MIT 6.875

Foundations of Cryptography
Lecture 19

TODAY (and the next lecture):
Lattice-based Cryptography

Why Lattice-based Crypto?

[1 Exponentially Hard (so far)

While factoring and discrete log can be solved in time

3
2V for problems of size n, the best algorithms for
lattice-based crypto run in time nearly 2™.

Why Lattice-based Crypto?

[1 Exponentially Hard (so far)

[1 Quantum-Resistant (so far)

(Very large scale) (if they exist)
' Y
Quantum Computers Break Crypto

Shor’s Algorithm for Factoring and Discrete Logarithms.

“Cryptographers seldom sleep well”.
[Silvio Micali, 1988]

Post-Quantum Cryptography

Cryptography that is (believed to be) secure against quantum attacks.

NIST Announces First Four Quantum-Resistant Cryptographic
Algorithms

Federal agency reveals the first group of winners from its six-year competition.

July 05, 2022

3 out of 4: Lattice-based Cryptography

Why Lattice-based Crypto?

[1 Exponentially Hard (so far)

[1 Quantum-Resistant (so far)

Worst-case hardness

(unique feature of lattice-based crypto)

I Simple and Efficient

Enabler of Surprising Capabilities

(Fully Homomorphic Encryption)

Solving Linear Equations

551 + 1182 — 2

251"‘ 52:6

751 + Sz —_ 26

_ /

where all equations are over Z, the integers

Solving Linear Equations

Given: A and A

GOAL: Finds.

More generally, n variables and m > n equations.

Solving Linear Equations

Given: A and A

GOAL: Finds.

EASY! ror example, by Gaussian Elimination @

Solving Linear Equations

Given: A and A

GOAL: Finds.

How to make it hard: Chop the head?
That is, work modulo some g. (1121 mod 100 = 21)

Still EASY! Gaussian Elimination mod g

Solving Linear Equations

Given: A and A +

GOAL: Finds.

How to make it hard: Chop the tail?

Add a small error to each equation.

Still EASY! Linear regression.

Solving Linear Equations

Given: A and A + | A

GOAL: Finds.

How to make it hard: Chop the head and the tail?

Add a small error to each equation and work mod g.

Turns out to be very HARD! (**

SobgamriiagvvithaE trens {(dWMDNs

Given: A and A

GOAL: Finds.

Parameters: dimensions n and m, modulus g, error
distribution y = uniform in some interval [—B, ..., B].

A is chosen at random from Zg**", s from Zg
and e from y™.

Learning with Errors (LWE)

=

€ Decoding Random Linear Codes

(over F, with L, errors)

€ Learning Noisy Linear Functions

€ Worst-case hard Lattice Problems
[Regev’05, Peikert'09]

Setting Parameters

Cryptanalysis over three decades suggests
we are safe with the following parameters:

n = security parameter (= 1 — 10K)
m = arbitrary poly in n
B = small poly in n, say \n

g = polyinn, larger than B, and could be

. 0.99
as large as sub-exponential, say 2™

even from quantum computers, AFAWK! %

Decisional LWE

Can you distinguish between:

and

Theorem: “Decisional LWE is as hard as LWE".

Information-Computation Gap

Fixn, q,B.

(Search) LWE:

easy
m log2B + 1 m ~ 21°8GE 1)
(1 _ |)
0gq
\ J \ J
| |

. . s uniquely determined given
Information-theoretically quely 5

. . (A, As + e). computationally
impossible to recover s.
hard to recover.

OWF and PRG

[ga(s,e) = As+e J

nxXm
(A€ Z
S E ZZ; random “small” secret vector

e € Zg: random “small” error vector)

ga IS a one-way function (assuming LWE)

ga IS a pseudo-random generator (decisional LWE)
ga IS also a trapdoor function...

also a homomorphic commitment...

Basic (Secret-key) Encryption

[Regev095]

n = security parameter, q = “small” modulus

 Secret key sk = Uniformly random vector s € Z7

« Encryption Encg(u): // u e {0,1}

— Sample uniformly random a € Z7, "small” noise e € Z

— The ciphertext c = (a, b =(a, s) + e +u)

« Decryption Decg(c): Output (b —(a, s) mod q)

// correctness as long as |e| < g/4

Basic (Secret-key) Encryption

[Regev095]

This scheme is additively homomorphic.

c=(a,b={(,s)+e+ulq/2]) «~+—— Encs(m)

c'=(a",b'=¢’,s)+e'+u'lq/2]) © Ence(m’)

c+c'=(ata’, b+b)=(a+a’,s)+(e+e)) + (u+u") lq/2])

In words: ¢ + ¢’ is an encryption of u + u ' (mod 2)

Basic (Secret-key) Encryption

[Regev095]

You can also negate the encrypted bit easily.

We will see how to make this scheme into a fully
homomorphic scheme.

For now, note that the error increases when you add
two ciphertexts. Thatis, |e g4~ |e1| + |lez| < 2B.

Setting ¢ = n'°8™ and B = +/n (for example) lets us
support any polynomial number of additions.

NEXT UP:
1. Public-key Encryption from LWE and
2. Fully Homomorphic Encryption

LWE with Small Secrets

Given: A and A n

GOAL: Finds.

Parameters: dimensions n and m, modulus g, error
distribution y = uniform in some interval [—B, ..., B].

A is chosen at random from Zg**", S from
){n and e from y™.

LWE with Small Secrets

Given: A and A n

GOAL: Find (the small secret) s.

Theorem: LWE with small secrets is as hard as LWE.

Proof on the board.

Public-key Encryption

[Regev05, Micciancio’10, Lyubashevsky-Peikert-Regev'10]

e Secret key sk = Small secret s from y"
e Public key pk: fori from1ton

c; = (a;(a;s) + e;)

Public-key Encryption

[Regev05, Micciancio’10, Lyubashevsky-Peikert-Regev'10]

Secret key sk = Small secret s from y™

Public key pk: fori from 1 ton

(A,b = As + e) Al AlS +e
Encrypting a message bit u: pick a random vector r from y™

(rA+e’,rb+e" +ulq/2))

Decryption: compute

(rb+e" +ulq/2]) — (rA+e')s

and round to nearest multiple of q/2.

Correctness

e Encrypting a message bit u: pick a random vector r from y"

(rA+e',rb+e" +ulq/2))
e Decryption:
(rb+e" +ulq/2]) — (rA+e')s
=r(As+e)+e" +ulq/2] —(rAd+e')s

=re+e’' —e's+ulq/2]

Decryption works as long as |re — e's + e'| < <.
yp g "

Security

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

We show this by a hybrid argument.

Let’s stare at a public key, ciphertext pair.

pk= (A,b=As+e),c =Enc(pk,u) =rA+e’,rb+e"’ +ulq/2))

Call this distribution Hybrid 0.

Security

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

pk = (4,b),¢ = Enc(ﬁc, ,u) =rA+e,rb+e" +ulq/2))

Hybrids O and 1 are comp. indist. by decisional LWE.

Security

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

Hybrid 2. Change r4 + e’,rb + e'’ into random.

pk = (A b),¢ = Enc(pk, 1) = a',b" + 1 q/2])

Hybrids 1 and 2 are comp. indist. by LWE.

Security

Theorem: under decisional LWE, the scheme is IND-

secure. In fact, even more: a ciphertext together with
the public key is pseudorandom.

Hybrid 2. Change r4 + e’,rb + e'’ into random.

pk = (A b),¢ = Enc(pk, 1) = a',b" + 1 q/2])

Now, we have the message u encrypted with a one-time
pad which perfectly hides u.

Public-key Encryption

[Regev05, Micciancio’10, Lyubashevsky-Peikert-Regev'10]

Secret key sk = Small secret s from y™
Public key pk: fori from 1 ton
(A,b = As + e)
Encrypting a message bit u: pick a random vector r from y™

(rA+e’,rb+e" +ulq/2))

Decryption: compute
(rb+e" +ulq/2]) — (rA+e')s

and round to nearest multiple of q/2.

Homomorphic Encryption

Application 1. Secure Outsourcing

K\Program:P
Encﬁ Y o

b Client Server (the Cloud)

A Special Case: Encrypted Database Lookup

— also called “private information retrieval” (we’ll see
in two lectures)

Application 2. Secure Collaboration

. Hospital
Genomics P

Thin

R, | R 28 R ®,

ID Genome ID Phenotype

ﬁ

“Parties learn the genotype-phenotype correlations and nothing else”

Homomorphic Encryption: Syntax
(can be either secret-key or public-key enc)

4-tuple of PPT algorithms (Gen, Enc, Dec, Eval) s.t.

o (sk,ek) « Gen(1™).
PPT Key generation algorithm generates a secret key as
well as a (public) evaluation key.

¢ « Enc(sk,m).
Encryption algorithm uses the secret key to encrypt
message m.

¢ « Eval(ek, f,c).
Homomorphic evaluation algorithm uses the evaluation key
to produce an “evaluated ciphertext” c¢'.

e m « Dec(sk,c).
Decryption algorithm uses the secret key to decrypt
ciphertext c.

Homomorphic Encryption: Correctness

Dec(sk, Eval(ek, f,Enc(x))) = f(x).

Plaintext world

X f(x)
Enc, Encg,
C c’

Evalf

Ciphertext world

Homomorphic Encryption: Security

Function: f

Enc(sk,x)

Enc(f(x))

b Client Server (the Cloud)

Security against the “curious cloud” = standard
IND-security of secret-key encryption

Key Point. Eval is an entirely public algorithm with
public inputs.

Here is a homomorphic encryption scheme...

o (sk,—) « Gen(1™M).
Use any old secret key enc scheme.

e ¢« Enc(sk,m).
Just the secret key encryption algorithm...

¢ « Eval(ek,f,c).
Output ¢’ = c || f. So Eval is basically the identity function!!

« m « Dec(sk,c).
Parse ¢’ = c||f as a ciphertext concatenated with a function
description. Decrypt ¢ and compute the function f.

This is correct and it is IND-secure.

Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext and

the runtime of the decryption is independent of the
complexity of the evaluated function.

A Relaxation: The size (bit-length) of the evaluated

ciphertext and the runtime of the decryption depends

sublinearly on the complexity of the evaluated
function.

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with
XOR (+mod 2) and AND (X mod 2) gates.

| Enc((xy + x2)x3x4)

(]

Enc(x; + x2) | | Enc(x3x,)

A

Enc(xy) Enc(xy) Enc(x3) Enc(xy)

Takeaway: If you can compute XOR and AND on
encrypted bits, you can compute everything.

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with
XOR (+mod 2) and AND (X mod 2) gates.

L Ene(G + x2)xsxa)

(]

Enc(x; + x2) | | Enc(x3x,)

A

Enc(xy) Enc(xy) Enc(x3) Enc(xy)

We already know how to add (XOR), can we
multiply?? Next lecture...

