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Security against Malicious (Active)
Adversaries



Secure Two-Party Comp: New Def

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator 𝑆𝐼𝑀! such that for any 𝑥
and 𝑦: 

(𝑆𝐼𝑀! 𝑥, 𝐹! 𝑥, 𝑦 , 𝐹(𝑥, 𝑦)) ≅ (𝑉𝑖𝑒𝑤!(𝑥, 𝑦), 𝐹(𝑥, 𝑦))

i.e. the joint distribution of the view and the output is correct

(possibly randomized) 𝐹 𝑥, 𝑦; 𝑟 = (𝐹! 𝑥, 𝑦; 𝑟 , 𝐹"(𝑥, 𝑦; 𝑟))



Issues to Handle
1. Input (In)dependence: A malicious party could choose 
her input to depend on Bob’s, something she cannot do in 
the ideal world.

2. Randomness: A malicious party could choose her 
“random string” in the protocol the way she wants, 
something she cannot do in the ideal world.

Example (on the board):  𝐹 𝑎, 𝑏 , 𝑥 = (⊥, 𝑎𝑥 + 𝑏)

Example (on the board):  our 𝑂𝑇 protocol

4. Deviate from Other Protocol Instructions.

3. (Un)fairness: A malicious party could block the honest 
party from learning the output, while learning it herself. 

Cleve’s theorem: this is unavoidable



New (Less) Ideal Model

𝒙 𝒚

𝑭(𝒙
, 𝒚)

𝑭(𝒙, 𝒚)

𝑎𝑏𝑜
𝑟𝑡?

If not 𝑎𝑏𝑜𝑟𝑡:



The “GMW Compiler”

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming one-way functions exist, there is a general 
way to transform any semi-honest secure protocol 
computing a (possibly randomized) function F into a 
maliciously secure protocol for F.



Input Independence

1. Input (In)dependence: A malicious party could choose 
her input to depend on Bob’s, something she cannot do in 
the ideal world.

Solution: Each party commits to their input in sequence, 
and provides a zero-knowledge proof of knowledge of 
the underlying input.



Solution: Coin-Tossing Protocol

2. Randomness: A malicious party could choose her 
“random string” in the protocol the way she wants, 
something she cannot do in the ideal world.

Def: Realize the functionality 𝐹 1", 1" = (𝑟, 𝐶𝑜𝑚(𝑟)).

𝐶𝑜𝑚(𝑟#)

𝑟$

Output 𝑟 = 𝑟#⊕ 𝑟$ Output (𝐶𝑜𝑚 𝑟# , 𝑟$)



Zero Knowledge Proofs

4. Deviate from Other Protocol Instructions.

Solution: Each message of each party is a deterministic
function of their input, their random coins and messages 
from party B. 

When party A sends a message 𝑚 = 𝑚(𝑥!, 𝑟!, 𝑚𝑠𝑔%), they 
also prove in zero-knowledge that they did so correctly. 
That is, they prove in ZK the following NP statement:

𝑚,𝑚𝑠𝑔%, 𝑋𝐶𝑜𝑚, 𝑅𝐶𝑜𝑚 : ∃ 𝑥!, 𝑟! s.t.
𝑚 = 𝑚 𝑥!, 𝑟!, 𝑚𝑠𝑔% ∧ 𝑋𝐶𝑜𝑚 = Com 𝑥! ∧

𝑅𝐶𝑜𝑚 = Com 𝑟!



Optimizations



Optimization 1: Preprocessing OTs

Random OT tuple (or AND tuple, or Beaver tuple 
after D. Beaver): Alice has (𝛼, 𝛾!) and Bob has 
(𝛽, 𝛾") which are random s.t. 𝜸𝒂⊕𝜸𝒃 = 𝜶𝜷.

Theorem: Given O(1) many random OT tuples, we 
can do OT with information-theoretic security, 
exchanging O(1) bits.



Optimization 2: OT Extension

Theorem 
[Beaver’96, Ishai-Kushilevitz-Nissim-Pinkas’03]:

Given O(𝜆) many random OT tuples, we can 
generate 𝑛 OT tuples exchanging O(𝑛) bits --- as 
opposed to the trivial O(𝑛𝜆) bits --- and using only 
symmetric-key crypto. 



Complexity of the 2-party solution

Number of OT protocol invocations = 2 ∗ #𝐴𝑁𝐷 gates  

Number of rounds =  AND-depth of the circuit

Communication in bits =  
𝑂(#𝐴𝑁𝐷 6 𝜆 + #𝑜𝑢𝑡𝑝𝑢𝑡𝑠)

Can be made into O(1) rounds: Yao’s garbled circuits

Can be made into O(𝝀 #inputs) using FHE: but FHE is 
computationally more expensive concretely.

Can be made into O(#inputs 6 𝝀): Yao’s garbled circuits



Secure Multi Party Computation
w/ Information-theoretic security



Secure Multi-party Computation
x y

z

GMW protocol: 𝒏 − 𝟏 out of 𝒏 corruptions

The Goldreich-Micali-Wigderson Protocol for 𝑛 parties with < 𝑛
corruptions, using Oblivious Transfer 
(which can only be computationally secure)



Secure Multi-party Computation
x y

z

TODAY: HONEST MAJORITY

Information-theoretically Secure Protocols for 𝒏 parties 
with < 𝒏/𝟐 corruptions

[BenOr-Goldwasser-Wigderson’88, Chaum-Crepeau-Damgard’88, BenOr-Rabin’89]



AN EXAMPLE

SACHA

Y1

Y1 = R+S1
mod p

LALI

Y2 = Y1+S2
mod p

Y2

APARNA

Y3 = Y2+S3 
mod p

Yn

…
VINOD

Yn = Yn-1+Sn 
mod p

𝒀𝒏 − 𝑹 = ∑𝒊#𝟏𝒏 𝑺𝒊 mod p = ∑𝒊#𝟏𝒏 𝑺𝒊

COMPUTING THE AVERAGE SALARY IN THIS ROOM

Yn-1

Is this secure?

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝒏

(if p large enough)



IT-Secure MPC with Honest Majority

Theorem [BenOr-Goldwasser-Wigderson’88, 
Chaum-Crepeau-Damgard’88]: 

Any 𝑛-party computation problem can be solved 
with information-theoretic security as long < %

&
parties collude. 

Key Tool: Shamir’s Secret Sharing



Key Tool: Secret-Sharing
secret b

share 𝑠! share 𝑠" share 𝑠# share 𝑠$ share 𝑠%

𝑃! 𝑃" 𝑃# 𝑃$ 𝑃%Dealer

o Threshold (or t-out-of-n) SS [Shamir’79, Blakley’79]: 

q Any “authorized” subset of players can recover b.

q No other subset of players has any info about b.

“authorized” subset = has size ≥ t. 

…



𝒏-out-of-𝒏 Secret Sharing
secret b ∈ 𝑍&

share 𝑠!: random 

share 𝑠":  random 

share 𝑠#: random 

share 𝑠$: random

share 𝑠% = 𝑏 − (𝑠! + 𝑠" +⋯+ 𝑠%'!) mod p

𝑃! 𝑃" 𝑃# 𝑃$ 𝑃%Dealer

…

…



𝟏-out-of-𝒏 Secret Sharing
secret b ∈ 𝑍&

share 𝑠! = b

share 𝑠" = b

share 𝑠# = b

share 𝑠$ = b

share 𝑠% = 𝑏

𝑃! 𝑃" 𝑃# 𝑃$ 𝑃%Dealer

…

…



𝟐-out-of-𝒏 Secret Sharing?
secret b ∈ 𝑍&

Here is a solution.

Repeat for every two-person subset {𝑃0, 𝑃1}:
• Generate a 2-out-of-2 secret sharing (𝑠0, 𝑠1) of b.
• Give 𝑠0 to 𝑃0 and 𝑠1 to 𝑃1

𝑃! 𝑃" 𝑃# 𝑃$ 𝑃%Dealer

…

What is the size of shares each party gets?

How does this scale to t-out-of-n?



Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!



Shamir’s 2-out-of-n Secret Sharing

𝒔𝟏 𝒔𝟐

𝒔𝟑
secret 𝑏

(1, 𝑠!)
(2, 𝑠")

(3, 𝑠#)

Each share 𝑠0 is truly 
random (independent of 

secret b) 
Any two shares uniquely
determine b.

random line through (0,b)



Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose 
constant term is the secret 𝑏.

𝑓 𝑥 = 𝑎𝑥 + 𝑏 where 𝑎 is uniformly random mod 𝑝

2.   Compute the shares:
𝑠# = 𝑓 1 , 𝑠$ = 𝑓 2 ,… , 𝑠0 = 𝑓 𝑖 , … , 𝑠" = 𝑓 𝑛

Correctness: can recover secret from any two shares. 

Proof: Parties 𝑖 and 𝑗, given shares 𝑠0 = 𝑎𝑖 + 𝑏 and 𝑠1 =
𝑎𝑗 + 𝑏 can solve for 𝑏 (= 12!302"

130 ).



Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose 
constant term is the secret 𝑏.

𝑓 𝑥 = 𝑎𝑥 + 𝑏 where 𝑎 is uniformly random mod 𝑝

2.   Compute the shares:
𝑠# = 𝑓 1 , 𝑠$ = 𝑓 2 ,… , 𝑠0 = 𝑓 𝑖 , … , 𝑠" = 𝑓 𝑛

Security: any single party has no information about the secret.  

Proof: Party 𝑖’s share 𝑠0 = 𝑎 ∗ 𝑖 + 𝑏 is uniformly random, 
independent of 𝑏, as 𝑎 is random and so is 𝑎 ∗ 𝑖.



Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1) 
polynomial (mod p) whose constant term is the secret 𝑏.

𝑓 𝑥 = 𝑎43#𝑥43# +⋯+ 𝑎#𝑥 + 𝑏
where 𝑎0 are uniformly random mod 𝑝

2.   Compute the shares:
𝑠# = 𝑓 1 , 𝑠$ = 𝑓 2 ,… , 𝑠0 = 𝑓 𝑖 , … , 𝑠" = 𝑓 𝑛

Correctness: can recover secret from any 𝑡 shares. 

Security: the distribution of 𝑎𝑛𝑦 𝑡 − 1 shares is 
independent of the secret.

Note: need p to be larger than the number of parties n. 



𝑠#
𝑠$
𝑠5
…
𝑠4

=

1 1 1 … 1
1 2 2$ … 243#
1 3 3$ … 343#
1 … … … …
1 𝑡 𝑡$ … 𝑡43#

𝑏
𝑎#
𝑎$
…
𝑎43#

(mod 𝑝)

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎43#𝑥43# +⋯+ 𝑎#𝑥 + 𝑏
where 𝑎0 are uniformly random mod 𝑝

𝑠# = 𝑓 1 , 𝑠$ = 𝑓 2 ,… , 𝑠0 = 𝑓 𝑖 , … , 𝑠" = 𝑓 𝑛

Correctness: via Vandermonde matrices.

Let’s look at shares of parties 𝑃#, 𝑃$, … , 𝑃4.

𝑡-by-𝑡 Vandermonde matrix which is invertible



Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎43#𝑥43# +⋯+ 𝑎#𝑥 + 𝑏
where 𝑎0 are uniformly random mod 𝑝

𝑠# = 𝑓 1 , 𝑠$ = 𝑓 2 ,… , 𝑠0 = 𝑓 𝑖 , … , 𝑠" = 𝑓 𝑛

Correctness: Alternatively, Lagrange interpolation gives 
an explicit formula that recovers b. 

𝑏 = 𝑓 0 =^
06#

4

𝑓(𝑖) _
#7174,190

−𝑥1
𝑥0 − 𝑥1



𝑠#
𝑠$
𝑠5
…
𝑠43#

=

1 1 1 … 1
1 2 2$ … 243#
1 3 3$ … 343#
1 … … … …
1 𝑡 − 1 (𝑡 − 1)$ … (𝑡 − 1)43#

𝑏
𝑎#
𝑎$
…
𝑎43#

(mod 𝑝)

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎43#𝑥43# +⋯+ 𝑎#𝑥 + 𝑏
where 𝑎0 are uniformly random mod 𝑝

𝑠# = 𝑓 1 , 𝑠$ = 𝑓 2 ,… , 𝑠0 = 𝑓 𝑖 , … , 𝑠" = 𝑓 𝑛

Security:

Let’s look at shares of parties 𝑃#, 𝑃$, … , 𝑃43#.

(𝑡 − 1)-by-𝑡 Vandermonde matrix



𝑠#
𝑠$
𝑠5
…
𝑠43#

=

1 1 1 … 1
1 2 2$ … 243#
1 3 3$ … 343#
1 … … … …
1 𝑡 − 1 (𝑡 − 1)$ … (𝑡 − 1)43#

𝑏
𝑎#
𝑎$
…
𝑎43#

(mod 𝑝)

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎43#𝑥43# +⋯+ 𝑎#𝑥 + 𝑏
where 𝑎0 are uniformly random mod 𝑝

𝑠# = 𝑓 1 , 𝑠$ = 𝑓 2 ,… , 𝑠0 = 𝑓 𝑖 , … , 𝑠" = 𝑓 𝑛

Security: For every value of 𝑏 there is a unique polynomial 
with constant term 𝑏 and shares 𝑠#, 𝑠$, … , 𝑠43#.

(𝑡 − 1)-by-𝑡 Vandermonde matrix



Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

𝑓 𝑥 = 𝑎43#𝑥43# +⋯+ 𝑎#𝑥 + 𝑏
where 𝑎0 are uniformly random mod 𝑝

𝑠# = 𝑓 1 , 𝑠$ = 𝑓 2 ,… , 𝑠0 = 𝑓 𝑖 , … , 𝑠" = 𝑓 𝑛

Security: For every value of 𝑏 there is a unique polynomial 
with constant term 𝑏 and shares 𝑠#, 𝑠$, … , 𝑠43#.

Corollary: for every value of the secret 𝑏 is equally likely 
given the shares 𝑠#, 𝑠$, … , 𝑠43#. In other words, the secret 𝑏 is 
perfectly hidden given 𝑡 − 1 shares.



Secure Multiparty Computation

x y

z

[BenOr-Goldwasser-Wigderson’88, Chaum-Crepeau-Damgard’88, BenOr-Rabin’89]

1. Each party secret-shares their input on a degree-t polynomial.

×
+

Arithmetic circuit for F

2. Proceed gate by gate, maintaining the invariant that the 
parties holds a secret sharing of every wire value.  

3. Exchange the output shares & reconstruct the output.

// so, security against t corruptions



𝑏

𝒔𝟏 𝒔𝟐

𝒔𝟑
𝑏

(1, 𝑠!)
(2, 𝑠")

(3, 𝑠#)

Addition gate:

Locally add shares

b′

𝒔𝟏′ 𝒔𝟐′

𝒔𝟑′

𝑏′
(1, 𝑠!′)

(2, 𝑠"′)
(3, 𝑠#′)

𝑏 + 𝑏′
+ +

+

Secure Multiparty Computation
Key Insight: Can homomorphically compute on shares!



𝑏

𝒔𝟏 𝒔𝟐

𝒔𝟑 (1, 𝑠!)
(2, 𝑠")

(3, 𝑠#)

Multiplication gate:

Locally multiply shares

b′

𝒔𝟏′ 𝒔𝟐′

𝒔𝟑′
𝑏

𝑏′
(1, 𝑠!′)

(2, 𝑠"′)
(3, 𝑠#′)

b×𝑏′× ×

×

de
gr

ee
-2

 p
oly

 th
ro

ug
h 

(0
,𝑠×
𝑠′)

Secure Multiparty Computation
Key Insight: Can homomorphically compute on shares!



Multiplication
In general, after a single multiplication, the shares will 

live on a degree-2t polynomial. 

We know that 𝑛 > 2𝑡, so the n shares together have enough
information to recover the product of the secrets! 

What’s more, we also know that this recovery process 
is a linear function of the shares. 

b×b′ = ∑𝜆' 𝑠'𝑠'′

for some publicly known coefficients 𝜆7.

Need 2𝑡 + 1 shares to reconstruct. 



Degree Reduction Protocol

𝑏

𝒔𝟏 𝒔𝟐

𝒔𝟑

b′

𝒔𝟏′ 𝒔𝟐′

𝒔𝟑′

𝑏×𝑏′× ×

×

de
gr

ee
-2

 p
oly

 th
ro

ug
h 

(0
,𝑠×
𝑠′)

(1, 𝑠!′′)

(2, 𝑠"′′)

(3, 𝑠#′′)

𝒔𝟏′′ 𝒔𝟐′′

𝒔𝟑′′

Fortunately:

b×𝑏: =^𝜆0 𝑠0𝑠0′

Multiplication gate:

Locally multiply shares & 
run a degree reduction 
protocol.



𝑠

𝒔𝟏 𝒔𝟐

𝒔𝟑

𝑠′

𝒔𝟏′ 𝒔𝟐′

𝒔𝟑′

× ×

×

Degree Reduction Protocol
Convert shares on a degree-2t polynomial into 

shares on a degree-t polynomial

1. Each party t-out-of-n 
shares 𝑠0×𝑠0′ to all parties   

2. Each party computes a 
linear combination of the 
shares it receives using 
coefficients 𝜆0.

Idea: “homomorphically” compute the linear function 
∑𝜆0 ∗ (f) on the local product shares.



𝑠

𝒔𝟏 𝒔𝟐

𝒔𝟑

𝑠′

𝒔𝟏′ 𝒔𝟐′

𝒔𝟑′

× ×

×

1. Each party t-out-of-n 
shares 𝑠0×𝑠0′ to all parties   

2. Each party computes a 
linear combination of the 
shares it receives using 
coefficients 𝜆0.

Idea: “homomorphically” compute the linear function 
∑𝜆0 ∗ (f) on the local product shares.

This is the moral equivalent of 
bootstrapping in FHE!



Secure Multiparty Computation
x y

z

1. Each party secret-shares their input.

×
+

Arithmetic circuit for F

2. Proceed gate by gate: 
ADD: locally add shares 
MULT: locally mult shares and do degree reduction.

3. Exchange the output shares & reconstruct the output.

Communication Complexity ∝ #AND gates



Security Intuition

1. Any subset of t parties do not get any information 
about other parties’ inputs from the input shares.

2. Security of the degree-reduction protocol: any 
subset of t parties sees completely random 
numbers

3. The output lives on a random polynomial of degree t 
whose constant term is the circuit output. The shares, 
therefore, reveal only the circuit output.



Threshold Decryption and Signing
Secret sharing is useful way beyond MPC.

An example: distributed storage of keys.

Another example, threshold decryption: 
distributed storage of decryption key + non-interactive 
distributed (or threshold) decryption



Threshold El Gamal
Public key: 𝑔;

Secret key: 𝑥

I am paranoid about losing x so I share it among n servers.

I secret-share x into n shares 𝑥#, … , 𝑥" s.t. ∑06#" 𝑥0 = 𝑥 (mod 𝑞)

Threshold Decryption:

Multiplying the decryption shares gives us ∏(𝑔<);! =
𝑔<; which in turn gives us 𝑚 after division.

Given a ciphertext (𝑔<, 𝑔<;𝑚), the servers each compute a 
decryption share (𝑔<);! .



Threshold Decryption and Signing
Secret sharing is useful way beyond MPC.

An example: distributed storage of keys.

Another example, threshold decryption: 
distributed storage of decryption key + non-interactive 
distributed (or threshold) decryption

Yet another example, threshold signing.








