## MIT 6.875

## Foundations of Cryptography Lecture 19

## TODAY (and the next lecture): Lattice-based Cryptography

## Why Lattice-based Crypto?

## $\square$ Exponentially Hard

 (so far)While factoring and discrete log can be solved in time $2^{\sqrt[3]{n}}$ for problems of size $n$, the best algorithms for lattice-based crypto run in time nearly $2^{n}$.

## Why Lattice-based Crypto?

$\square$ Exponentially Hard
$\square$ Quantum-Resistant
(so far)
(so far)

## (Very large scale)

(if they exist)

## Quantum Computers ${ }^{\text {Break }}$ Crypto



Shor's Algorithm for Factoring and Discrete Logarithms.


## "Cryptographers seldom sleep well".

[Silvio Micali, 1988]


## Post-Quantum Cryptography

Cryptography that is (believed to be) secure against quantum attacks.

## NEWS

NIST Announces First Four Quantum-Resistant Cryptographic Algorithms

Federal agency reveals the first group of winners from its six-year competition.


3 out of 4: Lattice-based Cryptography

## Why Lattice-based Crypto?

$\square$ Exponentially Hard (so far)
$\square$ Quantum-Resistant (so far)
$\square$ Worst-case hardness
(unique feature of lattice-based crypto)
$\square$ Simple and Efficient
$\square$ Enabler of Surprising Capabilities
(Fully Homomorphic Encryption)

## Solving Linear Equations

$$
\begin{aligned}
& 5 s_{1}+11 s_{2}=2 \\
& 2 s_{1}+s_{2}=6 \\
& 7 s_{1}+s_{2}=26
\end{aligned}
$$

where all equations are over $\mathbb{Z}$, the integers

## Solving Linear Equations



GOAL: Find s .

More generally, $n$ variables and $m \gg n$ equations.

## Solving Linear Equations



GOAL: Find s .

EASY! For example, by Gaussian Elimination

## Solving Linear Equations



GOAL: Find s .
How to make it hard: Chop the head?
That is, work modulo some $q$. $(1121 \bmod 100=21)$
Still EASY! Gaussian Elimination $\bmod q$

## Solving Linear Equations

Given:


GOAL: Find s .
How to make it hard: Chop the tail?
Add a small error to each equation.
Still EASY! Linear regression.

## Solving Linear Equations



GOAL: Find s .
How to make it hard: Chop the head and the tail?
Add a small error to each equation and work $\bmod q$.
Turns out to be very HARD!
$\because$

## 



GOAL: Find s .
Parameters: dimensions $\boldsymbol{n}$ and $m$, modulus $\boldsymbol{q}$, error distribution $\chi=$ uniform in some interval $[-\boldsymbol{B}, \ldots, \boldsymbol{B}]$.
$\mathbf{A}$ is chosen at random from $\mathbb{Z}_{q}^{m \times n}, \mathbf{s}$ from $\mathbb{Z}_{q}^{n}$ and $\mathbf{e}$ from $\chi^{m}$.

## Learning with Errors (LWE)

Decoding Random Linear Codes (over $\mathrm{F}_{\mathrm{q}}$ with $\mathrm{L}_{1}$ errors)

Learning Noisy Linear Functions

Worst-case hard Lattice Problems
[Regev'05, Peikert'09]


A lattice is a discrete, additive subgroup of $\mathbb{R}^{m}$

## Setting Parameters

Cryptanalysis over three decades suggests we are safe with the following parameters:

$$
\begin{aligned}
& n=\text { security parameter }(\approx 1-10 \mathrm{~K}) \\
& m=\text { arbitrary poly in } n \\
& B=\text { small poly in } n, \text { say } \sqrt{n} \\
& q=\text { poly in } n, \text { larger than } B, \text { and could be } \\
& \quad \text { as large as sub-exponential, say } 2^{n^{0.99}}
\end{aligned}
$$

even from quantum computers, AFAWK!

## Decisional LWE

Can you distinguish between:


Theorem: "Decisional LWE is as hard as LWE".

## Information-Computation Gap

Fix $n, q, B$.
(Search) LWE:
easy


Information-theoretically impossible to recover $s$.
$S$ uniquely determined given ( $A, A s+e$ ). computationally hard to recover.

## OWF and PRG

## $g_{A}(\mathrm{~s}, \mathrm{e})=\mathbf{A s}+e$

$$
\begin{aligned}
& \left(\mathbf{A} \in Z_{q}^{n X m}\right. \\
& \mathbf{s} \in Z_{q}^{n} \text { random "small" secret vector } \\
& \left.\boldsymbol{e} \in Z_{q}^{n}: \text { random "small" error vector }\right)
\end{aligned}
$$

- $g_{A}$ is a one-way function (assuming LWE)
- $g_{A}$ is a pseudo-random generator (decisional LWE)
- $g_{A}$ is also a trapdoor function...
- also a homomorphic commitment...


## Basic (Secret-key) Encryption

 [Regev05]$\mathrm{n}=$ security parameter, $\mathrm{q}=$ "small" modulus

- Secret key sk $=$ Uniformly random vector $\mathbf{s} \in Z_{q}^{n}$
- Encryption $\operatorname{Enc}_{\mathbf{s}}(\mu): / / \mu \in\{0,1\}$
- Sample uniformly random $\mathbf{a} \in Z_{q}^{n}$, "small" noise $\mathrm{e} \in Z$
- The ciphertext $\mathbf{c}=(\mathbf{a}, \mathrm{b}=\langle\mathbf{a}, \mathbf{s}\rangle+\mathrm{e}+\mu \quad)$
- Decryption $\operatorname{Dec}_{\text {sk }}(\mathbf{c})$ : Output
$(\mathrm{b}-\langle\mathrm{a}, \mathbf{s}\rangle \bmod \mathrm{q})$
// correctness as long as $|\mathrm{e}|<\mathrm{q} / 4$


## Basic (Secret-key) Encryption

 [Regev05]This scheme is additively homomorphic.

$$
\begin{array}{ll}
\boldsymbol{c}=(\mathrm{a}, \mathrm{~b}=\langle\mathrm{a}, \mathbf{s}\rangle+\mathrm{e}+\mu\lfloor q / 2\rfloor) & \operatorname{Enc}_{\mathbf{s}}(\mathrm{m}) \\
\boldsymbol{c}^{\prime}=\left(\mathrm{a}^{\prime}, \mathrm{b}^{\prime}=\left\langle\mathbf{a}^{\prime}, \mathbf{s}\right\rangle+\mathrm{e}^{\prime}+\mu^{\prime}\lfloor q / 2\rfloor\right) & \operatorname{Enc}_{\mathbf{s}}\left(\mathrm{m}^{\prime}\right)
\end{array}
$$

$\left.\boldsymbol{c} \neq \boldsymbol{c}^{\prime} \equiv\left(\boldsymbol{a} \neq \mathbf{a}^{\prime}, \mathbf{b} \neq \mathbf{b}^{\prime}\right)=\left\langle\mathbf{a}+\mathbf{a}^{\prime}, \mathbf{s}\right\rangle+\left(\mathrm{e}+\mathrm{e}^{\prime}\right)+\left(\mu+\mu^{\prime}\right)\lfloor q / 2\rfloor\right)$

In words: $c+c^{\prime}$ is an encryption of $\mu+\mu^{\prime}(\bmod 2)$

## Basic (Secret-key) Encryption [Regev05]

You can also negate the encrypted bit easily.

We will see how to make this scheme into a fully homomorphic scheme.

For now, note that the error increases when you add two ciphertexts. That is, $\left|e_{a d d}\right| \approx\left|e_{1}\right|+\left|e_{2}\right| \leq 2 B$.

Setting $q=n^{\log n}$ and $B=\sqrt{n}$ (for example) lets us support any polynomial number of additions.

## NEXT UP:

1. Public-key Encryption from LWE and
2. Fully Homomorphic Encryption

## LWE with Small Secrets



GOAL: Find s .
Parameters: dimensions $\boldsymbol{n}$ and $m$, modulus $\boldsymbol{q}$, error distribution $\chi=$ uniform in some interval $[-\boldsymbol{B}, \ldots, \boldsymbol{B}]$. $\mathbf{A}$ is chosen at random from $\mathbb{Z}_{q}^{m \times n}, \mathbf{S}$ from $\chi^{n}$ and e from $\chi^{m}$.

## LWE with Small Secrets



GOAL: Find (the small secret) s.

Theorem: LWE with small secrets is as hard as LWE.
Proof on the board.

## Public-key Encryption

[Regev05, Micciancio'10, Lyubashevsky-Peikert-Regev'10]

- Secret key sk $=$ Small secret sfrom $\chi^{n}$
- Public key pk: for $i$ from 1 to $n$

$$
\boldsymbol{c}_{\boldsymbol{i}}=\left(\boldsymbol{a}_{\boldsymbol{i}},\left\langle\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{s}\right\rangle+e_{i}\right)
$$

## Public-key Encryption

[Regev05, Micciancio'10, Lyubashevsky-Peikert-Regev'10]

- Secret key sk $=$ Small secret $\mathbf{s}$ from $\chi^{n}$
- Public key pk: for $i$ from 1 to $n$

$$
(A, b=A s+e) \quad \mathrm{A}, \mathrm{~A} \mathrm{~s}+\mathrm{e}
$$

- Encrypting a message bit $\mu$ : pick a random vector $\boldsymbol{r}$ from $\chi^{n}$

$$
\left(\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}, \boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right)
$$

- Decryption: compute

$$
\left(\boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right)-\left(\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}\right) \mathbf{s}
$$

and round to nearest multiple of $\mathrm{q} / 2$.

## Correctness

- Encrypting a message bit $\mu$ : pick a random vector $\boldsymbol{r}$ from $\chi^{n}$

$$
\left(\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}, \boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right)
$$

- Decryption:

$$
\begin{gathered}
\left(\boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right)-\left(\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}\right) \mathbf{s} \\
=\boldsymbol{r}(\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e})+e^{\prime \prime}+\mu\lfloor q / 2\rfloor-\left(\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}\right) \mathbf{s} \\
=\boldsymbol{r} \boldsymbol{e}+e^{\prime \prime}-\boldsymbol{e}^{\prime} \boldsymbol{s}+\mu\lfloor q / 2\rfloor
\end{gathered}
$$

Decryption works as long as $\left|\boldsymbol{r} \boldsymbol{e}-\boldsymbol{e}^{\prime} \boldsymbol{s}+e^{\prime \prime}\right|<\frac{\boldsymbol{q}}{\mathbf{4}}$.

## Security

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

We show this by a hybrid argument.

Let's stare at a public key, ciphertext pair.

$$
\left.\boldsymbol{p} \boldsymbol{k}=(\boldsymbol{A}, \boldsymbol{b}=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e}), \boldsymbol{c}=\boldsymbol{E n c}(\boldsymbol{p} \boldsymbol{k}, \mu)=\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}, \boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right)
$$

Call this distribution Hybrid 0 .

## Security

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

$$
\left.\widetilde{\boldsymbol{p} \boldsymbol{k}}=(\boldsymbol{A}, \boldsymbol{b}), \tilde{\boldsymbol{c}}=\boldsymbol{E n c}(\widetilde{\boldsymbol{p} \boldsymbol{k}}, \mu)=\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}, \boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right)
$$

Hybrids 0 and 1 are comp. indist. by decisional LWE.

## Security

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 2. Change $\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}, \boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}$ into random.

$$
\left.\widetilde{\boldsymbol{p k}}=(\boldsymbol{A}, \boldsymbol{b}), \tilde{\boldsymbol{c}}=\boldsymbol{E n c}(\widetilde{\boldsymbol{p k}}, \mu)=\boldsymbol{a}^{\prime}, b^{\prime}+\mu\lfloor q / 2\rfloor\right)
$$

Hybrids 1 and 2 are comp. indist. by LWE.

## Security

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 2. Change $\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}, \boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}$ into random.

$$
\left.\widetilde{\boldsymbol{p k}}=(\boldsymbol{A}, \boldsymbol{b}), \tilde{\boldsymbol{c}}=\boldsymbol{E n c}(\widetilde{\boldsymbol{p k}}, \mu)=\boldsymbol{a}^{\prime}, b^{\prime}+\mu\lfloor q / 2\rfloor\right)
$$

Now, we have the message $\mu$ encrypted with a one-time pad which perfectly hides $\mu$.

## Public-key Encryption

[Regev05, Micciancio'10, Lyubashevsky-Peikert-Regev'10]

- Secret key sk $=$ Small secret $\mathbf{s}$ from $\chi^{n}$
- Public key pk: for $i$ from 1 to $n$

$$
(A, b=A s+e)
$$

- Encrypting a message bit $\mu$ : pick a random vector $\boldsymbol{r}$ from $\chi^{n}$

$$
\left(\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}, \boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right)
$$

- Decryption: compute

$$
\left(\boldsymbol{r} \boldsymbol{b}+e^{\prime \prime}+\mu\lfloor q / 2\rfloor\right)-\left(\boldsymbol{r} \boldsymbol{A}+\boldsymbol{e}^{\prime}\right) \mathbf{s}
$$

and round to nearest multiple of $q / 2$.

## Homomorphic Encryption

## Application 1. Secure Outsourcing



A Special Case: Encrypted Database Lookup

- also called "private information retrieval" (we'll see in two lectures)


## Application 2. Secure Collaboration


"Parties learn the genotype-phenotype correlations and nothing else"

## Homomorphic Encryption: Syntax (can be either secret-key or public-key enc)

4-tuple of PPT algorithms (Gen, Enc, Dec, Eval) s.t.

- $(s k, e k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$.

PPT Key generation algorithm generates a secret key as well as a (public) evaluation key.

- $c \leftarrow E n c(s k, m)$.

Encryption algorithm uses the secret key to encrypt message $m$.

- $c^{\prime} \leftarrow \operatorname{Eval}(e k, f, c)$.

Homomorphic evaluation algorithm uses the evaluation key to produce an "evaluated ciphertext" $c^{\prime}$.

- $m \leftarrow \operatorname{Dec}(s k, c)$.

Decryption algorithm uses the secret key to decrypt ciphertext $c$.

## Homomorphic Encryption: Correctness

$$
\operatorname{Dec}(s k, \operatorname{Eval}(e k, f, \operatorname{Enc}(x)))=f(x)
$$

Plaintext world


Ciphertext world

## Homomorphic Encryption: Security



Function: f


Security against the "curious cloud" = standard IND-security of secret-key encryption

Key Point: Eval is an entirely public algorithm with public inputs.

## Here is a homomorphic encryption scheme...

- $(s k,-) \leftarrow \operatorname{Gen}\left(1^{n}\right)$.

Use any old secret key enc scheme.

- $c \leftarrow E n c(s k, m)$. Just the secret key encryption algorithm...
- $c^{\prime} \leftarrow \operatorname{Eval}(e k, f, c)$.

Output $c^{\prime}=c \| f$. So Eval is basically the identity function!!

- $m \leftarrow \operatorname{Dec}\left(s k, c^{\prime}\right)$.

Parse $c^{\prime}=c \| f$ as a ciphertext concatenated with a function description. Decrypt $c$ and compute the function $f$.

This is correct and it is IND-secure.

## Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext and the runtime of the decryption is independent of the complexity of the evaluated function.

A Relaxation: The size (bit-length) of the evaluated ciphertext and the runtime of the decryption depends sublinearly on the complexity of the evaluated function.

## How to Compute Arbitrary Functions

For us, programs $=$ functions $=$ Boolean circuits with XOR $(+\bmod 2)$ and AND $(\times \bmod 2)$ gates.


Takeaway: If you can compute XOR and AND on encrypted bits, you can compute everything.

## How to Compute Arbitrary Functions

For us, programs $=$ functions $=$ Boolean circuits with XOR $(+\bmod 2)$ and AND $(\times \bmod 2)$ gates.


We already know how to add (XOR), can we multiply?? Next lecture ...

