MIT 6.875

Foundations of Cryptography Lecture 19

TODAY (and the next lecture): Lattice-based Cryptography

Why Lattice-based Crypto?

Exponentially Hard (so far)

While factoring and discrete log can be solved in time $2^{\sqrt[3]{n}}$ for problems of size *n*, the best algorithms for lattice-based crypto run in time nearly 2^{n} .

Why Lattice-based Crypto?

Exponentially Hard (so far)

Quantum-Resistant (so far)

(Very large scale) (if they exist) **Quantum Computers Break Crypto**

Shor's Algorithm for Factoring and Discrete Logarithms.

"Cryptographers seldom sleep well".

[Silvio Micali, 1988]

Post-Quantum Cryptography

Cryptography that is (believed to be) secure against quantum attacks.

3 out of 4: Lattice-based Cryptography

Why Lattice-based Crypto?

Exponentially Hard (so far)

Quantum-Resistant (so far)

☐ Worst-case hardness

(unique feature of lattice-based crypto)

□ Simple and Efficient

Enabler of Surprising Capabilities
 (Fully Homomorphic Encryption)

Solving Linear Equations

$$5s_{1} + 11s_{2} = 2$$

$$2s_{1} + s_{2} = 6$$

$$7s_{1} + s_{2} = 26$$

where all equations are over \mathbb{Z} , the integers

More generally, n variables and $m \gg n$ equations.

How to make it hard: Chop the head?

That is, work modulo some q. $(1121 \mod 100 = 21)$

Still EASY! Gaussian Elimination mod q

How to make it hard: Chop the tail?

Add a small error to each equation.

Still EASY! Linear regression.

How to make it hard: Chop the head *and* the tail? Add a small error to each equation and work mod *q*.

Turns out to be very HARD!

SolveranningweithaErrens (4.44/E)ns

GOAL: Find s.

<u>Parameters</u>: dimensions \boldsymbol{n} and \boldsymbol{m} , modulus \boldsymbol{q} , error distribution χ = uniform in some interval $[-\boldsymbol{B}, \dots, \boldsymbol{B}]$.

A is chosen at random from $\mathbb{Z}_q^{m \times n}$, **s** from \mathbb{Z}_q^n and **e** from χ^m .

Learning with Errors (LWE)

Decoding Random Linear Codes

(over F_q with L_1 errors)

Learning Noisy Linear Functions

Worst-case hard Lattice Problems [Regev'05, Peikert'09]

Setting Parameters

Cryptanalysis over three decades suggests we are safe with the following parameters:

 $n = \text{security parameter} (\approx 1 - 10 \text{K})$

m =arbitrary poly in n

 $B = \text{small poly in } n, \text{say } \sqrt{n}$

q = poly in n, larger than B, and could be as large as sub-exponential, say $2^{n^{0.99}}$

even from quantum computers, AFAWK!

QUANTUM COMPUTER

Decisional LWE

Can you distinguish between:

Theorem: "Decisional LWE is as hard as LWE".

Information-Computation Gap

Fix *n*, *q*, *B*.

Information-theoretically impossible to recover *s*.

s uniquely determined given (A, As + e). computationally hard to recover.

OWF and PRG

$$g_A(s,e) = As+e$$

 $(\mathbf{A} \in Z_q^{nXm}$ $\mathbf{s} \in Z_q^n$ random "small" secret vector $e \in Z_q^n$: random "small" error vector)

- g_A is a one-way function (assuming LWE)
- g_A is a pseudo-random generator (decisional LWE)
- g_A is also a trapdoor function...
- also a homomorphic commitment...

Basic (Secret-key) Encryption

n = security parameter, q = "small" modulus

- Secret key sk = Uniformly random vector $\mathbf{s} \in Z_q^n$
- Encryption $Enc_{s}(\mu)$: // $\mu \in \{0,1\}$

- Sample uniformly random $\mathbf{a} \in \mathbb{Z}_q^n$, "small" noise $\mathbf{e} \in \mathbb{Z}$

- The ciphertext **c** = (**a**, **b** = \langle **a**, **s** \rangle + **e** + μ

Decryption Dec_{sk}(c): Output

(b - **(a, s**) mod q)

// correctness as long as |e| < q/4

Basic (Secret-key) Encryption

This scheme is additively homomorphic.

$$c = (\mathbf{a}, \mathbf{b} = \langle \mathbf{a}, \mathbf{s} \rangle + \mathbf{e} + \mu \lfloor q/2 \rfloor) \quad \leftarrow \quad \text{Enc}_{\mathbf{s}}(\mathbf{m})$$
$$c' = (\mathbf{a}', \mathbf{b}' = \langle \mathbf{a}', \mathbf{s} \rangle + \mathbf{e}' + \mu' \lfloor q/2 \rfloor) \quad \leftarrow \quad \text{Enc}_{\mathbf{s}}(\mathbf{m}')$$

 $c + c' = (a+a', b+b') = \langle a + a', s \rangle + (e+e') + (\mu + \mu') \lfloor q/2 \rfloor)$

In words: c + c' is an encryption of $\mu + \mu'$ (mod 2)

Basic (Secret-key) Encryption

You can also negate the encrypted bit easily.

We will see how to make this scheme into a fully homomorphic scheme.

For now, note that the error increases when you add two ciphertexts. That is, $|e_{add}| \approx |e_1| + |e_2| \leq 2B$.

Setting $q = n^{\log n}$ and $B = \sqrt{n}$ (for example) lets us support any polynomial number of additions.

NEXT UP: 1. Public-key Encryption from LWE and 2. Fully Homomorphic Encryption

<u>Parameters</u>: dimensions *n* and *m*, modulus *q*, error distribution χ = uniform in some interval [-B, ..., B]. **A** is chosen at random from $\mathbb{Z}_q^{m \times n}$, **S** from χ^n and **e** from χ^m .

GOAL: Find (the small secret) s.

Theorem: LWE with small secrets is as hard as LWE.

Proof on the board.

Public-key Encryption

[Regev05, Micciancio'10, Lyubashevsky-Peikert-Regev'10]

- Secret key sk = Small secret s from χ^n
- Public key pk: for *i* from 1 to n

$$c_i = (a_i, \langle a_i, s \rangle + e_i)$$

Public-key Encryption

[Regev05, Micciancio'10, Lyubashevsky-Peikert-Regev'10]

- Secret key sk = Small secret **s** from χ^n
- Public key pk: for *i* from 1 to n

$$(A, b = As + e) \qquad A \land A \land S + b$$

• Encrypting a message bit μ : pick a random vector \boldsymbol{r} from χ^n

$$(rA + e', rb + e'' + \mu \lfloor q/2 \rfloor)$$

• Decryption: compute

$$(rb + e'' + \mu \lfloor q/2 \rfloor) - (rA + e')s$$

and round to nearest multiple of q/2.

Correctness

• Encrypting a message bit μ : pick a random vector \boldsymbol{r} from χ^n

$$(\mathbf{r}\mathbf{A} + \mathbf{e}', \mathbf{r}\mathbf{b} + \mathbf{e}'' + \mu \lfloor q/2 \rfloor)$$

• Decryption:

$$(rb + e'' + \mu \lfloor q/2 \rfloor) - (rA + e')s$$

= $r(As + e) + e'' + \mu \lfloor q/2 \rfloor - (rA + e')s$
= $re + e'' - e's + \mu \lfloor q/2 \rfloor$

Decryption works as long as $|re - e's + e''| < \frac{q}{4}$.

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

We show this by a hybrid argument.

Let's stare at a public key, ciphertext pair.

 $pk = (A, b = As + e), c = Enc(pk, \mu) = rA + e', rb + e'' + \mu \lfloor q/2 \rfloor)$

Call this distribution Hybrid 0.

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

 $\widetilde{\mathbf{pk}} = (\mathbf{A}, \mathbf{b}), \widetilde{\mathbf{c}} = \mathbf{Enc}(\widetilde{\mathbf{pk}}, \mu) = \mathbf{rA} + \mathbf{e'}, \mathbf{rb} + \mathbf{e''} + \mu \lfloor q/2 \rfloor)$

Hybrids 0 and 1 are comp. indist. by decisional LWE.

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 2. Change rA + e', rb + e'' into random.

$$\widetilde{\mathbf{pk}} = (\mathbf{A}, \mathbf{b}), \widetilde{\mathbf{c}} = \mathbf{Enc}(\widetilde{\mathbf{pk}}, \mu) = \mathbf{a}', \mathbf{b}' + \mu \lfloor q/2 \rfloor)$$

Hybrids 1 and 2 are comp. indist. by LWE.

Theorem: under decisional LWE, the scheme is INDsecure. In fact, even more: a ciphertext together with the public key is pseudorandom.

Hybrid 2. Change rA + e', rb + e'' into random.

$$\widetilde{\mathbf{pk}} = (\mathbf{A}, \mathbf{b}), \widetilde{\mathbf{c}} = \mathbf{Enc}(\widetilde{\mathbf{pk}}, \mu) = \mathbf{a}', \mathbf{b}' + \mu \lfloor q/2 \rfloor)$$

Now, we have the message μ encrypted with a one-time pad which perfectly hides μ .

Public-key Encryption

[Regev05, Micciancio'10, Lyubashevsky-Peikert-Regev'10]

- Secret key sk = Small secret **s** from χ^n
- Public key pk: for *i* from 1 to n

$$(A, b = As + e)$$

• Encrypting a message bit μ : pick a random vector \boldsymbol{r} from χ^n

$$(\mathbf{r}\mathbf{A} + \mathbf{e}', \mathbf{r}\mathbf{b} + \mathbf{e}'' + \mu \lfloor q/2 \rfloor)$$

• Decryption: compute

$$(rb + e'' + \mu \lfloor q/2 \rfloor) - (rA + e')s$$

and round to nearest multiple of q/2.

Homomorphic Encryption

Application 1. Secure Outsourcing

A Special Case: Encrypted Database Lookup

 – also called "private information retrieval" (we'll see in two lectures)

Application 2. Secure Collaboration

"Parties learn the genotype-phenotype correlations and nothing else"

Homomorphic Encryption: Syntax (can be either secret-key or public-key enc)

4-tuple of PPT algorithms (Gen, Enc, Dec, Eval) s.t.

• $(sk, ek) \leftarrow Gen(1^n)$.

PPT Key generation algorithm generates a secret key as well as a (public) evaluation key.

•
$$c \leftarrow Enc(sk, m)$$
.

Encryption algorithm uses the secret key to encrypt message m.

• $c' \leftarrow Eval(ek, f, c)$.

Homomorphic evaluation algorithm uses the evaluation key to produce an "evaluated ciphertext" c'.

•
$$m \leftarrow Dec(sk, c)$$
.

Decryption algorithm uses the secret key to decrypt ciphertext *c*.

Homomorphic Encryption: Correctness

Dec(sk, Eval(ek, f, Enc(x))) = f(x).

Homomorphic Encryption: Security

Security against the "curious cloud" = standard **IND-security** of secret-key encryption

Key Point: Eval is an entirely public algorithm with public inputs.

Here is a homomorphic encryption scheme...

• $(sk, -) \leftarrow Gen(1^n)$. Use any old secret key enc scheme.

• $c \leftarrow Enc(sk, m)$.

Just the secret key encryption algorithm...

• $c' \leftarrow Eval(ek, f, c)$. Output c' = c || f. So Eval is basically the identity function!!

• $m \leftarrow Dec(sk, c')$.

Parse c' = c||f| as a ciphertext concatenated with a function description. Decrypt *c* and compute the function *f*.

This is correct and it is IND-secure.

Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext and the runtime of the decryption is *independent of* the complexity of the evaluated function.

A Relaxation: The size (bit-length) of the evaluated ciphertext and the runtime of the decryption *depends sublinearly on* the complexity of the evaluated function.

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR (+ mod 2) and AND (× mod 2) gates.

Takeaway: If you can compute XOR and AND on encrypted bits, you can compute everything.

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR (+ mod 2) and AND (× mod 2) gates.

We already know how to add (XOR), can we multiply?? Next lecture...