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Application: Secure Outsourcing

Client Server (the Cloud)

Input: x Program: P

Enc(P(x))

Enc(x) 

A Special Case: Encrypted Database Lookup

– also called “private information retrieval” (we’ll see 
in two lectures)

x 

P(x)



Application 2. Secure Collaboration

Hospital

ID Genome ID Phenotype

“Parties learn the genotype-phenotype correlations and nothing else”



Homomorphic Encryption: Syntax

• 𝑠𝑘, 𝑒𝑘 ← 𝐺𝑒𝑛 1! .
PPT Key generation algorithm generates a secret key as well as a 
(public) evaluation key.

• 𝑐 ← 𝐸𝑛𝑐 𝑠𝑘,𝑚 .
Encryption algorithm uses the secret key to encrypt message 𝑚.

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐 .
Decryption algorithm uses the secret key to decrypt ciphertext 𝑐.

4-tuple of PPT algorithms (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐, 𝐸𝑣𝑎𝑙) s.t.

(can be either secret-key or public-key enc)

• 𝑐′ ← 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝑐 .
Homomorphic evaluation algorithm uses the evaluation key to 
produce an “evaluated ciphertext” 𝑐′.



Homomorphic Encryption: Correctness

𝐷𝑒𝑐(𝑠𝑘, 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝐸𝑛𝑐(𝑥)) = 𝑓(𝑥).

𝑥

𝑐

𝑬𝒏𝒄𝒑𝒌 𝑬𝒏𝒄𝒔𝒌

𝑬𝒗𝒂𝒍𝒇
𝑐′

𝑓(𝑥)

Ciphertext world

Plaintext world



Homomorphic Encryption: Security

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x) 

Security against the “curious cloud” = standard IND-
security of secret-key encryption  

Key Point: Eval is an entirely public algorithm with public 
inputs. 



Here is a homomorphic encryption scheme…

• 𝑠𝑘, − ← 𝐺𝑒𝑛 1! .
Use any old secret key enc scheme.

• 𝑐 ← 𝐸𝑛𝑐 𝑠𝑘,𝑚 .
Just the secret key encryption algorithm…

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐′ .
Parse 𝑐! = 𝑐||𝑓 as a ciphertext concatenated with a function 
description. Decrypt 𝑐 and compute the function 𝑓.

• 𝑐′ ← 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝑐 .
Output 𝑐′ = 𝑐 || 𝑓.  So Eval is basically the identity function!!

This is correct and it is IND-secure.



Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext and the 
runtime of the decryption is independent of the 
complexity of the evaluated function.

A Relaxation:  The size (bit-length) of the evaluated 
ciphertext and the runtime of the decryption depends 
sublinearly on the complexity of the evaluated function.



Big Picture:  Two Steps to FHE

Bootstrapping Theorem:
From “circular secure” Leveled FHE to Pure FHE 
(at the cost of an additional assumption)

Leveled Secret-key Homomorphic Encryption:
Evaluate circuits of a-priori bounded depth d 
“you give me a depth bound d, I will give you a homomorphic scheme that 
handles depth-d circuits…”

“I will give you homomorphic scheme that handles circuits of ANY size/depth”



How to Compute Arbitrary Functions

X+

X

For us, programs = functions = Boolean circuits with XOR 
(+𝑚𝑜𝑑 2) and AND (×𝑚𝑜𝑑 2) gates.

Takeaway: If you can compute XOR and AND on encrypted 
bits, you can compute everything.

𝐸𝑛𝑐(𝑥!) 𝐸𝑛𝑐(𝑥") 𝐸𝑛𝑐(𝑥#) 𝐸𝑛𝑐(𝑥$)

𝐸𝑛𝑐(𝑥! + 𝑥") 𝐸𝑛𝑐(𝑥#𝑥$)

𝐸𝑛𝑐((𝑥! + 𝑥")𝑥#𝑥$)



How to Compute Arbitrary Functions

X+

X

For us, programs = functions = Boolean circuits with XOR 
(+𝑚𝑜𝑑 2) and AND (×𝑚𝑜𝑑 2) gates.

We already know how to add (XOR), can we multiply??

𝐸𝑛𝑐(𝑥!) 𝐸𝑛𝑐(𝑥") 𝐸𝑛𝑐(𝑥#) 𝐸𝑛𝑐(𝑥$)

𝐸𝑛𝑐(𝑥! + 𝑥") 𝐸𝑛𝑐(𝑥#𝑥$)

𝐸𝑛𝑐((𝑥! + 𝑥")𝑥#𝑥$)



• Private-key Encryption of a bit 𝑚 ∈ {𝟎, 𝟏}:

C = 𝑨
𝒔𝑨 +𝑚 𝑰

• Private key:  a vector s ∈ 𝒁𝒒𝒏

Priv key Ciphertext matrix= Eigenvector Message = Eigenvalue

[s || -1]         C      =         m [s || -1]  (mod q) 

(𝑨 is random (n) X (n+1) matrix)

• Decryption:

🙁 INSECURE! Easy to solve linear equations.

New (Secret-key) Encryption: Take 1



t . C = m . t (mod q) 

►Homomorphic addition: C1 + C2

– t is an eigenvector of C1+C2 with eigenvalue m1+m2

►Homomorphic multiplication: C1C2

– t is an eigenvector of C1C2 with eigenvalue m1m2

Proof: t . C1 C2 = (m1 . t) . C2 = m1 . m2 . t

But, remember, the scheme is insecure?

Key idea: fix insecurity while retaining homomorphism.

t = [s || -1]

New (Secret-key) Encryption: Take 1



• Private-key Encryption of a bit 𝑚 ∈ {𝟎, 𝟏}:

• Private key:  a vector s ∈ 𝒁𝒒𝒏

Priv key Ciphertext matrix= Approx
Eigenvector

Message = Approx
Eigenvalue

(𝑨 is random (n+1) X n matrix)

• Decryption:

🙂 CPA-secure by LWE.

C = 𝑨
𝒔𝑨 + 𝒆 +𝑚 𝑰

[s || -1]           C         ≈ m [s || -1]  (mod q) 

New (Secret-key) Encryption: Take 2



t . C = m . t + e (mod q) 

►Homomorphic addition: C1 + C2

t = [s || -1]

New (Secret-key) Encryption: Take 2

= 𝑡𝐶$ + 𝑡𝐶%
= 𝑚$𝑡 + 𝑒$ +𝑚%𝑡 + 𝑒%
= (𝑚$+𝑚%)𝑡 + (𝑒$+𝑒%)

Noise grows a 
little

≈ (𝑚$ +𝑚%)𝑡

𝑡 ⋅ (𝐶$ + 𝐶%)



t . C = m . t + e (mod q) 

►Homomorphic multiplication: C1C2

t = [s || -1]

New (Secret-key) Encryption: Take 2

𝑡 ⋅ (𝐶$ ⋅ 𝐶%) = 𝑚$𝑡 + 𝑒$ 𝐶%
= 𝑚$𝑡𝐶% + 𝑒$𝐶%
= 𝑚$ 𝑚%𝑡 + 𝑒% + 𝑒$𝐶%

𝑒&'()

Noise grows. 
Need 𝑪𝟐 to be small! 

How?!

Can also 
use 𝐶"𝐶!

= 𝑚$𝑚%𝑡 + 𝑚$𝑒% + 𝑒$𝐶%



Aside: Binary Decomposition
Break each entry in 𝐶 into its binary representation

𝐶 = 3 5
1 4 (𝑚𝑜𝑑 8) 𝑏𝑖𝑡𝑠 𝐶 =

0
1
1

1
0
1

0
0
1

1
0
0

(𝑚𝑜𝑑 8)⇒
Small entries like we wanted!

Consider the “reverse” operation:

4 2 1 0 0 0
0 0 0 4 2 1 ⋅ 𝑏𝑖𝑡𝑠 𝐶 = 𝐶

𝐺

⇒ 𝑡 ⋅ 𝐶 = 𝑡 ⋅ 𝐺 ⋅ 𝐺!"(𝐶)

Denote: 𝐺*$ 𝐶 which has “small” entries

𝑘

𝑘 log 𝑞



• Private-key Encryption of a bit 𝑚 ∈ {𝟎, 𝟏}:

• Private key:  a vector s ∈ 𝒁𝒒𝒏

Priv key Ciphertext matrix= Approx
Eigenvector

Message = Approx
“Eigenvalue”

(𝑨 is random (n+1) X n log q  matrix)

• Decryption:

🙂 Still CPA-secure by LWE.

C = 𝑨
𝒔𝑨 + 𝒆 +𝑚 𝐺

[s || -1]           C         ≈         m [s || -1] G (mod q) 

New (Secret-key) Encryption: Take 3



t . C = m . t . G + e (mod q) 

►Homomorphic multiplication:

t = [s || -1]

New (Secret-key) Encryption: Take 3

𝐶1234 = 𝐶5 ⋅ 𝐺65(𝐶7)

𝑠 ⋅ 𝐶$ ⋅ 𝐺*$ 𝐶% = (𝑒$ +𝑚$ ⋅ 𝑠 ⋅ 𝐺) ⋅ 𝐺*$ 𝐶%

= 𝑒$ ⋅ 𝐺*$ 𝐶% +𝑚$ ⋅ 𝑠 ⋅ 𝐺 ⋅ 𝐺*$ 𝐶%
= 𝑒$ ⋅ 𝐺*$ 𝐶% +𝑚$ ⋅ 𝑠 ⋅ 𝐶%

= 𝑒$ ⋅ 𝐺*$ 𝐶% +𝑚$ ⋅ (𝑒% +𝑚% ⋅ 𝑠 ⋅ 𝐺)

= 𝑒$ ⋅ 𝐺*$ 𝐶% +𝑚$ ⋅ 𝑒% +𝑚$𝑚% ⋅ 𝑠 ⋅ 𝐺

𝑒&'() ≤ 𝑛 log 𝑞 ⋅ 𝑒* +𝑚* ⋅ 𝑒+ ≤ 𝑛 log 𝑞 + 1 ⋅ max{ 𝑒* , 𝑒+ }
𝑒&'()



Homomorphic Circuit Evaluation

𝑒+'),') ≤ 𝑁 + 1 - ⋅ 𝐵. ≈ 𝑁-𝐵.

𝑒/0,') ≤ 𝐵.𝑒*+,')

𝑒-'),')

Noise grows during homomorphic eval

Depth 𝑑

𝑒/1$ ≤ (𝑁 + 1) 𝑒/

…

⇒	Decryptable if 𝑞 ≫ 𝑁.𝐵/.

(for security:  𝑞 ≪ 2+)

So this can support 𝒅 ≈ 𝒏𝟎.𝟗𝟗

𝐿𝑒𝑡 𝑁 = 𝑛 log 𝑞



Big Picture:  Two Steps to FHE

Bootstrapping Theorem:
From “circular secure” Leveled FHE to Pure FHE 
(at the cost of an additional assumption)

Leveled Secret-key Homomorphic Encryption:
Evaluate circuits of a-priori bounded depth d 
“you give me a depth bound d, I will give you a homomorphic scheme that 
handles depth-d circuits…”

“I will give you homomorphic scheme that handles circuits of ANY size/depth”



From Leveled to Fully Homomorphic

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(sk,x) 

The cloud keeps homomorphically computing, but 
after a certain depth, the ciphertext is too noisy to 
be useful. What to do?

Idea: “Bootstrapping”!



Bootstrapping: How

“Best Possible” Noise Reduction = Decryption!

𝐷𝑒𝑐(L, 𝐶𝑇)

SK

m

Decryption Circuit

“Very Noisy” ciphertext

“Noiseless ciphertext”

But the 
evaluator/cloud

does not have SK! 



Bootstrapping, Concretely
Next Best = Homomorphic Decryption!

EncSK(m)

EncSK(SK)

Assume server knows  ek = EncSK(SK).
(OK assuming the scheme is “circular secure”)

*

𝐷𝑒𝑐(L, 𝐶𝑇)



Bootstrapping, Concretely
Next Best = Homomorphic Decryption!

EncSK(m)

Assume server knows  ek = EncSK(SK).
(OK assuming the scheme is “circular secure”)

*

Noise = Binput

Noise = Bdec

Bdec Independent of Binput

EncSK(SK)

𝐷𝑒𝑐(L, 𝐶𝑇)



g

Assume Circular Security:

Wrap Up: Bootstrapping
Function f

Evaluation key is EncSK(SK)



g

Each Gate g → Gadget G:

g

Assume Circular Security:

𝐷𝑒𝑐(M, 𝑐3)

g

sk
a b

g(a,b)

sk

a b

g(a,b)

Wrap Up: Bootstrapping
Function f

Evaluation key is EncSK(SK)

𝐷𝑒𝑐(M, 𝑐4)



g

Each Gate g → Gadget G:

g

Assume Circular Security:

𝐷𝑒𝑐(M, 𝑐3)

g

a b

g(a,b)

Enc(sk)

a b

Enc(g(a,b))

Wrap Up: Bootstrapping
Function f

Evaluation key is EncSK(SK)

𝐷𝑒𝑐(M, 𝑐4)

Enc(sk)



Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

Subsequent Work: FHE in Practice

[Gentry-Halevi-Smart’12]: “FHE with Polylog Overhead”

Homomorphic computations “in place”.

SIMD computation + slot permutations (automorphisms)

𝑥! 𝑥" 𝑥# 𝑥$…

𝑦! 𝑦" 𝑦# 𝑦$…

“HELib”: The first homomorphic encryption library.

PALISADE TFHESEAL HEEAN FHEW

Concrete NFLLib Λ ∘ 𝜆 Lattigo cuFHE



Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

FHE Bounty #1:

We have “leveled” FHE from the LWE assumption 

and “unbounded” FHE under a “circular secure” LWE assumption.

𝑠𝑘! 𝑠𝑘"
𝐸𝑛𝑐!"!(𝑠𝑘#)

𝑠𝑘#
𝐸𝑛𝑐!""(𝑠𝑘$)

𝑠𝑘<
𝐸𝑛𝑐!"#(𝑠𝑘%&#)…𝐸𝑛𝑐!"$(𝑠𝑘')

𝑠𝑘
𝐸𝑛𝑐!"(𝑠𝑘)



Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

Partial Answer:

+ [JLS’22]: Unbounded FHE from LPN + PRG in NC0 + Bilinear maps.

[CLTV’15]: Unbounded FHE from indistinguishability obfuscation (IO).

(Unbounded) FHE from LWE.

FHE Bounty #1: Why Circular Security?



Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

FHE Bounty #2:
Why Lattices/LWE?

FHE from the Diffie-Hellman 
assumption.



Gödel Prize Lecture 2022Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan

FHE Bounty #3:
FHE ≈ as efficient as plaintext computation.

• Advances in Rate-1 FHE:  FHE with ≈ 0 communication overhead

• Advances in Private Information Retrieval:
PIR with server computation ≈ 1 add + 1 mult per database byte*

[GH’19, BDGM’19]

[CHHV’22]

If you solve truly practical FHE, 
you don’t need my $100(0). J



Unresolved Issue 1: Function Privacy

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(sk, f(x))

Enc(sk,x) 

Security against the curious cloud = standard IND-
security of secret-key encryption  

Security against a curious user?



𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x) 

Function Privacy: Enc(f(x)) reveals no more 
information (about f) than f(x).

Unresolved Issue 1: Function Privacy

Function privacy via noise-flooding (on the board)



Unresolved Issue 2: Malicious Client

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x) 

Idea: Use zero knowledge proofs.



Unresolved Issue 3: Malicious Cloud

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x) 

Idea: “Succinct Interactive Proofs”. [Kilian92]


