
MIT 6.875

Lecture 21
Foundations of Cryptography

TODAY: Oblivious Transfer and
Private Information Retrieval

Basic Problem: Database Access

Client

Index: i

0
1

2
3
4
5

6
7

𝑥!
𝑥"
𝑥#
𝑥$
𝑥%
𝑥&

𝑥'
𝑥(

Server

Database D

Correctness: Client gets 𝐷[𝑖].

Privacy (for client): Server gets no information about 𝑖.

Here is a “solution”. The server sends the DB to the client.Two ways to overcome the triviality

Oblivious Transfer (OT)
Add’l property: server privacy

Private Information Retrieval (PIR)
Add’l property: succinctness

Symmetric PIR =
Succinctness +
Server privacy

Oblivious Transfer (OT)

Receiver

Choice bit: 𝒃
𝑥!
𝑥"

• Sender holds two bits 𝑥! and 𝑥".

• Receiver holds a choice bit 𝑏.

• Receiver should learn 𝑥), sender should learn nothing.
(We will consider honest-but-curious adversaries; formal
definition in a little bit…)

Sender

Why OT? The Dating Problem
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice and Bob want to

compute the AND 𝛼 ∧ 𝛽.

Why OT? The Dating Problem
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice and Bob want to

compute the AND 𝛼 ∧ 𝛽.

𝑥! = 0
𝑥" = 𝛼

Choice bit 𝑏 = 𝛽
Run an OT protocol

Bob gets 𝛼 if 𝛽=1, and 0 if 𝛽=0

Here is a way to write the OT selection function: 𝒙𝟏𝒃 + 𝒙𝟎 𝟏 − 𝒃

which, in this case is = 𝛼𝛽.

The Billionaires’ Problem
Net worth:

$X
Net worth:

$Y

Who is richer?

The Billionaires’ Problem

𝑋 𝑌

𝑓(𝑋, 𝑌) = 1
if and only if 𝑋 > 𝑌

Unit Vector 𝑢4 = 1 in the 𝑋56
location and 0 elsewhere

10 0 0 ……

Vector 𝑣7 = 1 from the (𝑌 + 1)56
location onwards

10 1 1… 1 1 1

𝒇 𝑿, 𝒀 = 𝒖𝑿, 𝒗𝒀 =>
𝒊;𝟏

𝑼

𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

Compute each AND individually and sum it up?

Detour: OT ⇒ Secret-Shared-AND
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice gets random 𝛾, Bob gets

random 𝛿 s.t. 𝛾 ⨁𝛿 = 𝛼𝛽.

𝑥! = 𝛾
𝑥" = 𝛼⨁ 𝛾

Choice bit 𝑏 = 𝛽
Run an OT protocol

Bob gets 𝒙𝟏𝒃 + 𝒙𝟎 𝟏⨁𝒃

Output: 𝛾 Output: 𝛿

= (𝒙𝟏⨁ 𝒙𝟎)𝒃 + 𝒙𝟎 = 𝛼𝛽⨁𝛾 ≔ 𝛿

Alice outputs 𝛾.

The Billionaires’ Problem
𝑓(𝑋, 𝑌) = 1

if and only if 𝑋 > 𝑌

Unit Vector 𝑢4

10 0 0 ……

Vector 𝑣7

10 1 1… 1 1 1

𝒇 𝑿, 𝒀 = 𝒖𝑿, 𝒗𝒀 =>
𝒊;𝟏

𝑼

𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

1. Alice and Bob run many OTs to get (𝛾=, 𝛿=) s.t.

𝛾=⨁𝛿= = 𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

2. Alice computes 𝛾 = ⨁= 𝛾= and Bob computes 𝛿 = ⨁= 𝛿=.

Check (correctness): 𝛾⨁𝛿 = 𝒖𝑿, 𝒗𝒀 = 𝒇 𝑿, 𝒀 .
3. Alice reveals 𝛾 and Bob reveals 𝛿.

The Billionaires’ Problem
𝑓(𝑋, 𝑌) = 1

if and only if 𝑋 > 𝑌

Unit Vector 𝑢4

10 0 0 ……

Vector 𝑣7

10 1 1… 1 1 1

𝒇 𝑿, 𝒀 = 𝒖𝑿, 𝒗𝒀 =>
𝒊;𝟏

𝑼

𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

1. Alice and Bob run many OTs to get (𝛾=, 𝛿=) s.t.

𝛾=⨁𝛿= = 𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

2. Alice computes 𝛾 = ⨁= 𝛾= and Bob computes 𝛿 = ⨁= 𝛿=.

Check (privacy): Alice & Bob get a bunch of random bits.

“OT is Complete”

Theorem (lec22-24): OT can solve not just love and
money, but any two-party (and multi-party) problem
efficiently (complexity prop. To circuit size of f).

OT Definition

Receiver

Choice bit: 𝒃
𝑥!
𝑥"

Receiver Security: Sender should not learn b.

Sender

Define Sender’s view 𝑉𝑖𝑒𝑤>(𝑥!, 𝑥", 𝑏) = her random coins
and the protocol messages.

OT Definition

Receiver

Choice bit: 𝒃
𝑥!
𝑥"

Receiver Security: Sender should not learn b.

Sender

There exists a PPT simulator 𝑆𝐼𝑀> such that for any
𝑥!,𝑥" and 𝑏:

𝑆𝐼𝑀&(𝑥', 𝑥() ≅ 𝑉𝑖𝑒𝑤&(𝑥', 𝑥(, 𝑏)

OT Definition

Receiver

Choice bit: 𝒃
𝑥!
𝑥"

Sender Security: Receiver should not learn 𝑥"?).

Sender

Define Receiver’s view 𝑉𝑖𝑒𝑤@(𝑥!, 𝑥", 𝑏) = his random coins
and the protocol messages.

OT Definition

Receiver

Choice bit: 𝒃
𝑥!
𝑥"

Sender Security: Receiver should not learn 𝑥"?).

Sender

There exists a PPT simulator 𝑆𝐼𝑀@ such that for any
𝑥!,𝑥" and 𝑏:

𝑆𝐼𝑀)(𝑏, 𝑥*) ≅ 𝑉𝑖𝑒𝑤)(𝑥', 𝑥(, 𝑏)

OT Protocol 1: Trapdoor Permutations

Pick 𝑁 = 𝑃𝑄 and
RSA exponent 𝑒.

𝑁, 𝑒

Choose random 𝑟) and
set 𝑠) = 𝑟)A mod 𝑁

For concreteness, let’s use the RSA trapdoor permutation.

Choice bit: 𝑏Input bits: (𝑥!, 𝑥")

Choose random 𝑠"?)
𝑠!, 𝑠"

𝑥!⨁𝐻𝐶𝐵 𝑟!
Compute 𝑟!, 𝑟" and
one-time pad 𝑥!, 𝑥"
using hardcore bits 𝑥"⨁𝐻𝐶𝐵 𝑟"

Bob can recover 𝑥)
but not 𝑥"?)

OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥!, 𝑥")

𝑠!, 𝑠"

𝑥!⨁𝐻𝐶𝐵 𝑟!

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

𝑥"⨁𝐻𝐶𝐵 𝑟"

Alice’s view is 𝑠!, 𝑠" one of which is chosen randomly
from 𝑍B∗ and the other by raising a random number to
the 𝑒-th power. They look exactly the same!

OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥!, 𝑥")

𝑠!, 𝑠"

𝑥!⨁𝐻𝐶𝐵 𝑟!

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

𝑥"⨁𝐻𝐶𝐵 𝑟"

Exercise: Show how to construct the simulator.

OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥!, 𝑥")

𝑠!, 𝑠"

𝑥!⨁𝐻𝐶𝐵 𝑟!

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

𝑥"⨁𝐻𝐶𝐵 𝑟"

Assuming Bob is semi-honest, he chose 𝑠"?) uniformly
at random, so the hardcore bit of 𝑠"?) = 𝑟"?)D is
computationally hidden from him.

OT from Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥!, 𝑥")

𝑠!, 𝑠"

𝑥!⨁𝐻𝐶𝐵 𝑟!

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

𝑥"⨁𝐻𝐶𝐵 𝑟"

Exercise: Show how to construct the simulator.

Many More Constructions of OT

Theorem: OT protocols can be constructed based
on the hardness of the Diffie-Hellman problem,
factoring, quadratic residuosity, LWE, elliptic curve
isogeny problem etc. etc.

Secure Two-Party Computation

Secure Two-Party Computation

Bob

Input: 𝒚

• Alice and Bob want to compute 𝐹 𝑥, 𝑦 .

• Alice should not learn anything more than 𝑥 and 𝐹 𝑥, 𝑦 .

Alice

Input: 𝒙

• Bob should not learn anything more than 𝑦 and 𝐹 𝑥, 𝑦 .

Semi-honest Security:

Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙REAL
WORLD:

IDEAL
WORLD: 𝒙

𝒚

𝑭(𝒙
, 𝒚) 𝑭(𝒙, 𝒚)

≈

Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator 𝑆𝐼𝑀E such that for any 𝑥
and 𝑦:

𝑆𝐼𝑀0(𝑥, 𝐹(𝑥, 𝑦)) ≅ 𝑉𝑖𝑒𝑤0(𝑥, 𝑦)

Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator 𝑆𝐼𝑀F such that for any 𝑥
and 𝑦:

𝑆𝐼𝑀1(𝑦, 𝐹(𝑥, 𝑦)) ≅ 𝑉𝑖𝑒𝑤1(𝑥, 𝑦)

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any two-party computation problem.

How to Compute Arbitrary Functions

+X

X

For us, programs = functions = Boolean circuits with XOR
(+𝑚𝑜𝑑 2) and AND (×𝑚𝑜𝑑 2) gates.

Want: If you can compute XOR and AND in the appropriate
sense, you can compute everything.

𝑎 𝑏 𝑎′ 𝑏′

𝑎𝑏(𝑎′ + 𝑏′)

𝑎𝑏 𝑎G + 𝑏′

Basic Secret-Sharing

A secret (bit) 𝑠 is shared between Alice and Bob if Alice
holds a bit 𝛼 and Bob holds a bit 𝛽 s.t. 𝛼 ⊕ 𝛽 = 𝑠

𝛼 and 𝛽 are (typically) individually random, so neither
Alice nor Bob knows any information about 𝑠. Together,
however, they can recover 𝑠.

Recap: OT ⇒ Secret-Shared-AND
𝑎 ∈ {0,1} 𝑏 ∈ {0,1}Alice gets random 𝛾, Bob gets

random 𝛿 s.t. 𝛾 ⨁𝛿 = ab.

𝑥! = 𝛾
𝑥" = 𝑎 ⨁ 𝛾

Choice bit 𝑏
Run an OT protocol

Bob gets 𝒙𝟏𝒃 + 𝒙𝟎 𝟏⨁𝒃

Output: 𝛾 Output: 𝛿

= (𝒙𝟏⨁ 𝒙𝟎)𝒃 + 𝒙𝟎 = 𝑎𝑏⨁𝛾

Alice outputs 𝛾.

≔ 𝛿

+X

X

How to Compute Arbitrary Functions
Secret-sharing Invariant: For each wire of the circuit, Alice
and Bob each have a bit whose XOR is the value at the wire.

𝑎
0 𝑏

0 𝑎′
𝑏′0
0

Base Case: Input wires

XOR gate:
Locally XOR the shares

𝑎′
𝑏′

⊕
⊕

AND gate??

Recap: XOR gate
Alice has 𝛼 and Bob has 𝛽 s.t.

+

𝑥 𝑥′

𝑥 ⊕ 𝑥′

𝛼 ⊕ 𝛽 = 𝑥

Alice has 𝛼′ and Bob has 𝛽′ s.t.
𝛼′ ⊕ 𝛽′ = 𝑥′

Alice computes 𝜶⊕𝜶′ and Bob computes 𝜷⊕𝜷2.

So, we have: (𝛼 ⊕ 𝛼′) ⊕ 𝛽 ⊕ 𝛽2
= 𝛼 ⊕ 𝛽 ⊕ 𝛼2⊕𝛽2 = x⊕ x′

AND gate
Alice has 𝛼 and Bob has 𝛽 s.t.

X

𝑥 𝑥′

𝑥𝑥′

𝛼 ⊕ 𝛽 = 𝑥

Alice has 𝛼′ and Bob has 𝛽′ s.t.
𝛼′ ⊕ 𝛽′ = 𝑥′

Desired output (to maintain invariant):
Alice wants 𝜶′′ and Bob wants 𝜷′′ s.t. 𝜶22⊕𝜷22 = 𝑥𝑥′

AND gate

X

𝑥 𝑥′

𝑥𝑥′
𝑥𝑥2 = (𝛼 ⊕ 𝛽)(𝛼′ ⊕ 𝛽′)

= 𝛼𝛼′ ⊕ 𝛽𝛼′ ⊕ 𝛼𝛽′ ⊕ 𝛽𝛽′

𝛽𝛼′
ss-AND

𝛾*𝛾3

𝛾3
⊕
𝛾*

𝛽′𝛼
ss-AND

𝛿*𝛿3

𝛿3
⊕
𝛿*

𝛼22 = 𝛼𝛼′ ⊕ 𝛾3 ⊕𝛿3 𝛽22 = 𝛽𝛽′ ⊕ 𝛾* ⊕𝛿*

+X

X

How to Compute Arbitrary Functions
Secret-sharing Invariant: For each wire of the circuit, Alice
and Bob each have a bit whose XOR is the value at the wire.

𝑎 𝑏 𝑎′ 𝑏′

Finally, Alice and Bob exchange the shares at the output
wire, and XOR the shares together to obtain the output.

𝛼

𝛽
𝛼 ⊕ 𝛽 = 𝑎𝑏(𝑎G⊕𝑏G)

