MIT 6.875

Foundations of Cryptography Lecture 23

Security against Malicious (Active) Adversaries

Secure Two-Party Comp: New Def

 (possibly randomized) $F(x, y ; r)=\left(F_{A}(x, y ; r), F_{B}(x, y ; r)\right)$
Input: x

Alice

Input: y

There exists a PPT simulator SIM_{A} such that for any x and y :
$\left(\operatorname{SIM}_{A}\left(x, F_{A}(x, y)\right), F(x, y)\right) \cong\left(\operatorname{View}_{A}(x, y), F(x, y)\right)$
i.e. the joint distribution of the view and the output is correct

Issues to Handle

1. Input (In)dependence: A malicious party could choose her input to depend on Bob's, something she cannot do in the ideal world.

$$
\text { Example (on the board): } F((a, b), x)=(\perp, a x+b)
$$

2. Randomness: A malicious party could choose her "random string" in the protocol the way she wants, something she cannot do in the ideal world.

Example (on the board): our OT protocol
Cleve's theorem: this is unavoidable
3. (Un)fairness: A malicious party could block the honest party from learning the output, while learning it herself.
4. Deviate from

Protocol Instructions.

New (Less) Ideal Model

The "GMW Compiler"

Theorem [Goldreich-Micali-Wigderson'87]:
Assuming one-way functions exist, there is a general way to transform any semi-honest secure protocol computing a (possibly randomized) function F into a maliciously secure protocol for F.

Input Independence

1. Input (In)dependence: A malicious party could choose her input to depend on Bob's, something she cannot do in the ideal world.

Solution: Each party commits to their input in sequence, and provides a zero-knowledge proof of knowledge of the underlying input.

Solution: Coin-Tossing Protocol

2. Randomness: A malicious party could choose her "random string" in the protocol the way she wants, something she cannot do in the ideal world.

Def: Realize the functionality $F\left(1^{n}, 1^{n}\right)=(r, \operatorname{Com}(r))$.

Output $r=r_{1} \oplus r_{2}$
Output $\left(\operatorname{Com}\left(r_{1}\right), r_{2}\right)$

Zero Knowledge Proofs

4. Deviate from Other Protocol Instructions.

Solution: Each message of each party is a deterministic function of their input, their random coins and messages from party B.

When party A sends a message $m=m\left(x_{A}, r_{A}, \overline{m s g_{B}}\right)$, they also prove in zero-knowledge that they did so correctly. That is, they prove in ZK the following NP statement:

$$
\begin{gathered}
\left(m, \overline{m s g_{B}}, X \operatorname{Com}, R \operatorname{Com}\right): \exists x_{A}, r_{A} \text { s.t. } \\
m=m\left(x_{A}, r_{A}, \overline{m s g_{B}}\right) \wedge X \operatorname{Com}=\operatorname{Com}\left(x_{A}\right) \wedge \\
R \operatorname{Com}=\operatorname{Com}\left(r_{A}\right)
\end{gathered}
$$

Optimizations

Optimization 1: Preprocessing OTs

Random OT tuple (or AND tuple, or Beaver tuple after D. Beaver): Alice has $\left(\alpha, \gamma_{a}\right)$ and Bob has $\left(\beta, \gamma_{b}\right)$ which are random s.t. $\gamma_{\boldsymbol{a}} \oplus \gamma_{\boldsymbol{b}}=\boldsymbol{\alpha} \boldsymbol{\beta}$.

Theorem: Given O(1) many random OT tuples, we can do OT with information-theoretic security, exchanging $\mathrm{O}(1)$ bits.

Optimization 2: OT Extension

Theorem
[Beaver'96, Ishai-Kushilevitz-Nissim-Pinkas'03]:

Given $O(\lambda)$ many random OT tuples, we can generate n OT tuples exchanging $O(n)$ bits --- as opposed to the trivial $O(n \lambda)$ bits --- and using only symmetric-key crypto.

Complexity of the 2-party solution

Number of OT protocol invocations $=2 * \# A N D$ gates Can be made into O(\#inputs • λ): Yao's garbled circuits

Number of rounds = AND-depth of the circuit
Can be made into O(1) rounds: Yao's garbled circuits

Communication in bits =

$$
O(\# A N D \cdot \lambda+\# o u t p u t s)
$$

Can be made into O (λ \#inputs) using FHE: but FHE is computationally more expensive concretely.

Secure Multi Party Computation w/ Information-theoretic security

Secure Multi-party Computation

GMW protocol: $\boldsymbol{n} \mathbf{- 1}$ out of \boldsymbol{n} corruptions
The Goldreich-Micali-Wigderson Protocol for n parties with $<n$ corruptions, using Oblivious Transfer (which can only be computationally secure)

Secure Multi-party Computation

TODAY: HONEST MAJORITY

Information-theoretically Secure Protocols for n parties with $<n / 2$ corruptions
[BenOr-Goldwasser-Wigderson'88, Chaum-Crepeau-Damgard'88, BenOr-Rabin'89]

AN EXAMPLE

COMPUTING THE AVERAGE SALARY IN THIS ROOM

IT-Secure MPC with Honest Majority

Theorem [BenOr-Goldwasser-Wigderson'88, Chaum-Crepeau-Damgard'88]:

Any n-party computation problem can be solved with information-theoretic security as long $<\frac{n}{2}$ parties collude.

Key Tool: Shamir's Secret Sharing

Key Tool: Secret-Sharing

Dealer

[Any "authorized" subset of players can recover b.
N No other subset of players has any info about b.

- Threshold (or t-out-of-n) SS [Shamir'79, Blakley'79]: "authorized" subset $=$ has size \geq t.

n-out-of-n Secret Sharing

Dealer

P_{1}

P_{3}

P_{n}
share s_{1} : random
share s_{2} : random
share s_{3} : random
share s_{4} : random

share $s_{n}=b-\left(s_{1}+s_{2}+\cdots+s_{n-1}\right) \bmod \mathrm{p}$

secret $\mathrm{b} \in Z_{p}$

1-out-of-n Secret Sharing

Dealer

P_{2}

P_{3}

P_{4}

P_{n}
share $s_{1}=\mathrm{b}$
share $s_{2}=\mathrm{b}$
share $s_{3}=\mathrm{b}$
share $s_{4}=\mathrm{b}$

share $s_{n}=b$

2-out-of-n Secret Sharing?

Dealer

P_{n}
Here is a solution.

Repeat for every two-person subset $\left\{P_{i}, P_{j}\right\}$:

- Generate a 2 -out-of-2 secret sharing (s_{i}, s_{j}) of b.
- Give s_{i} to P_{i} and s_{j} to P_{j}

What is the size of shares each party gets?
How does this scale to t-out-of-n?

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

Shamir's 2-out-of-n Secret Sharing

Each share s_{i} is truly random (independent of secret b)
Any two shares uniquely determine b .

Shamir's 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line $(\bmod p)$ whose constant term is the secret b.

$$
f(x)=a x+b \text { where } a \text { is uniformly random } \bmod p
$$

2. Compute the shares:

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Correctness: can recover secret from any two shares.
Proof: Parties i and j, given shares $s_{i}=a i+b$ and $s_{j}=$ $a j+b$ can solve for $b\left(=\frac{j s_{i}-i s_{j}}{j-i}\right)$.

Shamir's 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line $(\bmod p)$ whose constant term is the secret b.

$$
f(x)=a x+b \text { where } a \text { is uniformly random } \bmod p
$$

2. Compute the shares:

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Security: any single party has no information about the secret.
Proof: Party i 's share $s_{i}=a * i+b$ is uniformly random, independent of b, as a is random and so is $a * i$.

Shamir's t-out-of-n Secret Sharing Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1) polynomial $(\bmod \mathbf{p})$ whose constant term is the secret b.

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random } \bmod p
\end{aligned}
$$

2. Compute the shares:

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Correctness: can recover secret from any t shares.
Security: the distribution of any $t-1$ shares is independent of the secret.

Note: need p to be larger than the number of parties n.

Shamir's t-out-of-n Secret Sharing Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random } \bmod p
\end{aligned}
$$

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Correctness: via Vandermonde matrices.
Let's look at shares of parties $P_{1}, P_{2}, \ldots, P_{t}$.

$$
\left[\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
\ldots \\
s_{t}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2^{2} & \ldots & 2^{t-1} \\
1 & 3 & 3^{2} & \ldots & 3^{t-1} \\
1 & \ldots & \ldots & \ldots & \ldots \\
1 & t & t^{2} & \ldots & t^{t-1}
\end{array}\right]\left[\begin{array}{c}
b \\
a_{1} \\
a_{2} \\
\ldots \\
a_{t-1}
\end{array}\right](\bmod p)
$$

Shamir's t-out-of-n Secret Sharing
 Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
& f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \quad \text { where } a_{i} \text { are uniformly random } \bmod p \\
& s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
\end{aligned}
$$

Correctness: Alternatively, Lagrange interpolation gives an explicit formula that recovers b.

$$
b=f(0)=\sum_{i=1}^{t} f(i)\left(\prod_{1 \leq j \leq t, j \neq i} \frac{-x_{j}}{x_{i}-x_{j}}\right)
$$

Shamir's t-out-of-n Secret Sharing Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random } \bmod p
\end{aligned}
$$

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Security:

Let's look at shares of parties $P_{1}, P_{2}, \ldots, P_{t-1}$.
$\left[\begin{array}{c}s_{1} \\ s_{2} \\ s_{3} \\ \ldots \\ s_{t-1}\end{array}\right]=\left[\begin{array}{ccccc}1 & 1 & 1 & \ldots & 1 \\ 1 & 2 & 2^{2} & \ldots & 2^{t-1} \\ 1 & 3 & 3^{2} & \ldots & 3^{t-1} \\ 1 & \ldots & \ldots & \cdots & \ldots \\ 1 & t-1 & (t-1)^{2} & \ldots & (t-1)^{t-1}\end{array}\right]\left[\begin{array}{c}b \\ a_{1} \\ a_{2} \\ \ldots \\ a_{t-1}\end{array}\right](\bmod p)$
($t-1$)-by-t Vandermonde matrix

Shamir's t-out-of-n Secret Sharing Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
& f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \quad \text { where } a_{i} \text { are uniformly random } \bmod p \\
& s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
\end{aligned}
$$

Security: For every value of b there is a unique polynomial with constant term b and shares $s_{1}, s_{2}, \ldots, s_{t-1}$.
$\left[\begin{array}{c}s_{1} \\ s_{2} \\ s_{3} \\ \ldots \\ s_{t-1}\end{array}\right]=\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 2^{2} & \cdots & 2^{t-1} \\ 1 & 3 & 3^{2} & \ldots & 3^{t-1} \\ 1 & \ldots & \ldots & \cdots & \ldots \\ 1 & t-1 & (t-1)^{2} & \ldots & (t-1)^{t-1}\end{array}\right]\left[\begin{array}{c}b \\ a_{1} \\ a_{2} \\ \ldots \\ a_{t-1}\end{array}\right](\bmod p)$
$(t-1)$-by-t Vandermonde matrix

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
& f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+b \\
& \quad \text { where } a_{i} \text { are uniformly random } \bmod p \\
& s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
\end{aligned}
$$

Security: For every value of b there is a unique polynomial with constant term b and shares $s_{1}, s_{2}, \ldots, s_{t-1}$.

Corollary: for every value of the secret b is equally likely given the shares $s_{1}, s_{2}, \ldots, s_{t-1}$. In other words, the secret b is perfectly hidden given $t-1$ shares.

Secure Multiparty Computation

[BenOr-Goldwasser-Wigderson'88, Chaum-Crepeau-Damgard'88, BenOr-Rabin'89]

1. Each party secret-shares their input on a degree-t polynomial. // so, security against t corruptions
2. Proceed gate by gate, maintaining the invariant that the parties holds a secret sharing of every wire value.
3. Exchange the output shares \& reconstruct the output.

Secure Multiparty Computation

Key Insight: Can homomorphically compute on shares!

Locally add shares

Secure Multiparty Computation

Key Insight: Can homomorphically compuțe on shares!

Multiplication

In general, after a single multiplication, the shares will live on a degree-2t polynomial.

Need $2 t+1$ shares to reconstruct.

We know that $n>2 t$, so the n shares together have enough information to recover the product of the secrets!

What's more, we also know that this recovery process is a linear function of the shares.

$$
\mathrm{b} \times \mathrm{b}^{\prime}=\sum \lambda_{i} s_{i} s_{i}^{\prime}
$$

for some publicly known coefficients λ_{i}.

Degree Reduction Protocol

Multiplication gate:
Locally multiply shares \& run a degree reduction protocol.

Fortunately:
$\mathrm{b} \times b^{\prime}=\sum \lambda_{i} s_{i} s_{i}{ }^{\prime}$

Degree Reduction Protocol

Convert shares on a degree-2t polynomial into shares on a degree-t polynomial

Idea: "homomorphically" compute the linear function $\sum \lambda_{i} *(\cdot)$ on the local product shares.

1. Each party t-out-of-n shares $s_{i} \times s_{i}{ }^{\prime}$ to all parties
2. Each party computes a linear combination of the shares it receives using coefficients λ_{i}.

This is the moral equivalent of bootstrapping in FHE!

Idea: "homomorphically" compute the linear function $\sum \lambda_{i} *(\cdot)$ on the local product shares.

1. Each party t-out-of-n shares $s_{i} \times s_{i}{ }^{\prime}$ to all parties
2. Each party computes a linear combination of the shares it receives using coefficients λ_{i}.

Secure Multiparty Computation

1. Each party secret-shares their input.
2. Proceed gate by gate:

ADD: locally add shares
MULT: locally mult shares and do degree reduction.
3. Exchange the output shares \& reconstruct the output.

Communication Complexity \propto \#AND gates

Security Intuition

1. Any subset of t parties do not get any information about other parties' inputs from the input shares.
2. Security of the degree-reduction protocol: any subset of t parties sees completely random numbers
3. The output lives on a random polynomial of degree t whose constant term is the circuit output. The shares, therefore, reveal only the circuit output.

Threshold Decryption and Signing

Secret sharing is useful way beyond MPC.

An example: distributed storage of keys.

Another example, threshold decryption:
distributed storage of decryption key + non-interactive distributed (or threshold) decryption

Threshold El Gamal

Public key: g^{x}
Secret key: x
I am paranoid about losing x so I share it among n servers.

I secret-share x into n shares x_{1}, \ldots, x_{n} s.t. $\sum_{i=1}^{n} x_{i}=x(\bmod q)$

Threshold Decryption:

Given a ciphertext ($g^{r}, g^{r x} m$), the servers each compute a decryption share $\left(g^{r}\right)^{x_{i}}$.

Multiplying the decryption shares gives us $\Pi\left(g^{r}\right)^{x_{i}}=$ $g^{r x}$ which in turn gives us m after division.

Threshold Decryption and Signing

Secret sharing is useful way beyond MPC.

An example: distributed storage of keys.

Another example, threshold decryption:
distributed storage of decryption key + non-interactive distributed (or threshold) decryption

Yet another example, threshold signing.

NIST Kick-Starts ‘Threshold Cryptography’ Development Effort

Establishing the emerging technique's building blocks is a near-term focus.

July 07, 2020

- MEDIA CONTACT

Chad Boutin
charles.boutin@nist.gov®
(301) 975-4261
. ORGANIZATIONS
Information Technology Laboratory
Computer Security Division
Cryptographic Technology Group
Security Test, Validation and
Measurement Group

PayPal to acquire cryptocurrency security startup Curv

Romain Dillet @romaindillet / 9:44 AM EST•March 8, 2021

Behind the scenes, Curv uses multi-party computation to handle private keys. When you create a wallet, cryptographic secrets are generated on your device and on Curv's servers. Whenever you're trying to initiate a transaction, multiple secrets are used to generate a full public and private key.

Secrets are rotated regularly and you can't do anything with just one secret. If somebody steals an unsecured laptop, a hacker cannot access crypto funds with the information stored on this device alone.

Coinbase to acquire leading cryptographic security company, Unbound Security

Coinbase Follow 다
Nov $30 \cdot 3$ min read - © © © ゅ...

Today, we're announcing the next phase of our security journey with the acquisition of Unbound Security. Based in Israel, it is a pioneer in a number of cryptographic security technologies, including the emerging field of secure multi-party computation (MPC), a highly advanced technology for which Unbound Security's co-founder, Yehuda Lindell, is a world leader. witilthis acyuisition, Coinluase not only gains access to sonle of the worlu's most sophisticated cryptographic security experts, including Unbound Security co-founder and current Vice President of Research and Development, Guy Peer, who brings more than 20 years of experience in cryptographic security, but also a presence in Israel, a well-established and rapidly growing technology hub. This presence in Israel will add an additional powerful prong to Coinbase's global talent acquisition strategy, following on closely to recent thrusts into engineering talent bases such as India, Singapore and Brazil.

Crypto can't grow without strong cryptography and strong security, but it
alen neorcs to be user friendly. Secure multi-party computation is an

