MIT 6.875

Foundations of Cryptography Lecture 21

TODAY: Oblivious Transfer and Private Information Retrieval

Basic Problem: Database Access

Database D

0	x_{0}
1	x_{1}
2	x_{2}
3	x_{3}
4	x_{4}
5	x_{5}
6	x_{6}
7	x_{7}

Correctness: Client gets $D[i]$.
Privacy (for client): Server gets no information about i.

Here is a 'Tsodutiayss'td loessermerrestredsithality to the client.

Oblivious Transfer (OT)
Add'I property: server privacy

Private Information Retrieval (PIR) Add'I property: succinctness

Symmetric PIR =
Succinctness +
Server privacy

Oblivious Transfer (OT)

Choice bit: b

Sender

- Sender holds two bits x_{0} and x_{1}.
- Receiver holds a choice bit b.
- Receiver should learn x_{b}, sender should learn nothing.
(We will consider honest-but-curious adversaries; formal definition in a little bit...)

Why OT? The Dating Problem

Alice and Bob want to compute the AND $\alpha \wedge \beta$.

Why OT? The Dating Problem

$x_{0}=0$
$x_{1}=\alpha$

Alice and Bob want to compute the AND $\alpha \wedge \beta$.

Choice bit $b=\beta$

Bob gets α if $\beta=1$, and 0 if $\beta=0$
Here is a way to write the OT selection function: $x_{1} b+x_{0}(\mathbf{1}-\boldsymbol{b})$ which, in this case is $=\alpha \beta$.

The Billionaires' Problem

Who is richer?

The Billionaires' Problem

$$
f(X, Y)=1
$$

if and only if $X>Y$

Unit Vector $u_{X}=1$ in the $X^{t h}$ location and 0 elsewhere

Vector $v_{Y}=1$ from the $(Y+1)^{\text {th }}$ location onwards

$$
f(X, Y)=\left\langle u_{X}, v_{Y}\right\rangle=\sum_{i=1}^{U} u_{X}[i] \wedge v_{Y}[i]
$$

Detour: OT \Rightarrow Secret-Shared-AND

Alice gets random γ, Bob gets

Output: γ

$$
\begin{gathered}
x_{0}=\gamma \\
x_{1}=\alpha \oplus \gamma
\end{gathered}
$$

random δ s.t. $\gamma \oplus \delta=\alpha \beta$.

Output: δ
Run an OT protocol
Choice bit $b=\beta$

Alice outputs γ.
Bob gets $x_{\mathbf{1}} \boldsymbol{b}+\boldsymbol{x}_{\mathbf{0}}(\mathbf{1} \oplus \boldsymbol{b})=\left(\boldsymbol{x}_{\mathbf{1}} \oplus \boldsymbol{x}_{\mathbf{0}}\right) \boldsymbol{b}+\boldsymbol{x}_{\mathbf{0}}=\alpha \beta \oplus \gamma:=\delta$

The Billionaires' Problem

1. Alice and Bob run many OTs to get $\left(\gamma_{i}, \delta_{i}\right)$ s.t.

$$
\gamma_{i} \oplus \delta_{i}=\boldsymbol{u}_{X}[\boldsymbol{i}] \wedge \boldsymbol{v}_{\boldsymbol{Y}}[\boldsymbol{i}]
$$

2. Alice computes $\gamma=\oplus_{i} \gamma_{i}$ and Bob computes $\delta=\oplus_{i} \delta_{i}$.
3. Alice reveals γ and Bob reveals δ.

Check (correctness): $\gamma \oplus \delta=\left\langle u_{X}, v_{Y}\right\rangle=\boldsymbol{f}(X, Y)$.

The Billionaires' Problem

1. Alice and Bob run many OTs to get $\left(\gamma_{i}, \delta_{i}\right)$ s.t.

$$
\gamma_{i} \oplus \delta_{i}=\boldsymbol{u}_{X}[\boldsymbol{i}] \wedge \boldsymbol{v}_{Y}[\boldsymbol{i}]
$$

2. Alice computes $\gamma=\oplus_{i} \gamma_{i}$ and Bob computes $\delta=\oplus_{i} \delta_{i}$.

Check (privacy): Alice \& Bob get a bunch of random bits.

"OT is Complete"

Theorem (lec22-24): OT can solve not just love and money, but any two-party (and multi-party) problem efficiently (complexity prop. To circuit size of f).

OT Definition

Choice bit: b

Sender

Receiver Security: Sender should not learn b.
Define Sender's view $\operatorname{View}_{S}\left(x_{0}, x_{1}, b\right)=$ her random coins and the protocol messages.

OT Definition

Choice bit: b

Sender

Receiver Security: Sender should not learn b.
There exists a PPT simulator $S I M_{S}$ such that for any x_{0}, x_{1} and b :

$$
\operatorname{SIM}_{S}\left(x_{0}, x_{1}\right) \cong \operatorname{View}_{S}\left(x_{0}, x_{1}, b\right)
$$

OT Definition

Choice bit: b

Sender

Sender Security: Receiver should not learn x_{1-b}.
Define Receiver's view $\operatorname{View}_{R}\left(x_{0}, x_{1}, b\right)=$ his random coins and the protocol messages.

OT Definition

Choice bit: b

Sender

Receiver

Sender Security: Receiver should not learn x_{1-b}.
There exists a PPT simulator $S I M_{R}$ such that for any x_{0}, x_{1} and b :

$$
\operatorname{SIM}_{R}\left(b, x_{b}\right) \cong \operatorname{View}_{R}\left(x_{0}, x_{1}, b\right)
$$

OT Protocol 1: Trapdoor Permutations

For concreteness, let's use the RSA trapdoor permutation.

Input bits: $\left(x_{0}, x_{1}\right)$

Choice bit: b

Pick $N=P Q$ and RSA exponent e.

Choose random r_{b} and set $s_{b}=r_{b}^{e} \bmod N$
Choose random s_{1-b}

Compute r_{0}, r_{1} and one-time pad x_{0}, x_{1} using hardcore bits

OT Protocol 1: Trapdoor Permutations

How about Bob's security
(a.k.a. Why does Alice not learn Bob's choice bit)?

Alice's view is s_{0}, s_{1} one of which is chosen randomly from Z_{N}^{*} and the other by raising a random number to the e-th power. They look exactly the same!

OT Protocol 1: Trapdoor Permutations

How about Bob's security
(a.k.a. Why does Alice not learn Bob's choice bit)?

Exercise: Show how to construct the simulator.

OT Protocol 1: Trapdoor Permutations

How about Alice's security
(a.k.a. Why does Bob not learn both of Alice's bits)?

Assuming Bob is semi-honest, he chose s_{1-b} uniformly at random, so the hardcore bit of $s_{1-b}=r_{1-b}^{d}$ is computationally hidden from him.

OT from Trapdoor Permutations

How about Alice's security
(a.k.a. Why does Bob not learn both of Alice's bits)?

Exercise: Show how to construct the simulator.

Many More Constructions of OT

Theorem: OT protocols can be constructed based on the hardness of the Diffie-Hellman problem, factoring, quadratic residuosity, LWE, elliptic curve isogeny problem etc. etc.

Secure Two-Party Computation

Secure Two-Party Computation

Input: x

Alice

Input: y

Bob

- Alice and Bob want to compute $F(x, y)$.

Semi-honest Security:

- Alice should not learn anything more than x and $F(x, y)$.
- Bob should not learn anything more than y and $F(x, y)$.

Secure Two-Party Computation

REAL Input: x
Input: y
WORLD:

Alice

Bob

IDEAL WORLD:

Secure Two-Party Computation

Input: x

Alice

Input: y

Bob

There exists a PPT simulator $S I M A_{A}$ such that for any x and y :

$$
\operatorname{SIM}_{A}(x, F(x, y)) \cong \operatorname{View}_{A}(x, y)
$$

Secure Two-Party Computation

Input: x

Alice

Input: y

Bob

There exists a PPT simulator $S I M_{B}$ such that for any x and y :

$$
\operatorname{SIM}_{B}(y, F(x, y)) \cong \operatorname{View}_{B}(x, y)
$$

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]:
OT can solve any two-party computation problem.

How to Compute Arbitrary Functions

For us, programs $=$ functions $=$ Boolean circuits with XOR $(+\bmod 2)$ and AND $(\times \bmod 2)$ gates.

Want: If you can compute XOR and AND in the appropriate sense, you can compute everything.

Basic Secret-Sharing

A secret (bit) s is shared between Alice and Bob if Alice holds a bit α and Bob holds a bit β s.t. $\alpha \oplus \beta=s$
α and β are (typically) individually random, so neither Alice nor Bob knows any information about s. Together, however, they can recover s.

Recap: OT \Rightarrow Secret-Shared-AND

Alice gets random γ, Bob gets
random δ s.t. $\gamma \oplus \delta=\mathrm{ab}$.

Output: γ

$$
\begin{gathered}
x_{0}=\gamma \\
\hline x_{1}=a \oplus \gamma \\
\hline
\end{gathered}
$$

Choice bit b

Alice outputs γ.
Bob gets $x_{\mathbf{1}} \boldsymbol{b}+\boldsymbol{x}_{\mathbf{0}}(\mathbf{1} \oplus \boldsymbol{b})=\left(\boldsymbol{x}_{\mathbf{1}} \oplus \boldsymbol{x}_{\mathbf{0}}\right) \boldsymbol{b}+\boldsymbol{x}_{\mathbf{0}}=a b \oplus \gamma:=\delta$

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

AND gate??
XOR gate:

Base Case: Input wires

Recap: XOR gate

Alice has α and Bob has β s.t.

$$
\alpha \oplus \beta=x
$$

Alice has α^{\prime} and Bob has β^{\prime} s.t.

$$
\alpha^{\prime} \oplus \beta^{\prime}=x^{\prime}
$$

Alice computes $\boldsymbol{\alpha} \oplus \boldsymbol{\alpha}^{\prime}$ and Bob computes $\boldsymbol{\beta} \oplus \boldsymbol{\beta}^{\prime}$.
So, we have: $\left(\alpha \oplus \alpha^{\prime}\right) \oplus\left(\beta \oplus \beta^{\prime}\right)$

$$
=(\alpha \oplus \beta) \oplus\left(\alpha^{\prime} \oplus \beta^{\prime}\right)=\mathrm{x} \oplus \mathrm{x}^{\prime}
$$

AND gate

Alice has α and Bob has β s.t.

$$
\alpha \oplus \beta=x
$$

Alice has α^{\prime} and Bob has β^{\prime} s.t.

$$
\alpha^{\prime} \oplus \beta^{\prime}=x^{\prime}
$$

Desired output (to maintain invariant): Alice wants $\boldsymbol{\alpha}^{\prime \prime}$ and Bob wants $\boldsymbol{\beta}^{\prime \prime}$ s.t. $\boldsymbol{\alpha}^{\prime \prime} \oplus \boldsymbol{\beta}^{\prime \prime}=x x^{\prime}$

AND gate

$$
\begin{aligned}
& x x^{\prime}=(\alpha \oplus \beta)\left(\alpha^{\prime} \oplus \beta^{\prime}\right) \\
& =\alpha \alpha^{\prime} \oplus \gamma_{a} \oplus \delta_{a} \oplus \beta \beta^{\prime} \\
& \Omega \\
& \begin{array}{cc}
\oplus & \oplus \\
\gamma_{b} & \stackrel{\oplus}{\delta_{b}}
\end{array}
\end{aligned}
$$

$$
\alpha^{\prime \prime}=\alpha \alpha^{\prime} \oplus \gamma_{a} \oplus \delta_{a} \quad \beta^{\prime \prime}=\beta \beta^{\prime} \oplus \gamma_{b} \oplus \delta_{b}
$$

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

Finally, Alice and Bob exchange the shares at the output wire, and XOR the shares together to obtain the output.

