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Lecture 1 Recap



Secure Communication

Alice Bob

Eavesdropper “Eve”

m

Key k Key k

o Alice and Bob have a common key k

o Algorithms  𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐 .
o Correctness: 𝐷𝑒𝑐 𝑘, 𝐸𝑛𝑐 𝑘,𝑚 = 𝑚.
o Security: Perfect Secrecy = Perfect Indistinguishability.



How to Define Security

Perfect secrecy: A Posteriori = A Priori  

Perfect indistinguishability:

The two definitions are equivalent!

For all 𝑚, 𝑐: Pr ℳ = 𝑚 𝐸 𝒦,ℳ = 𝑐] = Pr[ℳ = 𝑚]

For all 𝑚!, 𝑚", 𝑐: Pr[𝐸 𝒦,𝑚! = 𝑐] = Pr[𝐸 𝒦,𝑚" = 𝑐]



Is there a perfectly secure scheme? 

• One-time Pad: 𝐸 𝑘,𝑚 = 𝑘⨁𝑚

• However:  Keys are as long as Messages

• WORSE, Shannon’s theorem: 
for any perfectly secure scheme, |key|≥|message|.

Can we overcome Shannon’s conundrum?



Perfect Indistinguishability: a Turing test

For all 𝑚!, 𝑚", 𝑐: Pr[𝐸 𝒦,𝑚! = 𝑐] = Pr[𝐸 𝒦,𝑚" = 𝑐]

World 0: World 1:

𝑐 = 𝐸 𝑘,𝑚! 𝑐 = 𝐸 𝑘,𝑚"

is a distinguisher.

For all EVE and all 𝑚!, 𝑚": Pr 𝐸𝑉𝐸 𝑐 = 0 | 𝑘 ← 𝒦; 𝑐 = 𝐸 𝑘,𝑚!
= Pr 𝐸𝑉𝐸 𝑐 = 0 | 𝑘 ← 𝒦; 𝑐 = 𝐸 𝑘,𝑚"

k← K k← K



Perfect Indistinguishability: a Turing test

For all 𝑚!, 𝑚", 𝑐: Pr[𝐸 𝒦,𝑚! = 𝑐] = Pr[𝐸 𝒦,𝑚" = 𝑐]

World 0: World 1:

𝑐 = 𝐸 𝑘,𝑚! 𝑐 = 𝐸 𝑘,𝑚"

is a distinguisher.

For all EVE and all 𝑚!, 𝑚": Pr 𝑘 ← 𝒦; 𝑐 = 𝐸 𝑘,𝑚! : 𝐸𝑉𝐸 𝑐 = 0
= Pr 𝑘 ← 𝒦; 𝑐 = 𝐸 𝑘,𝑚" : 𝐸𝑉𝐸 𝑐 = 0

k← K k← K



Perfect Indistinguishability: a Turing test

For all 𝑚!, 𝑚", 𝑐: Pr[𝐸 𝒦,𝑚! = 𝑐] = Pr[𝐸 𝒦,𝑚" = 𝑐]

World 0: World 1:

𝑐 = 𝐸 𝑘,𝑚! 𝑐 = 𝐸 𝑘,𝑚"

is a distinguisher.

k← K k← K

For all EVE and all 𝑚!, 𝑚":
Pr 𝑘 ← 𝒦; 𝑏 ← 0,1 ; 𝑐 = 𝐸 𝑘,𝑚# : 𝐸𝑉𝐸 𝑐 = 𝑏 = 1/2



The Key Idea: 
Computationally Bounded Adversaries



The Axiom of Modern Crypto

Feasible Computation = Probabilistic polynomial-time*

(p.p.t. = Probabilistic polynomial-time)

So, Alice and Bob are fixed p.p.t. algorithms.  
(e.g., run in time n^2)

Eve is any p.p.t. algorithm.  
(e.g., run in time n^4, or n^100, or n^10000,…)

* in recent years, quantum polynomial-time

(polynomial in a security parameter n)

Life



Computational Indistinguishability

World 0: World 1:

𝑐 = 𝐸 𝑘,𝑚! 𝑐 = 𝐸 𝑘,𝑚"

is a p.p.t. distinguisher.

For all p.p.t. EVE and all 𝑚!, 𝑚":
Pr 𝑘 ← K; 𝑏 ← 0,1 ; 𝑐 = 𝐸 𝑘,𝑚# : 𝐸𝑉𝐸 𝑐 = 𝑏 = 1/2

k← K k← K

Still subject to Shannon’s impossibility!

(take 1)



Still subject to Shannon’s impossibility!

c
Set of messages 
consistent with c
= {D(k,c): all k} 

Messages n+1 bits 

𝑚!

𝑚"

ciphertexts 

Consider Eve that picks a random key k and 
outputs 0 if D(k,c) = 𝑚!
outputs 1 if D(k,c) = 𝑚"
and a random bit if neither holds.

w.p ≥ 𝟏/𝟐𝒏

w.p = 0

Bottomline: Pr[EVE succeeds] ≥ 1/2 + 1/2%

Keys n bits 



New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p. 

Definition: A function 𝜇:ℕ → ℝ is negligible if 
for every polynomial function p,
for all sufficiently large n:

𝝁(n) < 1/p(n)

there exists an 𝑛! s.t.
for all 𝑛 > 𝑛!:

Key property: Events that occur with negligible probability look to 
poly-time algorithms like they never occur. 



New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p. 

Definition: A function 𝜇:ℕ → ℝ is negligible if 
for every polynomial function p,
for all sufficiently large n:

𝝁(n) < 1/p(n)

there exists an 𝑛! s.t.
for all 𝑛 > 𝑛!:

Question:  Let 𝝁 𝒏 = 𝟏/𝒏𝐥𝐨𝐠 𝒏. Is 𝝁 negligible?  



New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p. 

Definition: A function 𝜇:ℕ → ℝ is negligible if 
for every polynomial function p,
for all sufficiently large n:

𝝁(n) < 1/p(n)

there exists an 𝑛! s.t.
for all 𝑛 > 𝑛!:

Question:  Let 𝝁 𝒏 = 𝟏/𝒏𝟏𝟎𝟎 if n is prime and 
𝝁 𝒏 = 𝟏/𝟐𝒏 otherwise. Is 𝝁 negligible?  



New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p. 

Definition: A function 𝜇:ℕ → ℝ is negligible if 
for every polynomial function p,
for all sufficiently large n:

𝝁(n) < 1/p(n)

there exists an 𝑛! s.t.
for all 𝑛 > 𝑛!:

Question (PS1)  Let 𝝁 𝒏 be a negligible function and 𝐪 𝒏 a 
polynomial function. Is  𝝁 𝒏 𝒒(𝒏) a negligible function?  



Security Parameter: 𝒏 (sometimes 𝜆)

Definition: A function 𝜇:ℕ → ℝ is negligible if 
for every polynomial function p,
for all sufficiently large n:

𝝁(n) < 1/p(n)

there exists an 𝑛! s.t.
for all 𝑛 > 𝑛!:

• Runtimes & success probabilities are measured as a function of 𝑛.
• Want: Honest parties run in time (fixed) polynomial in 𝑛. 
• Allow: Adversaries to run in time (arbitrary) polynomial in 𝑛, 
• Require: adversaries to have success probability negligible in 𝑛.



Computational Indistinguishability (take 2)

World 0: World 1:

𝑐 = 𝐸 𝑘,𝑚! 𝑐 = 𝐸 𝑘,𝑚"

is a distinguisher.

For all p.p.t. EVE, there is a negligible function 𝝁
s.t. for all 𝑚!, 𝑚":

Pr 𝑘 ← K; 𝑏 ← 0,1 ; 𝑐 = 𝐸 𝑘,𝑚# : 𝐸𝑉𝐸 𝑐 = 𝑏 ≤
1
2
+ 𝜇(𝑛)

k← K k← K



Our First Crypto Tool: 
Pseudorandom Generators (PRG)



Pseudo-random Generators

Informally: Deterministic Programs that stretch a 
“truly random” seed into a (much) longer sequence 
of “seemingly random” bits.

b1 b2 b3 ...PRG Gseed

Can such a G exist? 

How to define “seemingly random”?



How to Define a Strong 
Pseudo Random Number Generator?

Def 1 [Indistinguishability]
“No polynomial-time algorithm can distinguish between the output 
of a PRG on a random seed vs. a truly random string”
= “as good as” a truly random string for all practical purposes. 

Def 2 [Next-bit Unpredictability]
“No polynomial-time algorithm can predict the (i+1)th bit of the 
output of a PRG given the first i bits, better than chance”

Def 3 [Incompressibility]
“No polynomial-time algorithm can compress the output of the 
PRG into a shorter string”

ALL THREE DEFS EQUIVALENT!



PRG Def 1: Indistinguishability

Notation: Un (resp. Um) denotes the random distribution on n-bit 
(resp. m-bit) strings; m is shorthand for m(n).

Definition [Indistinguishability]: 
A deterministic polynomial-time computable function G: {0,1}n →

{0,1}m is a PRG if:
(a) It is expanding: m > n and 
(b) for every PPT algorithm D (called a distinguisher or a statistical 

test) if there is a negligible function 𝝁 such that:

| Pr[ 𝑫(𝑮(𝑼𝒏)) = 𝟏 ] – Pr[ 𝑫(𝑼𝒎) = 𝟏 ] | = 𝝁(𝒏)



PRG Def 1: Indistinguishability

WORLD 1: 
The Pseudorandom World

𝑦 ← 𝐺(𝑈!)

WORLD 2: 
The Truly Random World

𝑦 ← 𝑈"

PPT Distinguisher gets y but cannot tell which world she is in



Why is this a good definition

Good for all Applications:
As long as we can find truly random seeds, can 
replace true randomness by the output of PRG(seed) 
in ANY (polynomial-time) application.

If the application behaves differently, then it 
constitutes a (polynomial-time) statistical test 
between PRG(seed) and a truly random string.



PRG ⟹ Overcoming Shannon’s Conundrum

𝐺𝑒𝑛 1% : Generate a random 𝑛-bit key k. 

𝐸𝑛𝑐 𝑘,𝑚 where 𝑚 is an (n + 1)-bit message: 

Expand k into a (n+1)-bit pseudorandom string k+ = 𝐺(k)

One-time pad with k+:  ciphertext is  𝑘′⨁𝑚

𝐷𝑒𝑐 𝑘, 𝑐 outputs G(𝑘)⨁𝑐

(or, How to Encrypt n+1 bits using an n-bit key)

𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐧𝐞𝐬𝐬:
𝐷𝑒𝑐 𝑘, 𝑐 outputs G 𝑘 ⨁𝑐 = G 𝑘 ⨁𝐺 𝑘 ⨁m = m



PRG ⟹ Overcoming Shannon’s Conundrum

Suppose for contradiction that there is a p.p.t. EVE, a polynomial 
function 𝑝 and 𝑚!, 𝑚" 𝑠. 𝑡.

Pr 𝑘 ← K; 𝑏 ← 0,1 ; 𝑐 = 𝐸 𝑘,𝑚# : 𝐸𝑉𝐸 𝑐 = 𝑏 ≥
1
2 + 1/𝑝(𝑛)

Security: your first reduction!



PRG ⟹ Overcoming Shannon’s Conundrum

Suppose for contradiction that there is a p.p.t. EVE, a polynomial 
function 𝑝 and 𝑚!, 𝑚" 𝑠. 𝑡.

ρ = Pr 𝑘 ← {0,1}% ; 𝑏 ← 0,1 ; 𝑐 = 𝐺(𝑘)⨁𝑚#: 𝐸𝑉𝐸 𝑐 = 𝑏

≥
1
2
+ 1/𝑝(𝑛)

Security: your first reduction!

Let ρ+ = Pr 𝑘′ ← 0,1 %," ; 𝑏 ← 0,1 ; 𝑐 = 𝑘′⨁𝑚#: 𝐸𝑉𝐸 𝑐 = 𝑏
= "

-

This will give us a distinguisher EVE’ for G, contradicting the 
assumption that G is a pseudorandom generator. QED.



PRG ⟹ Overcoming Shannon’s Conundrum

Get as input a string y, run EVE(y⨁𝑚#) for a random b, and let EVE’s 
output be b’.  Output “PRG” if b=b’ and “RANDOM” otherwise.

Distinguisher EVE’ for G.

Pr 𝐸𝑉𝐸+𝑜𝑢𝑡𝑝𝑢𝑡𝑠 “𝑃𝑅𝐺” 𝑦 𝑖𝑠 𝑝𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑑𝑜𝑚]
= ρ ≥ "

-+ 1/𝑝(𝑛)

Pr 𝐸𝑉𝐸+𝑜𝑢𝑡𝑝𝑢𝑡𝑠 “𝑃𝑅𝐺” 𝑦 𝑖𝑠 𝑟𝑎𝑛𝑑𝑜𝑚] = ρ+ =
1
2

Therefore, Pr 𝐸𝑉𝐸+𝑜𝑢𝑡𝑝𝑢𝑡𝑠 “𝑃𝑅𝐺” 𝑦 𝑖𝑠 𝑝𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑑𝑜𝑚] −
Pr 𝐸𝑉𝐸+𝑜𝑢𝑡𝑝𝑢𝑡𝑠 “𝑃𝑅𝐺” 𝑦 𝑖𝑠 𝑟𝑎𝑛𝑑𝑜𝑚]

≥ 1/𝑝(𝑛)



PRG ⟹ Overcoming Shannon’s Conundrum

𝑸𝟏: Do PRGs exist?

(or, How to Encrypt n+1 bits using an n-bit key)

𝑸𝟐:

(Exercise: If P=NP, PRGs do not exist.)

How do we encrypt longer messages or many messages 
with a fixed key?

(Length extension: If there is a PRG  that stretches by one bit, 
there is one that stretches by polynomially many bits) 

(Pseudorandom functions: PRGs with exponentially large 
stretch and “random access” to the output.)



𝑸𝟏: Do PRGs exist?



Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework 
(e.g. “appropriately chosen functions composed 
appropriately many times look random”)



Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework 
(e.g. “appropriately chosen functions composed 
appropriately many times look random”)

2. Come up with a candidate construction

MA
TH

Rijndael
(now the Advanced 
Encryption Standard)



Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework 
(e.g. “appropriately chosen functions composed 
appropriately many times look random”)

2. Come up with a candidate construction

3. Do extensive cryptanalysis. 



Constructing PRGs: Two Methodologies
The Foundational Methodology (much of this course)

Reduce to simpler primitives.

OWF

well-studied, average-case hard, problems

“Science wins either way” –Silvio Micali

PRG

PRF

Hashing

Digital 
Signatures



Constructing PRGs: Two Methodologies
The Foundational Methodology (much of this course)

A PRG Candidate from the average-case hardness of Subset-sum:

G(𝑎", … , 𝑎%, 𝑥", … , 𝑥%) = (𝑎", … , 𝑎%,∑./"% 𝑥.𝑎. mod 2%,")

where 𝑎. are random (n+1)-bit numbers, and 𝑥. are 
random bits.

Beautiful Function:

If G is a one-way function, then G is a PRG.

If lattice problems are hard on the worst-case, G is a PRG.



Pseudorandom Generators and (T)CS



Cryptography

Randomness

Probabilistic Algorithms
Distributed Computing
Simulation/Sampling/MCMC

Randomness is a Fundamental Resource



Where do we get random bits from?
1) Specialized Hardware: e.g., Transistor noise.
2) User Input: Every time random number used, user is queried.
3) Quantumness (not for much of this class)

Usually biased, but can “extract” unbiased bits assuming the 
source has “some structure and enough entropy” 

[randomness extraction: von Neumann,…]

BUT: True randomness is an expensive commodity.



Application of PRGs: De-randomization

• Recall: L Î BPP implies ∃ poly-time algorithm M

𝑥 ∈ 𝐿 ⟹ Pr01.%2 3[𝑀(𝑥, 𝑦) accepts]> 2/3
𝑥 ∉ 𝐿 ⟹ Pr01.%2 3[𝑀(𝑥, 𝑦) accepts]< 1/3

• Use a PRG to generate the m random bits 𝑦:

seed output string yG Run  M(x,y)



Application of PRGs: De-randomization

Theorem: if PRGs exist, then 𝐵𝑃𝑃 ⊆ ∩#$% 𝑇𝐼𝑀𝐸 2"! .

(in English) if PRGs exist, then every randomized poly-time 
algorithm can be simulated in deterministic sub-exponential time. 

Proof Sketch: use PRG that expands from 𝑛 = 𝑚4 bits to 𝑚 bits.

𝑥 ∈ 𝐿 ⟹ Pr2556 3[𝑀(𝑥, 𝐺(𝑦)) accepts]> -
7− 𝜇(𝑛)

𝑥 ∉ 𝐿 ⟹ Pr2556 3[𝑀(𝑥, 𝐺(𝑦)) accepts]< "
7+ 𝜇(𝑛)

Why? If the above is not true, M is a distinguisher for the PRG!

M is a (known, fixed, fixed poly-time) distinguisher.Note: 



Application of PRGs: De-randomization

Theorem: if PRGs exist, then 𝐵𝑃𝑃 ⊆ ∩#$% 𝑇𝐼𝑀𝐸 2"! .

(in English) if PRGs exist, then every randomized poly-time 
algorithm can be simulated in deterministic sub-exponential time. 

Proof Sketch: use PRG that expands from 𝑛 = 𝑚4 bits to 𝑚 bits.

Here is the deterministic algorithm: enumerate over all seeds 
𝑦 and run 𝑀 𝑥, 𝐺 𝑦 . If #accepts > 0.65 ∗ 28!, accept else reject.

𝑥 ∈ 𝐿 ⟹ #𝑠𝑒𝑒𝑑 𝑦: 𝑀(𝑥, 𝐺(𝑦)) accepts> 0.65 ∗ 2% = 0.65 ∗ 28!

𝑥 ∉ 𝐿 ⟹ #𝑠𝑒𝑒𝑑 𝑦: 𝑀(𝑥, 𝐺(𝑦)) accepts < 0.35 ∗ 2% = 0.35 ∗ 28!



Application of PRGs: De-randomization

Theorem: if “exponentially secure” PRGs exist, then 
𝐵𝑃𝑃 = 𝑃.

Proof Sketch:

Use a PRG that expands from 𝑛 = 𝑂(log𝑚) bits to 𝑚 bits that 
are indistinguishable not just by poly(𝑛)-time algorithms but also 
by 20"% = 𝑚0#- time algorithms.

The previous proof goes through mutatis mutandis, using 
crucially the fact that the randomized algorithm (adversary for 
us) runs in fixed polynomial-time.



𝑸𝟐: How do we encrypt longer messages or many messages 
with a fixed key?

1. PRG length extension, 
2. Pseudorandom functions (PRF) and PRG ⟹ PRF  

Next Lecture: 


