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Security against Malicious (Active)
Adversaries



Secure Two-Party Comp: New Def
(possibly randomized) F(x,y;1r) = (Fa(x,y; 1), Fg(x,y; 1))

Input: x Input: y
L— &

Alice Bob

There exists a PPT simulator SIM, such that for any x
and y:

(SIM,(x, Fy(x, 7)), F(x,¥)) = (View,(x,y), F(x,¥))

l.e. the joint distribution of the view and the output is correct



Issues to Handle

1. Input (In)dependence: A malicious party could choose
her input to depend on Bob’s, something she cannot do in
the ideal world.

Example (on the board): F((a,b),x) = (L, ax + b)

2. Randomness: A malicious party could choose her
“‘random string” in the protocol the way she wants,
something she cannot do in the ideal world.

Example (on the board): our OT protocol

Cleve’s theorem: this is unavoidable

3. (Un)fairness: A malicious party could block the honest
party from learning the output, while learning it herself.

4. Deviate from Protocol Instructions.



New (Less) Ideal Model




The “GMW Compiler”

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming one-way functions exist, there is a general
way to transform any semi-honest secure protocol
computing a (possibly randomized) function F into a

maliciously secure protocol for F.



Input Independence

1. Input (In)dependence: A malicious party could choose
her input to depend on Bob’s, something she cannot do in
the ideal world.

Solution: Each party commits to their input in sequence,
and provides a zero-knowledge proof of knowledge of
the underlying input.




Solution: Coin-Tossing Protocol

2. Randomness: A malicious party could choose her
“random string” in the protocol the way she wants,
something she cannot do in the ideal world.

Def: Realize the functionality F(1™,1™) = (r, Com(r)).

il

Outputr =r; @ nry Output (Com(ry), 1)

Com(ry)

()




Zero Knowledge Proofs

4. Deviate from Other Protocol Instructions.

Solution: Each message of each party is a deterministic
function of their input, their random coins and messages
from party B.

When party A sends a message m = m(xy, 14, mMSgg), they
also prove in zero-knowledge that they did so correctly.
That is, they prove in ZK the following NP statement:

(m,msgg, XCom,RCom): I x,, 7y s.t.
m = m(xy, 14, msgg) AXCom = Com(xy) A
RCom = Com(ry)




Optimizations



Optimization 1: Preprocessing OTs

Random OT tuple (or AND tuple, or Beaver tuple
after D. Beaver): Alice has (a, y,) and Bob has

(f,ys) which are randoms.t. y, © vy, = ap.

Theorem: Given O(1) many random OT tuples, we
can do OT with information-theoretic security,
exchanging O(1) bits.



Optimization 2: OT Extension

Theorem
[Beaver’96, Ishai-Kushilevitz-Nissim-Pinkas’03]:

Given O(A) many random OT tuples, we can
generate n OT tuples exchanging O(n) bits --- as

opposed to the trivial O(nA) bits --- and using only
symmetric-key crypto.



Complexity of the 2-party solution

Number of OT protocol invocations = 2 * #AND gates
Can be made into O(#inputs - A): Yao’s garbled circuits

Number of rounds = AND-depth of the circuit

Can be made into O(1) rounds: Yao’s garbled circuits

Communication in bits =
O(#AND - A + #outputs)

Can be made into O(A #inputs) using FHE: but FHE is
computationally more expensive concretely.



Secure Multi Party Computation
w/ Information-theoretic security



Secure Multi-party Computation

@QMQ@

¥
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GMW protocol: n — 1 out of n corruptions

The Goldreich-Micali-Wigderson Protocol for n parties with < n
corruptions, using Oblivious Transfer
(which can only be computationally secure)



Secure Multi-party Computation
@Q 3
N/
“@

TODAY: HONEST MAJORITY

Information-theoretically Secure Protocols for n parties
with < n/2 corruptions

[BenOr-Goldwasser-Wigderson’88, Chaum-Crepeau-Damgard’88, BenOr-Rabin’89]



AN EXAMPLE

COMPUTING THE AVERAGE SALARY IN THIS ROOM

: S
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SACHA LALI
Y1 = R+5;4 Y, = Y1+S;
mod p mod p
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m coe "

APARNA VINOD
Y3 = Y,+S; Yo = Yn1+S,
mod p mod p

Yn

Y,—R =X/_1Simodp=3i_;S
(if p large enough)

Is this secure?



IT-Secure MPC with Honest Majority

Theorem [BenOr-Goldwasser-Wigderson’88,
Chaum-Crepeau-Damgard’88]:

Any n-party computation problem can be solved
with information-theoretic security as long < g
parties collude.

Key Tool: Shamir’s Secret Sharing



secret b

Key Tool: Secret-Sharing

shares; shares, shares; shares, shares,
& = 23 5.8
P, P P Py Py

Dealer 2

U Any “authorized” subset of players can recover D.

J No other subset of players has any info about D.

o Threshold (or t-out-of-n) SS [Shamir’79, Blakley’79]:

“authorized” subset = has size > t.



secretb € /7

’ﬂ " n-out-of-n Secret Sharing

share s;: random

share s,: random

share s3: random

share s,: random

shares, =b—(s;+s,+-+5s,_1)modp



secretb € /7

‘q p 1-out-of-n Secret Sharing

q

shares; =b

shares, =b

shares; =b

shares, =b

shares, =b



secretb € 7

- '2-out-of-n Secret Sharing?

@ z2328¢

P,

Dealer

Here is a, solution.

Repeat for every two-person subset {F;, P;}:
* Generate a 2-out-of-2 secret sharing (s;, s;) of b.
* Give s; to P; and s; to P

What is the size of shares each party gets?

How does this scale to t-out-of-n%



Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!



Shamir’s 2-out-of-n Secret Sharing

-
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secret b

\

Each share s; is truly
random (independent of
secret b)

Any two shares uniquely
determine b.




Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose
constant term is the secret b.

f(x) = ax + b where a is uniformly random mod p

2. Compute the shares:

s1=f(1),s2 = f(2), ., 50 = (D), )50 = f(0)

Correctness: can recover secret from any two shares.

Proof: Parties i and j, given shares s; = ai + b and s; =
aj + b can solve for b (= ]S]i,:lisj).




Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose
constant term is the secret b.

f(x) = ax + b where a is uniformly random mod p

2. Compute the shares:

s1=f(1),s2 = f(2), ., 50 = (D), )50 = f(0)

Security: any single party has no information about the secret.

Proof: Party i's share s; = a *x i + b is uniformly random,
independent of b, as a is random and so is a *i.



Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1)
polynomial (mod p) whose constant term is the secret b.

f(xX)=ap x4+ +ax+b
where a; are uniformly random mod p

2. Compute the shares:
s1=f),s, =f(2),..,s; =f(0),..,sp,=f(n)
Correctness: can recover secret from any t shares.

Security: the distribution of any t — 1 shares is
independent of the secret.

Note: need p to be larger than the number of parties n.



Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f),s, =f(2),..,s; =f(i),..,sp,=f(n)
Correctness: via Vandermonde matrices.

Let’s look at shares of parties Py, P,, ..., P;.

S11 r1 1 1 ... 1317 b -
S2 1 2 22 .. 2921 o
ss{=11 3 3% .. 31| ay |[(modp)
Lsed L1 ¢ 2 Lttt lap .

t-by-t Vandermonde matrix which is invertible



Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f(1),s2 = f(2), .50 = (D), )80 = f(0)

Correctness: Alternatively, Lagrange interpolation gives
an explicit formula that recovers b.

b= £(0) =zt:f(i)< ] +=5)
i=1 l

1<j<t,j#i




Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f(1),s2 = f(2), .50 = (D), )80 = f(0)

Security:

Let’s look at shares of parties Py, P,, ..., Ps_1.

- S1 1 1 1 1 1r b

So 1 2 22 Zt_l aq

s3 |=|1 3 32 3t-1 a, |(modp)
seqd 1 t—1 -1 .. (t-D"la,_

(t — 1)-by-t Vandermonde matrix



Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f(1),s2 = f(2), .50 = (D), )80 = f(0)

Security: For every value of b there is a unique polynomial
with constant term b and shares s4, s,, ..., S¢_1.

- S1 1 1 1 1 1r b

So 1 2 22 Zt_l aq

s3 |=|1 3 32 3t-1 a, |(modp)
seqd 1 t—1 -1 .. (t-D"la,_

(t — 1)-by-t Vandermonde matrix



Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f(x)=ar_xt 1 +-+a;x+b
where a; are uniformly random mod p

s1=f(1),s2 = f(2), .50 = (D), )80 = f(0)

Security: For every value of b there is a unique polynomial
with constant term b and shares s4, s,, ..., S¢_1.

Corollary: for every value of the secret b is equally likely
given the shares s4, s5, ..., S¢—1. In other words, the secret b is
perfectly hidden given t — 1 shares.



Secure Multiparty Computation

[BenOr-Goldwasser-Wigderson’88, Chaum-Crepeau-Damgard’88, BenOr-Rabin’89]

o 0
Q —
N/ @
“@ Arithmetic circuit for F

1. Each party secret-shares their input on a degree-t polynomial.

// so, security against t corruptions

2. Proceed gate by gate, maintaining the invariant that the
parties holds a secret sharing of every wire value.

3. Exchange the output shares & reconstruct the output.



Secure Multiparty Computation

Key Insight: Can homomorphically compute on shares!

@Q MQ. N

b+b'| ~
S1 \ S 2 o

Addition gate: e«

Locally add shares




Secure Multiparty Computation

Key Insight: Can homomorphically compute on shares!

@Q -2”

X" \ - / bx1;7t' -
©:
s3’ A
Multiplication gate: e

Locally multiply shares




Multiplication

In general, after a single multiplication, the shares will
live on a degree-2t polynomial.

Need 2t + 1 shares to reconstruct.

We know that n > 2t, so the n shares together have enough
information to recover the product of the secrets!

What's more, we also know that this recovery process
IS a linear function of the shares.

bxb' = Z /11' SiSi’

for some publicly known coefficients A;.



Degree Reduction Protocol
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Multiplication gate: (3,837) ™

Locally multiply shares &
run a degree reduction
protocol.




Degree Reduction Protocol

Convert shares on a degree-2t polynomial into
shares on a degree-t polynomial

ldea: “homomorphically” compute the linear function
Y. A; * (1) on the local product shares.

1. Each party t-out-of-n

@Q Q@ shares s;xs;’ to all parties
A s

2. Each party computes a
S1 S92
X \ - / X linear combination of the
51 52 shares it receives using

“ 53 coefficients A;.

X
33,



This is the moral equivalent of
bootstrapping in FHE!

ldea: “homomorphically” compute the linear function
Y. A; * (1) on the local product shares.

1. Each party t-out-of-n

@Q Q’@ shares s;xs;’ to all parties
A s

2. Each party computes a
S1 S
X \ - / ><2, linear combination of the
51 52 shares it receives using

“ 53 coefficients ;.

X
83,



Secure Multiparty Computation

) (v
R-8 4

@ Arithmetic circuit for F

1. Each party secret-shares their input.

2. Proceed gate by gate:
ADD: locally add shares
MULT: locally mult shares and do degree reduction.

3. Exchange the output shares & reconstruct the output.

Communication Complexity «« #AND gates




Security Intuition

1. Any subset of t parties do not get any information
about other parties’ inputs from the input shares.

2. Security of the degree-reduction protocol: any
subset of t parties sees completely random
numbers

3. The output lives on a random polynomial of degree t
whose constant term is the circuit output. The shares,
therefore, reveal only the circuit output.



Threshold Decryption and Signing

Secret sharing is useful way beyond MPC.

An example: distributed storage of keys.

Another example, threshold decryption:
distributed storage of decryption key + non-interactive
distributed (or threshold) decryption



Threshold El Gamal

Public key: g~*
Secret key: x

| am paranoid about losing x so | share it among n servers.

| secret-share x into n shares x4, ..., x, s.t. 21 x; = x (mod q)

Threshold Decryption:

Given a ciphertext (g", g"*m), the servers each compute a
decryption share (g")*.

Multiplying the decryption shares gives us [[(g")* =
g"* which in turn gives us m after division.



Threshold Decryption and Signing

Secret sharing is useful way beyond MPC.

An example: distributed storage of keys.

Another example, threshold decryption:
distributed storage of decryption key + non-interactive
distributed (or threshold) decryption

Yet another example, threshold signing.



Share

(s

NIST Kick-Starts ‘Threshold Cryptography’ Development Effort

Establishing the emerging technique’s building blocks is a near-term focus.

July 07,2020

& MEDIA CONTACT

Chad Boutin
charles.boutin@nist.gov=
(301) 975-4261

s ORGANIZATIONS

Information Technology Laboratory
Computer Security Division
Cryptographic Technology Group

Security Test, Validation and
Measurement Group



PayPal to acquire cryptocurrency
security startup Curv

Romain Dillet @romaindillet / 9:44 AM EST * March 8, 2021 ] comment

B T<<T=L 7T—

Behind the scenes, Curv uses multi-party computation to handle private keys.
When you create a wallet, cryptographic secrets are generated on your device and
on Curv’s servers. Whenever you’re trying to initiate a transaction, multiple secrets

are used to generate a full public and private key.

Secrets are rotated regularly and you can’t do anything with just one secret. If
somebody steals an unsecured laptop, a hacker cannot access crypto funds with

the information stored on this device alone.



Coinbase to acquire leading
cryptographic security company,
Unbound Security

PN
Coinbase @
@NovBO'Sminread OOGQ E\J

Today, we’re announcing the next phase of our security journey with the
acquisition of Unbound Security. Based in Israel, it is a pioneer in a number

of cryptographic security technologies, including the emerging field of
secure multi-party computation (MPC), a highly advanced technology for

which Unbound Security’s co-founder, Yehuda Lindell, is a world leader.

Witlr titis acquisitior, Coibase TTot OlTly Zdills dCCess (0 SOIIE Of e worid's
most sophisticated cryptographic security experts, including Unbound
Security co-founder and current Vice President of Research and
Development, Guy Peer, who brings more than 20 years of experience in
cryptographic security, but also a presence in Israel, a well-established and
rapidly growing technology hub. This presence in Israel will add an
additional powerful prong to Coinbase’s global talent acquisition strategy,
following on closely to recent thrusts into engineering talent bases such as
India, Singapore and Brazil.

Crypto can’t grow without strong cryptography and strong security, but it

omputation/fulltext

alen neede to be user frlendly Secure multi- party computation is an



