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TODAY: 
Secure Two-Party and Multi-Party 

Computation



Secure Two-Party Computation

Bob

Input: 𝒚

• Alice and Bob want to compute 𝐹 𝑥, 𝑦 .

• Alice should not learn anything more than 𝑥 and 𝐹 𝑥, 𝑦 .

Alice

Input: 𝒙

• Bob should not learn anything more than 𝑦 and 𝐹 𝑥, 𝑦 .

Semi-honest Security:



Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙REAL 
WORLD:

IDEAL 
WORLD: 𝒙

𝒚

𝑭(𝒙
, 𝒚) 𝑭(𝒙, 𝒚)

≈



Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator 𝑆𝐼𝑀! such that for any 𝑥
and 𝑦: 

𝑆𝐼𝑀!(𝑥, 𝐹(𝑥, 𝑦)) ≅ 𝑉𝑖𝑒𝑤!(𝑥, 𝑦)



Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator 𝑆𝐼𝑀" such that for any 𝑥
and 𝑦: 

𝑆𝐼𝑀"(𝑦, 𝐹(𝑥, 𝑦)) ≅ 𝑉𝑖𝑒𝑤"(𝑥, 𝑦)



Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any two-party computation problem.



Tool: Oblivious Transfer (OT)

Receiver

Choice bit: 𝒃
𝑥#
𝑥$

• Sender holds two bits 𝑥# and 𝑥$.

• Receiver holds a choice bit 𝑏.

• Receiver should learn 𝑥%, sender should learn nothing. 

Sender



How to Compute Arbitrary Functions

+X

X

For us, programs = functions = Boolean circuits with XOR 
(+𝑚𝑜𝑑 2) and AND (×𝑚𝑜𝑑 2) gates.

Want: If you can compute XOR and AND in the appropriate 
sense, you can compute everything.

𝑎 𝑏 𝑎′ 𝑏′

𝑎𝑏(𝑎′ + 𝑏′)

𝑎𝑏 𝑎& + 𝑏′



Basic Secret-Sharing

A secret (bit) 𝑠 is shared between Alice and Bob if Alice 
holds a bit 𝛼 and Bob holds a bit 𝛽 s.t. 𝛼 ⊕ 𝛽 = 𝑠

𝛼 and 𝛽 are (typically) individually random, so neither 
Alice nor Bob knows any information about 𝑠. Together, 
however, they can recover 𝑠.



Recap: OT ⇒ Secret-Shared-AND
𝑎 ∈ {0,1} 𝑏 ∈ {0,1}Alice gets random 𝛾, Bob gets 

random 𝛿 s.t. 𝛾 ⨁𝛿 = ab.

𝑥# = 𝛾
𝑥$ = 𝑎 ⨁ 𝛾

Choice bit 𝑏
Run an OT protocol

Bob gets 𝒙𝟏𝒃 + 𝒙𝟎 𝟏⨁𝒃

Output: 𝛾 Output: 𝛿

= (𝒙𝟏⨁ 𝒙𝟎)𝒃 + 𝒙𝟎 = 𝑎𝑏⨁𝛾

Alice outputs 𝛾.

≔ 𝛿



+X

X

How to Compute Arbitrary Functions
Secret-sharing Invariant: For each wire of the circuit, Alice 
and Bob each have a bit whose XOR is the value at the wire.

𝑎
0 𝑏

0 𝑎′
𝑏′0
0

Base Case: Input wires

XOR gate: 
Locally XOR the shares

𝑎′
𝑏′

⊕
⊕

AND gate??



Recap: XOR gate
Alice has 𝛼 and Bob has 𝛽 s.t.

+

𝑥 𝑥′

𝑥 ⊕ 𝑥′

𝛼 ⊕ 𝛽 = 𝑥

Alice has 𝛼′ and Bob has 𝛽′ s.t.
𝛼′ ⊕ 𝛽′ = 𝑥′

Alice computes 𝜶⊕𝜶′ and Bob computes 𝜷⊕𝜷#.

So, we have: (𝛼 ⊕ 𝛼′ ) ⊕ 𝛽 ⊕ 𝛽#
= 𝛼 ⊕ 𝛽 ⊕ 𝛼#⊕𝛽# = x⊕ x′



AND gate
Alice has 𝛼 and Bob has 𝛽 s.t.

X

𝑥 𝑥′

𝑥𝑥′

𝛼 ⊕ 𝛽 = 𝑥

Alice has 𝛼′ and Bob has 𝛽′ s.t.
𝛼′ ⊕ 𝛽′ = 𝑥′

Desired output (to maintain invariant):  
Alice wants 𝜶′′ and Bob wants 𝜷′′ s.t. 𝜶##⊕𝜷## = 𝑥𝑥′



AND gate

X

𝑥 𝑥′

𝑥𝑥′
𝑥𝑥# = (𝛼 ⊕ 𝛽)(𝛼′ ⊕ 𝛽′)

= 𝛼𝛼′ ⊕ 𝛽𝛼′ ⊕ 𝛼𝛽′ ⊕ 𝛽𝛽′

𝛽𝛼′
ss-AND

𝛾$𝛾%

𝛾%
⊕
𝛾$

𝛽′𝛼
ss-AND

𝛿$𝛿%

𝛿%
⊕
𝛿$

𝛼## = 𝛼𝛼′ ⊕ 𝛾% ⊕𝛿% 𝛽## = 𝛽𝛽′ ⊕ 𝛾$ ⊕𝛿$



+X

X

How to Compute Arbitrary Functions
Secret-sharing Invariant: For each wire of the circuit, Alice 
and Bob each have a bit whose XOR is the value at the wire.

𝑎 𝑏 𝑎′ 𝑏′

Finally, Alice and Bob exchange the shares at the output 
wire, and XOR the shares together to obtain the output.

𝛼

𝛽
𝛼 ⊕ 𝛽 = 𝑎𝑏(𝑎&⊕𝑏&)



Security: Intuition
Imagine that the parties have access to an ss-AND angel.

𝒂
𝒃

𝛾 𝛿

𝛾 ⨁𝛿 = ab



Security: Intuition
Imagine that the parties have access to an ss-AND angel.

+X

X

𝑎
0 𝑏

0 𝑎′
𝑏′0
0

Simulator for Alice’s view:

𝑎′
𝑏′

Input wires: can be 
simulated given Alice’s input

XOR gate: simulate given 
Alice’s input shares 



Security: Intuition

+X

X

𝑎
0 𝑏

0 𝑎′
𝑏′0
0

Simulator for Alice’s view:

𝑎′
𝑏′

AND gate: simulate given Alice’s input shares & 
outputs from the ss-AND angel.

Alice’s share 
= 𝑎 @ 0
+ 𝑠𝑠𝑎𝑛𝑑 𝑎, 𝑏
+ 𝑠𝑠𝑎𝑛𝑑(0,0)
𝛾%&'()
𝛿%&'()

𝛾%&'() and 𝛿%&'() are 
random, independent of 𝑏



Security: Intuition

+X

X

𝑎
0 𝑏

0 𝑎′
𝑏′0
0

Simulator for Alice’s view:

𝑎′
𝑏′

Output wire: need to know both Alice and Bob’s output 
shares.

Bob’s output share = Alice’s 
output share ⊕ function output

Simulator knows the 
function output, and
can compute Bob’s 
output share given 
Alice’s output share. 



We showed: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any two-party computation problem.



In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any multi-party computation problem.



MPC Outline
Secret-sharing Invariant: For each wire of the circuit, the n 
parties have a bit each, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares 𝛼*, … , 𝛼+ s.t. ⊕',*
+ 𝛼' = 𝑎

and 𝛽*, … , 𝛽+ s.t. ⊕',*
+ 𝛽' = 𝑏, compute the shares of the 

output of the XOR gate:  
𝛼* + 𝛽*, … , 𝛼+ + 𝛽+

AND gate: given input shares as above, compute the shares 
of the output of the XOR gate:  

𝑜*, … , 𝑜+ s. t ⊕',*
+ 𝑜' = 𝑎𝑏 Exercise!



Optimization 1: Preprocessing OTs

Random OT tuple (or AND tuple, or Beaver tuple 
after D. Beaver): Alice has (𝛼, 𝛾!) and Bob has 
(𝛽, 𝛾") which are random s.t. 𝜸𝒂⊕𝜸𝒃 = 𝜶𝜷.

Theorem: Given O(1) many random OT tuples, we 
can do OT with information-theoretic security, 
exchanging O(1) bits.



Optimization 2: OT Extension

Theorem 
[Beaver’96, Ishai-Kushilevitz-Nissim-Pinkas’03]:

Given O(𝜆) many random OT tuples, we can 
generate 𝑛 OT tuples exchanging O(𝑛) bits --- as 
opposed to the trivial O(𝑛𝜆) bits --- and using only 
symmetric-key crypto. 



Complexity of the 2-party solution

Number of OT protocol invocations = 2 ∗ #𝐴𝑁𝐷 gates  

Number of rounds =  AND-depth of the circuit

Communication in bits =  
𝑂(#𝐴𝑁𝐷 K 𝜆 + #𝑜𝑢𝑡𝑝𝑢𝑡𝑠)

Can be made into O(1) rounds: Yao’s garbled circuits

Can be made into O(𝝀 #inputs) using FHE: but FHE is 
computationally more expensive concretely.

Can be made into O(#inputs K 𝝀): Yao’s garbled circuits



Next class: 
Secret-Sharing and Information-

Theoretically Secure MPC


