MIT 6.875/6.5620/18.425

Foundations of Cryptography
Lecture 2

Course website: https://mit6875.github.io/

Lecture 1 Recap

Secure Communication

2 —2

Alice V Bob
Key k

Key k \.@!

Eavesdropper “Eve”

o Alice and Bob have a common key k

o Algorithms (Gen, Enc, Dec).
o Correctness: Dec(k, Enc(k, m)) = m.
o Security: Perfect Secrecy = Perfect Indistinguishability.

How to Define Security

Perfect secrecy: A Posteriori = A Priori

Forallm,c: PriIM =m |E(HK,M) = c] = Pr[]M = m]

Perfect indistinguishability:

For all my, mq, c: Pr[E(K,my) = c] = Pr[E(K,my) = c]

The two definitions are equivalent!

Is there a perfectly secure scheme?

 One-timePad: E(k,m) = k®m
* However: Keys are as long as Messages

e WORSE, Shannon’s theorem:
for any perfectly secure scheme, | key|=|message]|.

Can we overcome Shannon’s conundrum?

Perfect Indistinguishability: a Turing test

For all my, mq, c: Pr[E(K,my) = c] = Pr[E(K,my) = c]

g World O: A 4 World 1: A
k —« K k< K
_ C=E(k,m0)) _ C=E(k)m1) Y,

\@(is a distinguisher.

For all EVE and all mg, m;: Pr[EVE(c) =0 | k <« K;c = E(k,mg)]
= Pr[EVE(c) =0 |k <« X;c = E(k,m;)]

Perfect Indistinguishability: a Turing test

For all my, mq, c: Pr[E(K,my) = c] = Pr[E(K,my) = c]

g World O: A 4 World 1: A
k —« K k< K
_ C=E(k,m0)) _ C=E(k)m1) Y,

\@(is a distinguisher.

For all EVE and all my, my: Pr[k <« X;c = E(k,my): EVE(c) = 0]
= Pr|lk « K;c=E(k,my):EVE(c) = 0]

Perfect Indistinguishability: a Turing test

For all my, mq, c: Pr[E(K,my) = c] = Pr[E(K,my) = c]

g World O: A 4 World 1: A
k —« K k< K
_ C=E(k,m0)) _ C=E(k)m1) Y,

\@(is a distinguisher.

For all EVE and all mg, m4:
Prlk « KX;b <« {0,1}; c = E(k,my): EVE(c) =b] =1/2

The Key Idea:
Computationally Bounded Adversaries

Life
The Axiom of Moedern-Erypto-

Feasible Computation = Probabilistic polynomial-time*

(P.P.t. = Probabilistic polynomial-time)

(polynomial in a security parameter n)

So, Alice and Bob are fixed p.p.t. algorithms. Q Q
(e.g., runin time n”2) A

Eve is any p.p.t. algorithm.
(e.g., run in time n*4, or n*100, or n*10000,...

*in recent years, quantum polynomial-time

Computational Indistinguishability (take 1)

g World O: A 4 World 1:; A
k « K k < K
\ C=E(k,m0) / \ C=E(k,m1) /

“@{ is a p.p.t. distinguisher.

For all P. .. EVE and all mg, m;:
Prlk « K;b < {0,1}; c = E(k,my): EVE(c) =b] =1/2

A : : ;) -
b) Still subject to Shannon’s impossibility!

A : : , . -
b) Still subject to Shannon’s impossibility!

Messages n+1 bits ciphertexts

Keys n bits

Set of messages
consistent with c
= {D(k,c): all k}

Consider Eve that picks a random key k and
outputs 0 if D(k,c) = m, w.p = 1/2"
outputs 1 if D(k,c) = m4 w.p=0
and a random bit if neither holds.

Bottomline: Pr[EVE succeeds] > 1/2 + 1/2"

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function u: N — R is negligible if
for every polynomial function p,

there exists an n, s.t.
for all n > ny:

p(n) < 1/p(n)

Key property: Events that occur with negligible probability look to
poly-time algorithms like they never occur.

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function u: N — R is negligible if
for every polynomial function p,

there exists an n, s.t.
for all n > ny:

p(n) < 1/p(n)

Question: Let u(n) = 1/n'°8™, Is u negligible?

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function u: N — R is negligible if
for every polynomial function p,

there exists an n, s.t.
for all n > ny:

p(n) < 1/p(n)

Question: Let u(n) = 1/n1% if n is prime and

u(n) = 1/2" otherwise. Is u negligible?

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function u: N — R is negligible if
for every polynomial function p,

there exists an n, s.t.
for all n > ny:

p(n) < 1/p(n)

Question (PS1) Let u(n) be a negligible function and q(n) a
polynomial function. Is u(n)qg(n) a negligible function?

Security Parameter: n ;sometimes 1)

Definition: A function u: N — R is negligible if
for every polynomial function p,
there exists an n, s.t.
for alln > ng:

p(n) < 1/p(n)

Runtimes & success probabilities are measured as a function of n.
Want: Honest parties run in time (fixed) polynomial in n.
Allow: Adversaries to run in time (arbitrary) polynomial in n,
Require: adversaries to have success probability negligible in n.

Computational Indistinguishability (take 2)

g World O: A 4 World 1: A
k « K k < K
\ C=E(k,m0) / \ C=E(k,m1) /
“@{ is a distinguisher. \’_’/

For all P.P.X. EVE, there is a negligible function u
s.t. for all my, my:

Prlk « K;b «{0,1}; c = E(k,my): EVE(c) = b] < % + u(n)

Our First Crypto Tool:
Pseudorandom Generators (PRG)

Pseudo-random Generators

Informally: Deterministic Programs that stretch a
“truly random” seed into a (much) longer sequence
of “seemingly random” bits.

seed —> PRG G > bl1b2b3..

How to define “seemingly random”?
gly

Can such a G exist?

How to Define a Strong
Pseudo Random Number Generator?

Def 1 [Indistinguishability]

“No polynomial-time algorithm can distinguish ¥ *ween the output
of a PRG on a random seed vs. a truly rando” K\ 8"

N

= “as good as” a truly random string for \g/ -tical purposes.

N

¢
Def 2 [Next-bit Unpredictab"QsQ’
“No polynomial-time alr @Q . can predict the (i+1)t bit of the

output of a PRG give ng (st i bits, better than chance”
<N

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function G: {0,1}" —
{0,1}Mis a PRG if:

(a) Itis expanding: m>nand

(b) for every PPT algorithm D (called a distinguisher or a statistical
test) if there is a negligible function i such that:

| Pr[D(G(Un)) = 1]-Pr[D(U,) = 1]]| =pm)

Notation: U, (resp. U,,) denotes the random distribution on n-bit
(resp. m-bit) strings; m is shorthand for m(n).

PRG Def 1: Indistinguishability

WORLD 1:
The Pseudorandom World

y < G(Upy)

WORLD 2:
The Truly Random World

y < Uy

PPT Distinguisher gets y but cannot tell which world she is in

Why is this a good definition

Good for all Applications:

As long as we can find truly random seeds, can
replace true randomness by the output of PRG(seed)
in ANY (polynomial-time) application.

If the application behaves differently, then it
constitutes a (polynomial-time) statistical test
between PRG(seed) and a truly random string.

PRG = Overcoming Shannon’s Conundrum
(or, How to Encrypt n+1 bits using an n-bit key)

Gen(1™): Generate a random n-bit key k.

Enc(k,m) where mis an (n + 1)-bit message:
Expand k into a (n+1)-bit pseudorandom string k' = G (k)

One-time pad with K’: ciphertextis k'@®m

Dec(k, c) outputs G(k)®c

Correctness:
Dec(k, c) outputs G(k)®c = G(k)DBG(k)dm = m

PRG = Overcoming Shannon’s Conundrum

Security: your first reduction!

Suppose for contradiction that there is a p.p.t. EVE, a polynomial
function p and my, m4 s.t.

Prlk « K;b < {0,1}; c = E(k,mp): EVE(c) = b] 2%+ 1/p(n)

PRG = Overcoming Shannon’s Conundrum

Security: your first reduction!

Suppose for contradiction that there is a p.p.t. EVE, a polynomial
function p and my, mq s.t.

p=Prlk «<{0,1}";b « {0,1}; c = G(k)®my: EVE(c) = b]

1
= E + 1/p(n)
Letp’ = Pr[k’ « {0,1}"*};b « {0,1}; c = K'@®m,: EVE(c) = b]
1
T2

This will give us a distinguisher EVE’ for G, contradicting the
assumption that G is a pseudorandom generator. QED.

PRG = Overcoming Shannon’s Conundrum

Distinguisher EVE’ for G.

Get as input a string y, run EVE(y&@m,) for a random b, and let EVE’s
output be b’. Output “PRG” if b=b” and “RANDOM” otherwise.

Pr|EVE'outputs “PRG” | y is pseudorandom]
1
=p=z35+1/p(n)

1
Pr[EVE'outputs “PRG” | y is random] = p' = >

Therefore, Pr[EVE'outputs “PRG” | y is pseudorandom] —
Pr[EVE'outputs “PRG” | y is random]

= 1/p(n) .

PRG = Overcoming Shannon’s Conundrum
(or, How to Encrypt n+1 bits using an n-bit key)

Q]_: Do PRGs exist?
(Exercise: If P=NP, PRGs do not exist.)

QZ: How do we encrypt longer messages or many messages
with a fixed key?

(Length extension: If there is a PRG that stretches by one bit,
there is one that stretches by polynomially many bits)

(Pseudorandom functions: PRGs with exponentially large
stretch and “random access” to the output.)

Q]_: Do PRGs exist?

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. “appropriately chosen functions composed
appropriately many times look random™)

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. “appropriately chosen functions composed

appropriately many times look random™)

2. Come up with a candidate construction

=5 5~ Rijndael
—=iwi—— (now the Advanced

e = @444+ Encryption Standard)
e 'o ;.é_r.g)_r,ékmum

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. “appropriately chosen functions composed

appropriately many times look random™)

&. Come up with a candidate construction

3. Do extensive cryptanalysis.

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)

Reduce to simpler primitives.

“Science wins either way” =Silvio Micali

Digital
Signatures PRF

PRG

Hashing

~Nowr
1

well-studied, average-case hard, problems

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)

A PRG Candidate from the average-case hardness of Subset-sum:
G(all) an) xl) L) xn) = (al, . an, ?:1 xla’l mod 2n+1)

where a; are random (n+1)-bit numbers, and x; are
random bits.

Beautiful Function:

If G is a one-way function, then G is a PRG.

If lattice problems are hard on the worst-case, G is a PRG.

Pseudorandom Generators and (T)CS

Randomness Is a Fundamental Resource

Simulation/Sampling/MCMC
Distributed Computing
Probabilistic Algorithms

Cryptography

T)

R F . . i
= e B

1 v o S SS9

mness

LS

e]

.....
Tamaae 1] =

-3 = L&
=] - E
“_?’_:vl .
‘4 - - = =
— = ST &=
: L N N

=
=55 |
=
S

s
P f S |
1 T
’ Taa

-
S

Where do we get random bits from?

1) Specialized Hardware: e.g., Transistor noise.
2) User Input: Every time random number used, user is queried.

3)-Quantumness-{not-formuch-of thisclass)

Usually biased, but can “extract” unbiased bits assuming the
source has “some structure and enough entropy”
[randomness extraction: von Neumann,...]

BUT: True randomness Is an expensive commodity.

Application of PRGs: De-randomization

* Recall: L € BPP implies 3 poly-time algorithm M

x € L = Preoins y[M(x,y) accepts] > 2/3
x & L = Preoins y[M(x,y) accepts] < 1/3

* Use a PRG to generate the m random bits y:

seed

" output string y

Run M(x.,y)

Application of PRGs: De-randomization

Theorem: if PRGs exist, then BPP € N TIME(2™).

(in English) if PRGs exist, then every randomized poly-time
algorithm can be simulated in deterministic sub-exponential time.

Proof Sketch: use PRG that expands from n = m# bits to m bits.
x € L = Proeeq y[M(x, G(¥)) accepts] > = — u(n)

X & L = Prgeeqy[M(x,G(y)) accepts] < é + u(n)

Why? [f the above is not true, M is a distinguisher for the PRG!

Note: M is a (known, fixed, fixed poly-time) distinguisher.

Application of PRGs: De-randomization

Theorem: if PRGs exist, then BPP € N TIME(2™).

(in English) if PRGs exist, then every randomized poly-time
algorithm can be simulated in deterministic sub-exponential time.

Proof Sketch: use PRG that expands from n = m# bits to m bits.

x € L = #seed y: M(x, G(y)) accepts > 0.65 * 2™ = 0.65 * 2™
x & L = #seed y: M(x,G(y)) accepts < 0.35 2™ = 0.35 * 2™

Here is the deterministic algorithm: enumerate over all seeds
y and run M(x, G(y)). If #accepts > 0.65 * 2™, accept else reject.

Application of PRGs: De-randomization

Theorem: if “exponentially secure” PRGs exist, then
BPP = P.

Proof Sketch:

Use a PRG that expands from n = 0(log m) bits to m bits that
are indistinguishable not just by poly(n)-time algorithms but also
by 2™ = m®- time algorithms.

The previous proof goes through mutatis mutandis, using
crucially the fact that the randomized algorithm (adversary for
us) runs in fixed polynomial-time.

Next Lecture:

72 - How do we encrypt longer messages or many messages
with a fixed key?

1. PRG length extension,
2. Pseudorandom functions (PRF) and PRG = PRF

