

Parallelism: Each garbled gate is computed locally (only
depends on (LY, L}), (L9, L}), (LY, LL), generated at the
very beginning).

Why is GMW sequential?

Sequentiality: Input to next OT is output from previous OT.

Garbled-circuit 2PC

f computed by circuit C
C(x,y):{0,1}"%{0,1}" — {0,1}™

2PC efficiency Garbled Circuit
ok n) 02
Adepth 01

Optimization 1: Free XOR trick

In GMW or BGW, linear (XOR) gates are free (no
communication).

Can we say something for Garbled circuits?

Theorem [Kolesnikov, Schneider’08]: If we
generate labels carefully, then there is no need
to send garbled XOR tables.

Observation: do not use so much randomness.

Optimization 1: Free XOR trick

Rough intuition:
Acceptable correlations of labels:

* Pick global R, a random value hidden from evaluator
 Generate non-XOR-output wire w subject to

Ly, =L,"®R
Now ifz = x @ y, we define L, = L, D L,,.
1. =L DL, =L DL, OR =L D LS.
2 10 — 11 11 — 710 AN 1O

Observation: do not use so much randomness.

Optimization 2: Half-Gates

Half-gate trick [Zahur, Rosulek, Evans’15]: Keeping
XOR gates free, AND gate can be 2 ct each.

size per gate calls to H per gate
generator evaluator
technique XOR AND XOR AND XOR AND

classical [31] 4 4 4 4 4 4
point-permute [3] 4 4 4 4 1 1
row reduction (GRR3) [27] 3 3 4 4 1 1
row reduction (GRR2) [28] 2 2 4 4 1 1
free XOR + GRR3 [20] 0 3 0 4 0 1
fleXOR [19] {0,1,2} 2 {0,2,4} 4 {0,1,2} 1
half gates [this work] 0 4 0 2

Table 1. Optimizations of garbled circuits. Size is number of “ciphertexts” (multiples of £ bits).

Credit: Table taken from proceedings version of [ZRE’15].

Optimization 3: Beyond Half-Gates

Slicing & Dicing [Rosulek, Roy’21]: Keeping XOR
gates free, AND gate can be 1.5 ct plus 5 bits each.

GC size calls to H per gate
(k bits / gate) garbler evaluator
scheme AND XOR |AND XOR |AND XOR |assump.
unoptimized textbook Yao 8 8 4 4 2.9 2.9 PRF
Yao + point-permute [BMR90]| 4 4 4 4 1 1 PRF
4 — 3 row reduction [NPS99] 3 3 4 4 1 1 PRF
4 — 2 row reduction [PSSWO09]| 2 2 4 4 1 1 PRF
free-XOR [KS08] 3 0 4 0 1 0 CCR
AeXOR [KMR14] 2 {0,1,2}| 4 {0,2,4} 1 {0,1,2} CCR
half-gates [ZRE15] 2 0 4 0 2 0 CCR
[GLNP15] 2 1 4 3 2 15 | PRF
ours m <6 0 <3 0 CCR

Credit: Table taken from proceedings version of [RR’21].

Malicious Alice

What can a malicious garbler do?

Simple Generic Defense
Cut-and-choose

Rough sketch:

* Alice commits to g garbled gates and the randomness
in generating them.

 Bob opens all but one instances, including all the labels,

and check that gates are garbled correctly; if not, abort.
 Use the unopened GC to compute.

Note: Use of commitment is crucial:

How do we get soundness error: 2%(®?

Malicious Bob

What can a malicious evaluator do?

Next class:
Quantum Cryptography

