MIT 6.875

Foundations of Cryptography
Lecture 22

TODAY:
Secure Two-Party and Multi-Party
Computation

Secure Two-Party Computation

Input: x Input: y
L — §

Alice Bob

« Alice and Bob want to compute F(x, y).

Semi-honest Security:

 Alice should not learn anything more than x and F(x, y).

« Bob should not learn anything more than y and F(x, y).

Secure Two-Party Computation

REAL Input: x
WORLD:

Secure Two-Party Computation

Input: x

{) «—

Alice

There exists a PPT simulator SIM, such that for any x
and y:

SIM,(x, F(x,y)) = View,(x,y)

Secure Two-Party Computation

Input: x

{) «—

Alice

There exists a PPT simulator SIMg such that for any x
and y:

SIMg(y,F(x,y)) = Viewg(x,y)

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any two-party computation problem.

Y

Tool: Oblivious Transfer (OT)

Choice bit: b

Sender Receiver

« Sender holds two bits xy and x;.

 Receiver holds a choice bit b.

* Receiver should learn x;, sender should learn nothing.

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR
(+ mod 2) and AND (X mod 2) gates.

ab(a'+b') £ 8
(Jﬁ
ab] a + b
()

|
{la b@ {) a b’@

Want: If you can compute XOR and AND in the appropriate
sense, you can compute everything.

Basic Secret-Sharing

A secret (bit) s is shared between Alice and Bob if Alice
holds a bit @ and Bob holdsabitfst.a@® f = s

a and [are (typically) individually random, so neither

Alice nor Bob knows any information about s. Together,
however, they can recover s.

Recap: OT = Secret-Shared-AND

Alice gets random y, Bob gets
random d s.t.y @ 6 = ab.

Output: y Output: &
— Run an OT protocol
x1=a®y

Alice outputs y.
Bob gets x1b + xo(1®b) = (x1 D x9)b + x9g = ab®Dy =6

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice
and Bob each have a bit whose XOR is the value at the wire.

XOR gate:

AND gate?? h Locally XOR the shares
X
al

Base Case: Input wires

Recap: XOR gate

Alice has a and Bob has f s.t. x D x
a@PDp=x | +

Alice has a’ and Bob has ' s.t.
al @ ﬁl — xl

Alice computes a @ a’ and Bob computes 8 @ B'.

So,we have: (a D a')D (B D B)
=(aDp) D@ D) =xBX

AND gate

Alice has a and Bob has f s.t. -
a@Dpf =x | X

Alice has a’ and Bob has ' s.t.
al @ ﬁl — xl

Desired output (to maintain invariant):
Alice wants a’’ and Bob wants B s.t. a'’ @ B”

= XX

AND gate

XX
xx' = (a @ B)(a D B) r)lh

=ad' @D va ® 5, ©LP 1
L o
Vb

il

a”:aa,@ya@ga ﬁ,’:ﬁﬁ’@yb@5b

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice
and Bob each have a bit whose XOR is the value at the wire.

Finally, Alice and Bob exchange the shares at the output
wire, and XOR the shares together to obtain the output.

ﬁ'“ a®p =ab(d ® b
X ® B

Security: Intuition

Imagine that the parties have access to an ss-AND angel.

Security: Intuition

Imagine that the parties have access to an ss-AND angel.

Simulator for Alice’s view: XOR gate: simulate given
Alice’s input shares

Y g

Input wires: can be
simulated given Alice’s input

Security: Intuition

Simulator for Alice’s view:

AND gate: simulate given Alice’s input shares &
outputs from the ss-AND angel.

Alice’s share m ,
=a-(a ﬂ

|
T Yalice
|
5alice +

{l a 0 a 0

Yalice and Salice are
random, independent of b

Security: Intuition

Simulator for Alice’s view:

Output wire: need to know both Alice and Bob’s output
shares.

Bob’s output share = Alice’s
output share @ function output X a {)
I

Simulator knows the
function output, and +
can compute Bob’s [I

output share given dba O a 0
Alice’s output share.

We showed: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any two-party computation problem.

In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any multi-party computation problem.

.

Y

MPC Outline

Secret-sharing Invariant: For each wire of the circuit, the n
parties have a bit each, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares (a4, ...,a,) st. D, a; = a
and (B4, ..., Bn) s-t. @i, B; = b, compute the shares of the
output of the XOR gate:

(al + 1811 ey Up + :Bn)

AND gate: given input shares as above, compute the shares
of the output of the XOR gate:

(01, ...,0,) S. t DI, 0; = ab Exercise!

Optimization 1: Preprocessing OTs

Random OT tuple (or AND tuple, or Beaver tuple
after D. Beaver): Alice has (a, y,) and Bob has

(f,ys) which are randoms.t. y, © vy, = ap.

Theorem: Given O(1) many random OT tuples, we
can do OT with information-theoretic security,
exchanging O(1) bits.

Optimization 2: OT Extension

Theorem
[Beaver’96, Ishai-Kushilevitz-Nissim-Pinkas’03]:

Given O(A) many random OT tuples, we can
generate n OT tuples exchanging O(n) bits --- as

opposed to the trivial O(nA) bits --- and using only
symmetric-key crypto.

Complexity of the 2-party solution

Number of OT protocol invocations = 2 * #AND gates
Can be made into O(#inputs - A): Yao’s garbled circuits

Number of rounds = AND-depth of the circuit

Can be made into O(1) rounds: Yao’s garbled circuits

Communication in bits =
O(#AND - A + #outputs)

Can be made into O(A #inputs) using FHE: but FHE is
computationally more expensive concretely.

Next class:
Secret-Sharing and Information-
Theoretically Secure MPC

