MIT 6.875

Foundations of Cryptography Lecture 21

TODAY: Oblivious Transfer and Private Information Retrieval

Basic Problem: Database Access

Database D

Correctness: Client gets D[i].

Privacy (for client): Server gets no information about *i*.

Here is a Tsocol utrizoy s't The secret estimates the lit.

Oblivious Transfer (OT)

Add'l property: server privacy

Private Information Retrieval (PIR) Add'l property: succinctness Symmetric PIR = Succinctness + Server privacy

Oblivious Transfer (OT)

- Sender holds two bits x_0 and x_1 .
- Receiver holds a choice bit *b*.
- Receiver should learn x_b, sender should learn nothing.
 (We will consider honest-but-curious adversaries; formal definition in a little bit...)

Why OT? The Dating Problem

Alice and Bob want to compute the AND $\alpha \wedge \beta$.

Why OT? The Dating Problem Alice and Bob want to $\beta \in \{0,1\}$ $\alpha \in \{0,1\}$ compute the AND $\alpha \wedge \beta$. Run an OT protocol $\frac{x_0 = 0}{x_1 = \alpha}$ Choice bit $b = \beta$

Bob gets α if β =1, and 0 if β =0

Here is a way to write the OT selection function: $x_1b + x_0(1 - b)$ which, in this case is $= \alpha\beta$.

The Billionaires' Problem

Who is richer?

location and 0 elsewhere

Vector $v_Y = 1$ from the $(Y + 1)^{th}$ location onwards

$$f(X,Y) = \langle u_X, v_Y \rangle = \sum_{i=1}^{0} u_X[i] \wedge v_Y[i]$$

Compute each AND individually and sum it up?

Detour: OT \Rightarrow **Secret-Shared-AND**

Alice outputs γ .

Bob gets $x_1b + x_0(1 \oplus b) = (x_1 \oplus x_0)b + x_0 = \alpha \beta \oplus \gamma \coloneqq \delta$

1. Alice and Bob run many OTs to get (γ_i, δ_i) s.t.

 $\gamma_i \oplus \delta_i = \boldsymbol{u}_{\boldsymbol{X}}[\boldsymbol{i}] \wedge \boldsymbol{v}_{\boldsymbol{Y}}[\boldsymbol{i}]$

2. Alice computes $\gamma = \bigoplus_i \gamma_i$ and Bob computes $\delta = \bigoplus_i \delta_i$.

3. Alice reveals γ and Bob reveals δ .

Check (correctness): $\gamma \oplus \delta = \langle u_X, v_Y \rangle = f(X, Y)$.

1. Alice and Bob run many OTs to get (γ_i, δ_i) s.t.

 $\gamma_i \oplus \delta_i = \boldsymbol{u}_{\boldsymbol{X}}[\boldsymbol{i}] \wedge \boldsymbol{v}_{\boldsymbol{Y}}[\boldsymbol{i}]$

2. Alice computes $\gamma = \bigoplus_i \gamma_i$ and Bob computes $\delta = \bigoplus_i \delta_i$.

Check (privacy): Alice & Bob get a bunch of random bits.

"OT is Complete"

Theorem (*lec22-24*): OT can solve not just love and money, but **any** two-party (and multi-party) problem efficiently (complexity prop. To circuit size of f).

Receiver Security: Sender should not learn b.

Define Sender's view $View_S(x_0, x_1, b)$ = her random coins and the protocol messages.

Receiver Security: Sender should not learn b.

There exists a PPT simulator SIM_S such that for any x_0, x_1 and b:

$$SIM_S(x_0, x_1) \cong View_S(x_0, x_1, b)$$

Sender Security: Receiver should not learn x_{1-b} .

Define Receiver's view $View_R(x_0, x_1, b)$ = his random coins and the protocol messages.

Sender Security: Receiver should not learn x_{1-b} .

There exists a PPT simulator SIM_R such that for any x_0, x_1 and b:

$$SIM_R(b, x_b) \cong View_R(x_0, x_1, b)$$

OT Protocol 1: Trapdoor Permutations

How about Bob's security

(a.k.a. Why does Alice not learn Bob's choice bit)?

Alice's view is s_0 , s_1 one of which is chosen randomly from Z_N^* and the other by raising a random number to the *e*-th power. They look exactly the same!

OT Protocol 1: Trapdoor Permutations

How about Bob's security

(a.k.a. Why does Alice not learn Bob's choice bit)?

Exercise: Show how to construct the simulator.

OT Protocol 1: Trapdoor Permutations

How about Alice's security

(a.k.a. Why does Bob not learn both of Alice's bits)?

Assuming Bob is semi-honest, he chose s_{1-b} uniformly at random, so the hardcore bit of $s_{1-b} = r_{1-b}^d$ is computationally hidden from him.

OT from Trapdoor Permutations

How about Alice's security (a.k.a. Why does Bob not learn both of Alice's bits)?

Exercise: Show how to construct the simulator.

Many More Constructions of OT

Theorem: OT protocols can be constructed based on the hardness of the Diffie-Hellman problem, factoring, quadratic residuosity, LWE, elliptic curve isogeny problem etc. etc.

• Alice and Bob want to compute F(x, y).

Semi-honest Security:

- Alice should not learn anything more than x and F(x, y).
- Bob should not learn anything more than y and F(x, y).

There exists a PPT simulator SIM_A such that for any x and y:

$$SIM_A(x, F(x, y)) \cong View_A(x, y)$$

There exists a PPT simulator SIM_B such that for any x and y:

$$SIM_B(y, F(x, y)) \cong View_B(x, y)$$

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: OT can solve *any* two-party computation problem.

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR $(+ mod \ 2)$ and AND $(\times mod \ 2)$ gates.

Want: If you can compute XOR and AND *in the appropriate sense*, you can compute everything.

Basic Secret-Sharing

A secret (bit) s is shared between Alice and Bob if Alice holds a bit α and Bob holds a bit β s.t. $\alpha \bigoplus \beta = s$

 α and β are (typically) individually random, so neither Alice nor Bob knows any information about s. Together, however, they can recover s.

Recap: OT \Rightarrow **Secret-Shared-AND**

Alice outputs γ .

Bob gets $x_1b + x_0(1 \oplus b) = (x_1 \oplus x_0)b + x_0 = ab \oplus \gamma \coloneqq \delta$

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

Base Case: Input wires

Recap: XOR gate

Alice has
$$\alpha$$
 and Bob has β s.t.
 $\alpha \oplus \beta = x$

Alice has α' and Bob has β' s.t. $\alpha' \oplus \beta' = x'$

Alice computes $\alpha \oplus \alpha'$ and Bob computes $\beta \oplus \beta'$. So, we have: $(\alpha \oplus \alpha') \oplus (\beta \oplus \beta')$ $= (\alpha \oplus \beta) \oplus (\alpha' \oplus \beta') = x \oplus x'$

AND gate

Alice has α and Bob has β s.t. $\alpha \oplus \beta = x$

Alice has α' and Bob has β' s.t. $\alpha' \oplus \beta' = x'$

Desired output (to maintain invariant): Alice wants α'' and Bob wants β'' s.t. $\alpha'' \oplus \beta'' = xx'$

AND gate

How to Compute Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

Finally, Alice and Bob exchange the shares at the output wire, and XOR the shares together to obtain the output.

