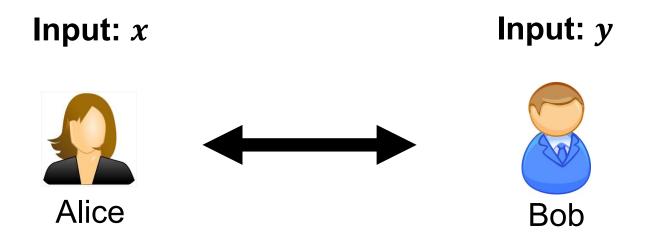
MIT 6.875

Foundations of Cryptography Lecture 25

O(1)-RoundTwo-Party Computation



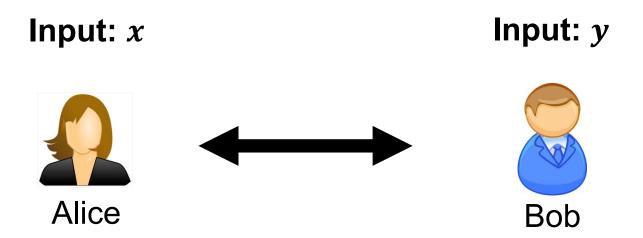
• Alice and Bob want to compute F(x, y).

Semi-honest Security:

Parties should not learn anything more than their inputs and F(x, y).

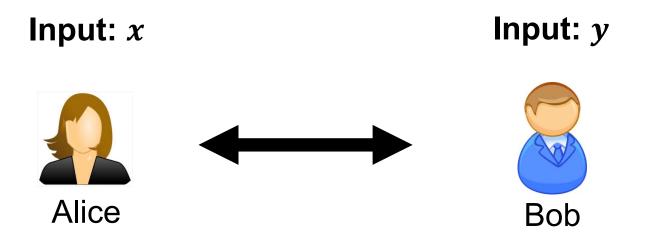
Alice

IDEAL WORLD:



There exists a PPT simulator SIM_A such that for any x and y:

$$SIM_A(x, F(x, y)) \cong View_A(x, y)$$



There exists a PPT simulator SIM_B such that for any x and y:

$$SIM_B(y, F(x, y)) \cong View_B(x, y)$$

Secure MPC

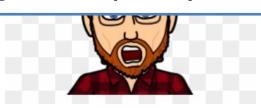
Theorem [Goldreich-Micali-Wigderson'87]:

OT can solve any multi-party computation problem.

One year before '87...

Theorem (Yao'86):

OT+OWF solve any two-party computation problem.



Secure 2PC from OT

- Constant Round!!
- Groundbreaking generic solution
- Inspired GMW'87 and more
- Beyond secure computation
 - Computing on encrypted data
 - Secure function evaluation
 - Parallel cryptography
 - •
 - Garbling as Randomized Encoding of functions [IK'00,IK'02,AIK'04,AIK'06]...

Secure Function Evaluation

Alice's private input is $C: \{0,1\}^n \to x$ Bob's private input is x

Goal: Compute C(x)

Q: Is *iO* a solution?

A: depends...

SFE needs interaction

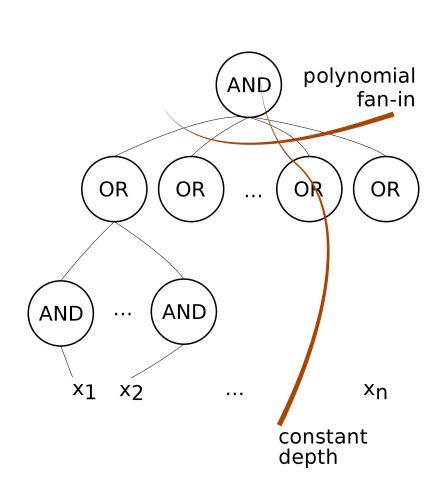
☑ But SFE gives one-time evaluation *only*.

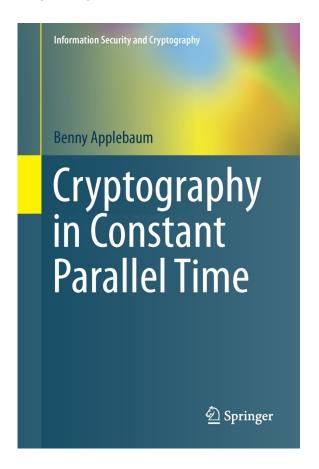
Secure 2PC from OT

- Constant Round!!
- Groundbreaking generic solution
- Inspired GMW'87 and more
- Beyond secure computation
 - Computing on encrypted data
 - Secure function evaluation
 - Parallel cryptography
 - ...
 - Garbling as Randomized Encoding of functions [IK'00,IK'02,AIK'04,AIK'06]...

Parallel Cryptography

Can we do super-fast cryptography?





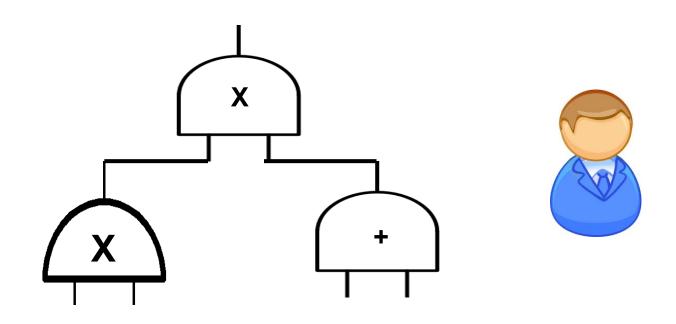
Complexity of the 2-party solution

f computed by circuit C $C(x,y): \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^m$

2PC efficiency	GMW'87	Garbled Circuit
# OT	<i>O</i> (# ∧)	$O(n \cdot \lambda)$
# Rounds	∧ -depth	
# Comm	$O(\# \wedge \lambda + m)$	$O(\lambda \cdot \# \wedge)$

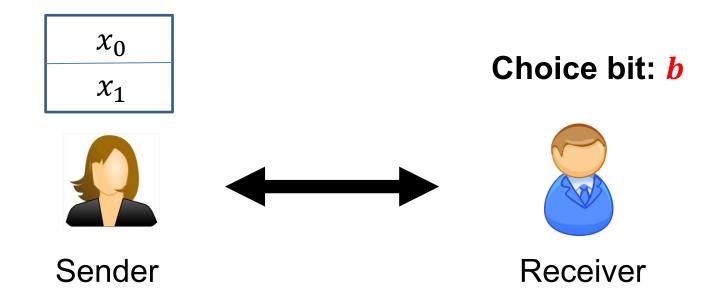
How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR $(+ mod \ 2)$ and AND $(\times mod \ 2)$ gates.



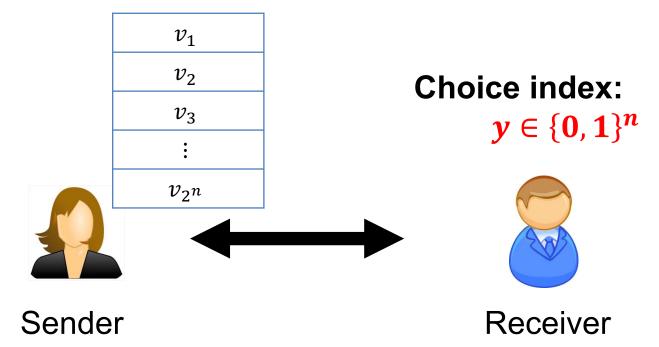
Goal: Compute every gate without knowing what the inputs and outputs are

Tool: Oblivious Transfer (OT)



- Sender holds two bits x_0 and x_1 .
- Receiver holds a choice bit b.
- Receiver should learn x_b , sender should learn nothing.

What if we have 1-out-of- 2^n OT?

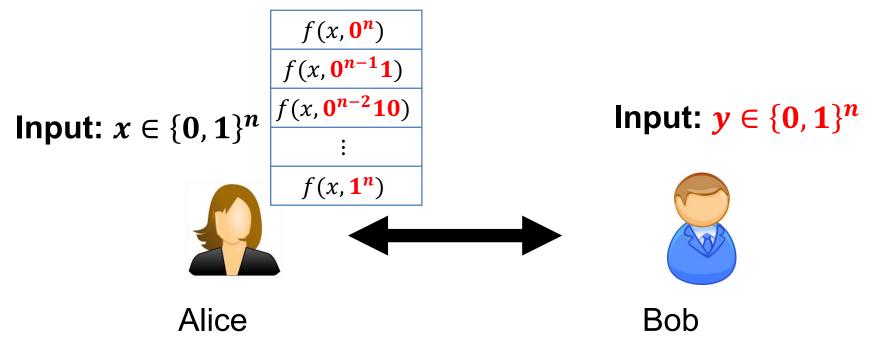


Canadan balda 21 bita

= PIR except we also require that receiver learns nothing but x_y .

Receiver should learn x_y , sender should learn holling.

OT on Truth table?



Gate-by-gate on circuit of f!

Itself is aiready inefficient!

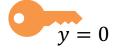
Instead of deriving the OT-by-OT protocol of GMW'87...

Fun with Lockboxes

Physical 2PC

Input: $x \in \{0, 1\}$

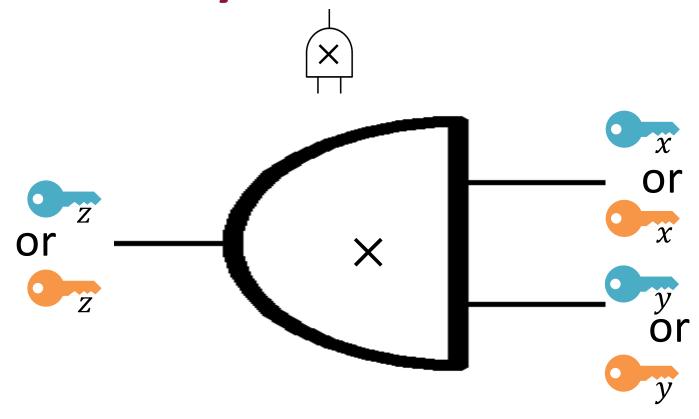
Input: $y \in \{0, 1\}$



$$y = 2$$

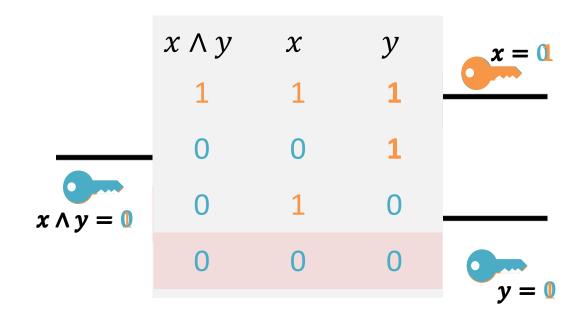
Possession of or is information!

Physical 2PC



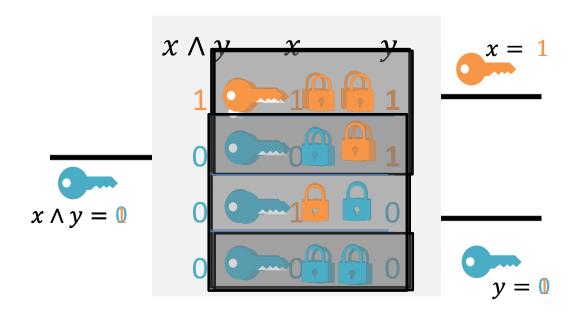
Blue/orange means 1/0, but keys on different wires, even with same colors, are different

Idea



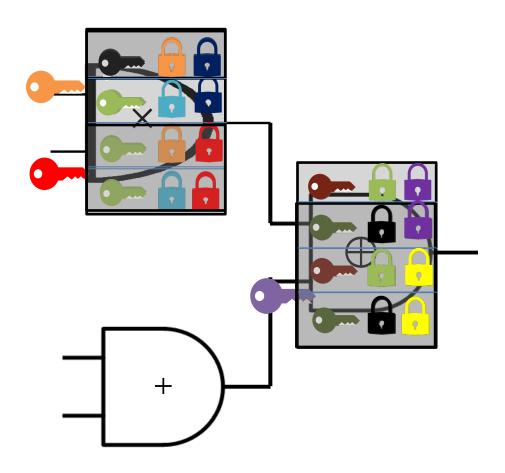
Key Invariant: For each wire w of the circuit, generate a pair of keys k_w^0, k_w^1 . The possession of $k_w^b \Leftrightarrow$ the value carried on the wire is b.

Idea



Key Invariant: For each wire w of the circuit, generate a pair of keys k_w^0 , k_w^1 . The possession of $k_w^b \Leftrightarrow$ the bit b is carried on w.

Garbled Evaluation



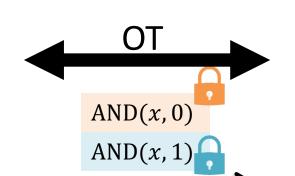
Crypto Lockboxes

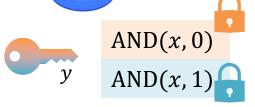
Input: $x \in \{0, 1\}^n$

X

Input: $y \in \{0, 1\}\%$

y = 1





- Alice puts results in IND-CPA encryption
- Bob gets key via some crypto OT mechanism
- Bob tries to open both boxes using the key he received.

What about last point?

Tool: Special CPA Encryption

CPA-secure secret-key encryption (Gen, Enc, Dec) that satisfies

- **1. Elusive range** --- Let $k \leftarrow_R \text{Gen}(1^n)$. Any p.p.t. adversary A cannot generate ciphertext encrypted under k, w/o k.
- 2. Efficiently verifiable range --- there exists an algo $\operatorname{Check}(1^n, k, c)$ that checks if c is encrypted under k.

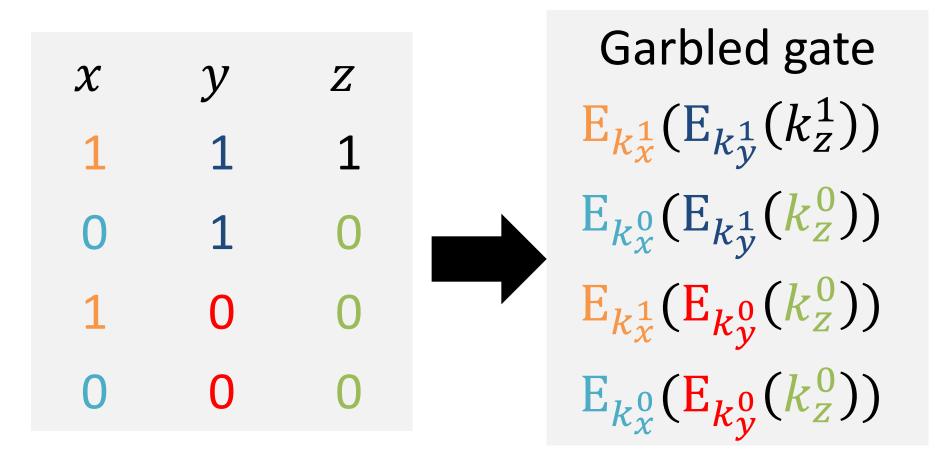
Tool: Special CPA Encryption

- **1. Elusive range** --- Let $k \leftarrow_R \text{Gen}(1^n)$. Any p.p.t. adversary A cannot generate ciphertext encrypted under k, w/o k.
- 2. Efficiently verifiable range there exists an algo $\operatorname{Check}(1^n, k, c)$ that checks if c is encrypted under k.

Construction:

Let
$$F_k$$
: $\{0,1\}^n \to \{0,1\}^{2n}$ be a PRF,
$$E_k(m;r) \coloneqq F_k(r) \oplus (m||0^n).$$

Crypto Lockboxes



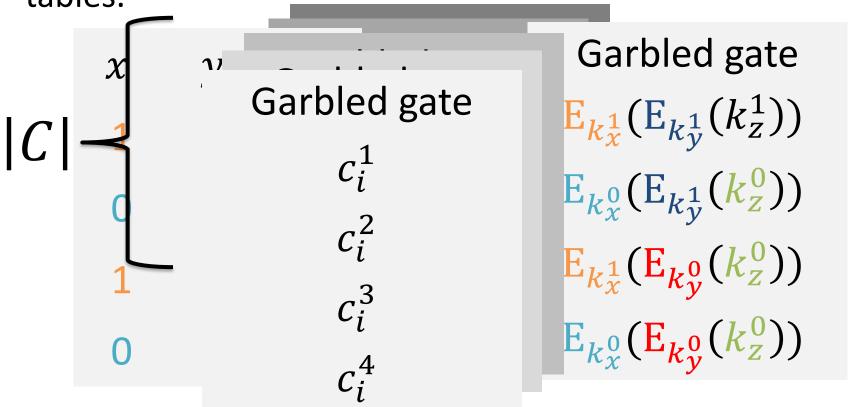
Efficiently verifiable range

 $\operatorname{Check}(1^n, k, c)$ checks if c is encrypted under k.

Protocol Sketch

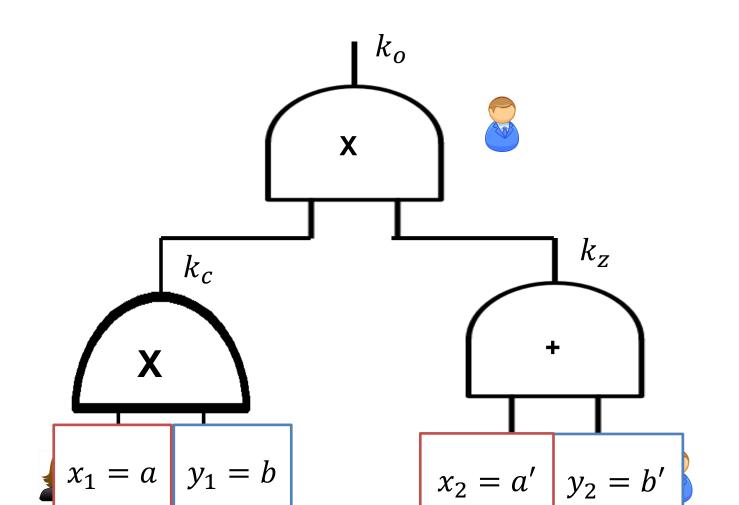
Yao's protocol: Garbling

- Keys generation: For each wire w of C, Alice generates a pair of keys k_w^0, k_w^1 .
- Gate Garbling: For each gate $z \leftarrow G(x, y)$, compute the tables.



Yao's protocol: Evaluator Bob

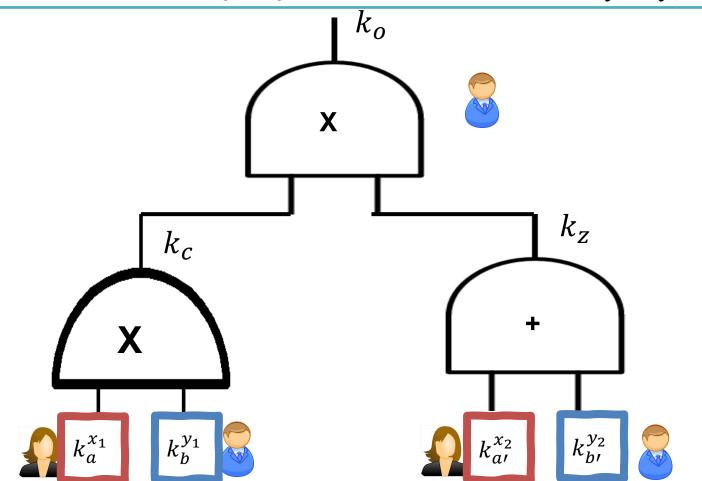
Key Invariant: For each wire w of the circuit, Bob can obtain exactly one of the two keys from k_w^0, k_w^1 .



Yao's protocol: Evaluator Bob

Base case:

- Alice's input $x_i \in \{0,1\}$: Alice send the correct key $k_i^{x_i}$.
- Bob's input $y_i \in \{0,1\}$: they runs OT on $((k_i^0, k_i^1), y_i)$.



Yao's protocol: Evaluator Bob

Inductive step:

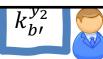
Assume: Bob has one key for each input wire

Bob can get exactly and key for the output wire by trying all four ciph $k_o^{(x_1+x_2)(x_1\wedge x_2)}$

Efficiently verifiable range

Check $(1^n, k, c) \in \{0,1\}$ checks if

c is encrypted under k.



Evaluating One Gate

adustiva stan

Oops..

This procedure, as-is, is actually insecure.

trying an rour cipilertexts.

Recall:

Given $k_x^{b_x}$, $k_y^{b_y}$,

Try all four rows to obtain $k_z^{b_x \wedge b_y}$

Garbled gate

$$E_{k_x^1}(E_{k_y^1}(k_z^1))$$

$$E_{k_x^0}(E_{k_y^1}(k_z^0))$$

$$\mathsf{E}_{k_{\mathcal{X}}^{1}}(\mathsf{E}_{k_{\mathcal{Y}}^{0}}(k_{z}^{0}))$$

$$\mathsf{E}_{k_x^0}(\mathsf{E}_{k_y^0}(k_z^0))$$

Reconstructing Output

Key Invariant: For each wire of the circuit, Bob can obtain exactly one of the two keys associated with each wire.

After evaluation, Bob learns $k_o \in \{k_o^0, k_o^1\}$.

Bob simply asks Alice if k_o is k_o^0 or k_o^1 .

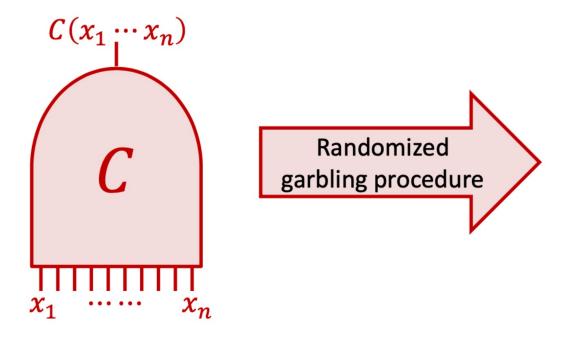
$$k_o^{(x_1+x_2)(x_1\wedge x_2)}$$

Can we avoid this final round?

Garbling as a Standalone Tool

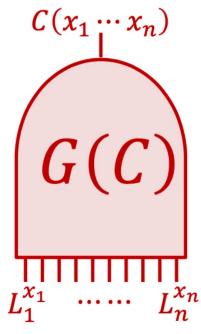
Q: Difference with i0?

- Input: Boolean circuit $C: \{0,1\}^n \rightarrow \{0,1\}$
- Output: Garbled circuit G(C) and input labels $\{(L_1^0, L_1^1), ..., (L_n^0, L_n^1)\}$



Goal: Given G(C) and $L_1^{x_1}, ..., L_n^{x_n}$

- It is possible to compute $C(x_1 \cdots x_n)$
- It is not possible to learn any additional information other than size of circuit or input



For example, for x = 010, labels are L_1^0, L_2^1, L_3^0

2PC Using Garbled Circuits

Input will be x, y

Common input: $C: \{0,1\}^{2n} \rightarrow \{0,1\}$

Input: $x \in \{0,1\}^n$

Compute G(C) and labels $\left\{\left(L_i^0, L_i^1\right)\right\}_{i \in [2n]}$

Garbled circuit G(C)

Input labels $L_1^{x_1}, \dots, L_n^{x_n}$ for x

OT for each $i \in [n]$ in parallel:

- Alice's input: (L_{n+i}^0, L_{n+i}^1)
- Bob's input: y_i

C(x,y)

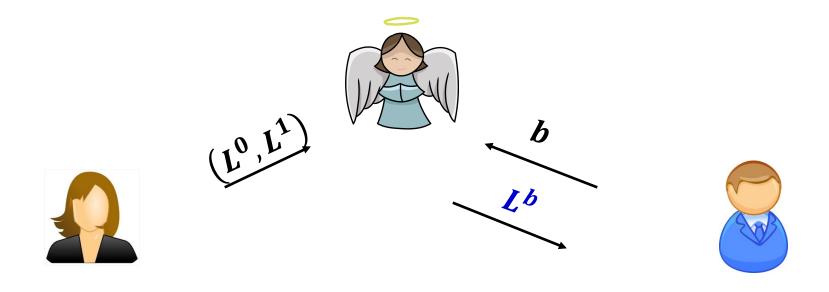
Compute C(x, y)using G(C) and $L_1^{x_1}, ..., L_n^{x_n}, L_{n+1}^{y_1}, ..., L_{2n}^{y_n}$

Simulation Proof Sketch

Simulating Alice

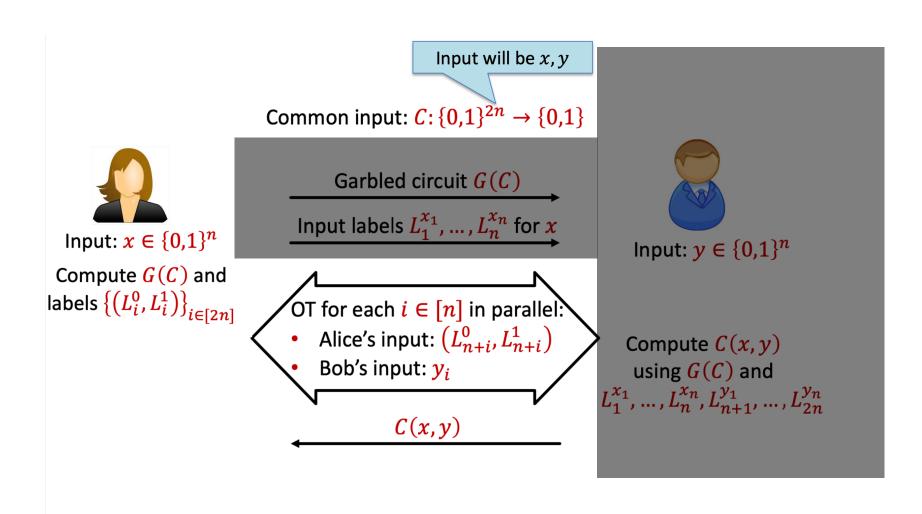
Imagine that the parties have access to an OT angel

Implemented by secure simulatable OT.



Simulating Alice

Imagine that the parties have access to an OT angel.

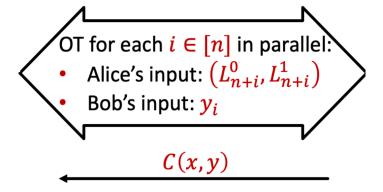


Simulating Alice

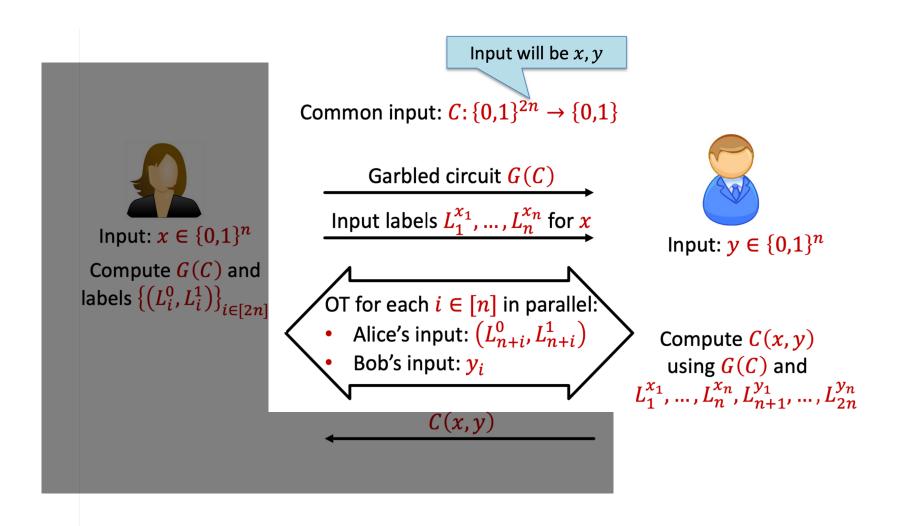
Alice's View

- OT transcripts
- C(x,y)

```
Sim(C, x, f(x, y)):
Output
\{\{\operatorname{Sim}_{OT}^{A}(L_{n+i}^{0}, L_{n+i}^{1})\}_{i}^{i}
f(x, y)\}
```

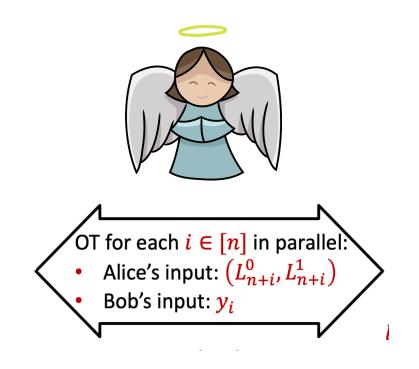


Imagine that the parties have access to an OT angel.

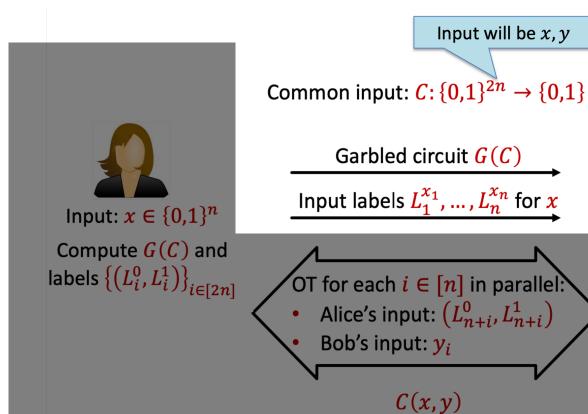


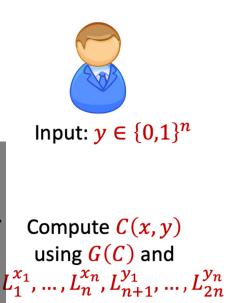
OT Simulation:

$$View_{OT}^{B} \approx Sim_{OT}^{B}(1^{n}, y_{i}, L_{n+i}^{y_{i}}).$$



Assume we already simulated L_{n+i}^{B} with the correct distribution.





Garbled circuit G(C)Input labels $L_1^{x_1}, ..., L_n^{x_n}$ for x

Step 1: Generate Dummy Labels

- Label generation: For each wire w of C, generates a pair of keys L_w^0, L_w^1 .
- Label simulation: For all input wire i, let $\widetilde{L_i^{x_i}} \coloneqq L_i^0$.

Sanity Check:

This replacement is fine because keys are randomly generated.

Step 2.a: Simulate Fake Gates

• Garbled gate simulation: Replace intermediate ciphertexts with junks.

Garbled gate

$$\mathrm{E}_{L^1_x}(\mathrm{E}_{L^1_y}(L^1_z))$$

$$\mathsf{E}_{L^0_x}(\mathsf{E}_{L^1_y}(L^0_z))$$

$$\mathsf{E}_{L^1_x}(\mathsf{E}_{L^0_y}(L^0_z))$$

$$\mathrm{E}_{L^0_x}(\mathrm{E}_{L^0_y}(L^0_z))$$

Garbled gate

$$\mathrm{E}_{L_{x}^{1}}(\mathrm{E}_{L_{v}^{1}}(L_{z}^{0}))$$

$$\mathrm{E}_{L^0_{x}}(\mathrm{E}_{L^1_{y}}(L^0_{z}))$$

$$\mathsf{E}_{L_{\boldsymbol{x}}^{\boldsymbol{1}}}(\mathsf{E}_{L_{\boldsymbol{y}}^{\boldsymbol{0}}}(L_{\boldsymbol{z}}^{\boldsymbol{0}}))$$

$$E_{L_x^0}(E_{L_y^0}(L_z^0))$$

- the rows are randomly permuted $(\sigma, \tau \in Perm([4]))$
- only a random row can be decrypted
- the junk entries are w.h.p. non-decryptable.

Step 2.b: Simulate Output

Generate the following decoding table

Output label	Decoded result
L_o^0	C(x,y)
L_o^1	1-C(x,y)

Sanity Check: This is fine because the label L_o^0 might as well be encoding 1.

Bob's View

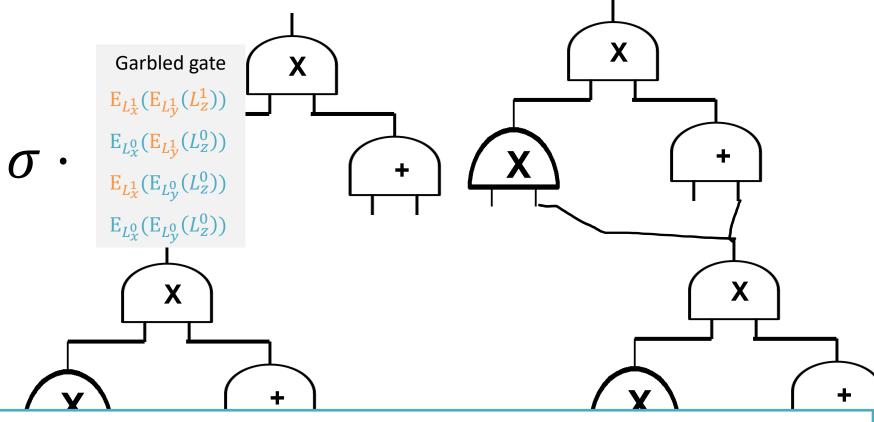
- Wire labels
- Garbled tables
- Final decoding table
- OT transcripts

Sim(C, y, f(x, y)):

- Simulate labels
- $\succ \operatorname{Sim}_{\operatorname{OT}}^{\operatorname{B}}(L_y^{y_i})$
- Simulate garbled gates
- Simulate final decoding table.

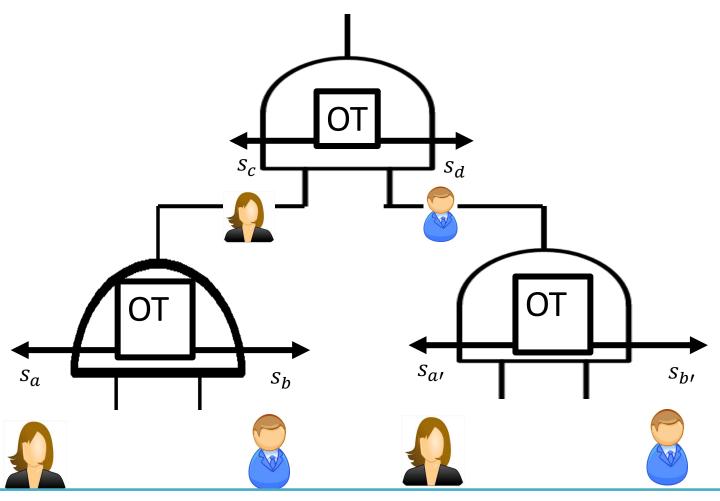
Efficiency

Garbling is parallelizable



Parallelism: Each garbled gate is computed locally (only depends on (L_x^0, L_x^1) , (L_y^0, L_y^1) , (L_z^0, L_z^1) , generated at the very beginning).

Why is GMW sequential?



Sequentiality: Input to next OT is output from previous OT.

Garbled-circuit 2PC

f computed by circuit C $C(x,y): \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^m$

2PC efficiency	GMW'87	Garbled Circuit
# OT	<i>O</i> (# ∧)	$O(n \cdot \lambda)$
# Rounds	∧ -depth	0(1)
# Comm	$O(\# \wedge \cdot \lambda + m)$	$O(\lambda \cdot \# \wedge)$

Optimization 1: Free XOR trick

In GMW or BGW, linear (XOR) gates are free (no communication).

Can we say something for Garbled circuits?

Theorem [Kolesnikov, Schneider'08]: If we generate labels *carefully*, then there is no need to send garbled XOR tables.

Observation: do not use so much randomness.

Optimization 1: Free XOR trick

Rough intuition:

Acceptable correlations of labels:

- Pick global R, a random value hidden from evaluator
- Generate non-XOR-output wire w subject to

$$L_w^b = L_w^{1-b} \oplus R$$

Now if $z = x \oplus y$, we define $L_z = L_x \oplus L_y$.

1.
$$L_z^1 = L_x^0 \oplus L_y^1 = L_x^0 \oplus L_y^0 \oplus R = L_x^1 \oplus L_y^0$$
.

$$2 I^{0} - I^{1} \triangle I^{1} - I^{0} \triangle I^{0}$$

Observation: do not use so much randomness.

Optimization 2: Half-Gates

Half-gate trick [Zahur, Rosulek, Evans'15]: Keeping XOR gates free, AND gate can be 2 ct each.

	size per	gate	calls to H per gate				
			generator		evalua	evaluator	
technique	XOR	AND	XOR	AND	XOR	AND	
classical [31]	4	4	4	4	4	4	
point-permute [3]	4	4	4	4	1	1	
row reduction (GRR3) [27]	3	3	4	4	1	1	
row reduction (GRR2) [28]	2	2	4	4	1	1	
free XOR + GRR3 [20]	0	3	0	4	0	1	
fleXOR [19]	$\{0, 1, 2\}$	2	$\{0, 2, 4\}$	4	$\{0,1,2\}$	1	
half gates [this work]	0	2	0	4	0	2	

Table 1. Optimizations of garbled circuits. Size is number of "ciphertexts" (multiples of k bits).

Credit: Table taken from proceedings version of [ZRE'15].

Optimization 3: Beyond Half-Gates

Slicing & Dicing [Rosulek, Roy'21]: Keeping XOR gates free, AND gate can be 1.5 ct plus 5 bits each.

	GC size		calls to H per gate				
	$ (\kappa \text{ bits / gate}) $		garbler		evaluator		
scheme	AND	XOR	AND	XOR	AND	XOR	assump.
unoptimized textbook Yao	8	8	4	4	2.5	2.5	PRF
Yao + point-permute [BMR90]	4	4	4	4	1	1	PRF
$4 \rightarrow 3$ row reduction [NPS99]	3	3	4	4	1	1	PRF
$4 \rightarrow 2$ row reduction [PSSW09]	2	2	4	4	1	1	PRF
free-XOR [KS08]	3	0	4	0	1	0	CCR
fleXOR [KMR14]	2	$\{0, 1, 2\}$	4	$\{0, 2, 4\}$	1	$\{0, 1, 2\}$	CCR
half-gates [ZRE15]	2	0	4	0	2	0	CCR
[GLNP15]	2	1	4	3	2	1.5	PRF
ours	1.5	0	≤ 6	0	<u>≤</u> 3	0	CCR

Credit: Table taken from proceedings version of [RR'21].

Malicious Alice

What can a malicious garbler do?

Simple Generic Defense Cut-and-choose

Rough sketch:

- Alice commits to q garbled gates and the randomness in generating them.
- Bob opens all but one instances, including all the labels, and check that gates are garbled correctly; if not, abort.
- Use the unopened GC to compute.

Note: Use of commitment is crucial:

How do we get soundness error: $2^{\Omega(q)}$?

Malicious Bob

What can a malicious evaluator do?

Next class: Quantum Cryptography