
MIT 6.875

Lecture 19
Foundations of Cryptography



TODAY (and the next lecture):
Lattice-based Cryptography



Why Lattice-based Crypto?

o Exponentially Hard (so far)

While factoring and discrete log can be solved in time 
2
! ! for problems of size 𝑛, the best algorithms for 

lattice-based crypto run in time nearly 2!.



Why Lattice-based Crypto?

o Quantum-Resistant (so far)

o Exponentially Hard (so far)



Quantum Computers Break Crypto

Shor’s Algorithm for Factoring and Discrete Logarithms.

(if they exist)(Very large scale)



“Cryptographers seldom sleep well”.
[Silvio Micali, 1988]



Post-Quantum Cryptography

3 out of 4: Lattice-based Cryptography

Cryptography that is (believed to be) secure against quantum attacks. 



Why Lattice-based Crypto?

o Quantum-Resistant (so far)

o Worst-case hardness

o Exponentially Hard

o Simple and Efficient

(unique feature of lattice-based crypto)

o Enabler of Surprising Capabilities
(Fully Homomorphic Encryption)

(so far)



Solving Linear Equations

5𝑠! + 11𝑠" = 2

2𝑠! + 𝑠" = 6

7𝑠! + 𝑠" = 26

where all equations are over ℤ, the integers



Solving Linear Equations

More generally, 𝑛 variables and 𝑚 ≫ 𝑛 equations.

andA A
s

Given:

GOAL:  Find s.



Solving Linear Equations

GOAL:  Find s.

EASY!  For example, by Gaussian Elimination

andA A
s

Given:



Solving Linear Equations

GOAL:  Find s.

How to make it hard:
That is, work modulo some 𝑞. (1121 𝑚𝑜𝑑 100 = 21)

Still EASY! Gaussian Elimination mod 𝑞

andA A
s

Given:

Chop the head?



Solving Linear Equations

GOAL:  Find s.

How to make it hard:  Chop the tail?
Add a small error to each equation. 

Still EASY! Linear regression.

andA A
s

Given: + e



Solving Linear Equations

GOAL:  Find s.

How to make it hard:  Chop the head and the tail?
Add a small error to each equation and work mod 𝑞. 

Turns out to be very HARD!

andA A
s

Given: + e



Solving Noisy Modular Linear Equations

GOAL:  Find s.

A is chosen at random from ℤ#$×&, s from ℤ#&
and e from 𝜒$.

andA A
s

Given: + e

Parameters: dimensions 𝒏 and 𝑚, modulus 𝒒, error 
distribution 𝜒 = uniform in some interval [−𝑩,… ,𝑩].     

Learning with Errors (LWE)



Learning with Errors (LWE)

u Decoding Random Linear Codes
(over Fq with L1 errors) 

u Learning Noisy Linear Functions

u Worst-case hard Lattice Problems 
[Regev’05, Peikert’09]



a1

O

a2

LWE and Lattices
a1*s1+a2*s2

a1*s1+a2*s2+e

A lattice is a discrete, additive subgroup of ℝ$



Setting Parameters
Cryptanalysis over three decades suggests 
we are safe with the following parameters: 

𝑛 = security parameter (≈ 1 − 10K)

𝑚 = arbitrary poly in 𝑛

𝐵 = small poly in 𝑛, say 𝑛

𝑞 = poly in 𝑛, larger than 𝐵, and could be 
as large as sub-exponential, say 2&!.##

even from quantum computers, AFAWK!



Decisional LWE

Theorem: “Decisional LWE is as hard as LWE”. 

Can you distinguish between:

,A A s
+ e and

,A b



Information-Computation Gap
Fix 𝑛, 𝑞, 𝐵.

(Search) LWE:

𝑚 = 0

Information-theoretically 
impossible to recover 𝑠.

𝑚 ≈
𝒏 𝐥𝐨𝐠 𝒒

(1 − log 2𝐵 + 1log 𝑞 )

𝑠 uniquely determined given 
(𝐴, 𝐴𝑠 + 𝑒). computationally 
hard to recover.

𝑚 ≈ 𝟐
𝒏

#$%( '
()*+)

easy



OWF and PRG

gA(s,e) = As+e

• gA is a one-way function (assuming LWE)
• gA is a pseudo-random generator (decisional LWE)
• gA is also a trapdoor function…
• also a homomorphic commitment… 

𝒆 ∈ 𝑍!": random “small” error vector)

(A ∈ 𝑍!"#$
s ∈ 𝑍!" random “small” secret vector



Basic (Secret-key) Encryption

• Secret key sk = Uniformly random vector s Î 𝑍'!

• Encryption Encs(𝜇):   // 𝜇 Î {0,1}

– Sample uniformly random a Î 𝑍'!, “small” noise e Î 𝑍

– The ciphertext c = (a, b = áa, sñ + e +𝜇 𝑞/2 )

n = security parameter, q = “small” modulus
[Regev05]

• Decryption Decsk(c): Output Roundq/2(b − áa, sñ mod q)

// correctness as long as |e| < q/4



Basic (Secret-key) Encryption
[Regev05]

This scheme is additively homomorphic.

𝒄 = (a, b = áa, sñ + e + 𝜇 𝑞/2 )

𝒄′ = (a′ , b′ = áa′, sñ + e′ + 𝜇 ′ 𝑞/2 )

𝒄 + 𝒄′ = (a+a′ , b+ b′)

+

In words: 𝑐 + 𝑐′ is an encryption of 𝜇 + 𝜇 ′ (mod 2) 

Encs(m) 

Encs(m’) 

𝒄 + 𝒄′ = (a+a′ , b+ b′ = á a +a′, sñ + (e+e′) + (𝜇 + 𝜇 ′) 𝑞/2 )



Basic (Secret-key) Encryption
[Regev05]

We will see how to make this scheme into a fully 
homomorphic scheme.

Setting 𝑞 = 𝑛()* & and 𝐵 = 𝑛 (for example) lets us 
support any polynomial number of additions.

For now, note that the error increases when you add 
two ciphertexts. That is,  |𝑒+,, ≈ |𝑒! + 𝑒" ≤ 2𝐵.

You can also negate the encrypted bit easily.



NEXT UP: 
1. Public-key Encryption from LWE and 

2. Fully Homomorphic Encryption



LWE with Small Secrets

GOAL:  Find s.

A is chosen at random from ℤ#$×&, s from 
𝝌𝒏 and e from 𝜒$.

andA A
s

Given: + e

Parameters: dimensions 𝒏 and 𝑚, modulus 𝒒, error 
distribution 𝜒 = uniform in some interval [−𝑩,… ,𝑩].     



LWE with Small Secrets

GOAL:  Find (the small secret) s.

Theorem: LWE with small secrets is as hard as LWE.

andA A
s

Given: + e

Proof on the board.



Public-key Encryption

• Secret key sk = Small secret s from 𝜒!
[Regev05, Micciancio’10, Lyubashevsky-Peikert-Regev’10]

• Public key pk: for 𝑖 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑛

𝒄𝒊 = (𝒂𝒊, 𝒂𝒊, 𝒔 + 𝑒.)



Public-key Encryption

• Secret key sk = Small secret s from 𝜒!

• Public key pk: for 𝑖 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑛

(𝑨, 𝒃 = 𝑨𝒔 + 𝒆)

• Encrypting a message bit 𝜇: pick a random vector 𝒓 from 𝜒!

(𝒓𝑨 + 𝒆/, 𝒓𝒃 + 𝑒// + 𝜇 𝑞/2 )

,A A s + e

• Decryption: compute 

(𝒓𝒃 + 𝑒// + 𝜇 𝑞/2 ) − 𝒓𝑨 + 𝒆/ 𝐬

and round to nearest multiple of q/2.

[Regev05, Micciancio’10, Lyubashevsky-Peikert-Regev’10]



Correctness
• Encrypting a message bit 𝜇: pick a random vector 𝒓 from 𝜒!

(𝒓𝑨 + 𝒆/, 𝒓𝒃 + 𝑒// + 𝜇 𝑞/2 )

• Decryption:

(𝒓𝒃 + 𝑒// + 𝜇 𝑞/2 ) − 𝒓𝑨 + 𝒆/ 𝐬

= 𝒓(𝑨𝒔 + 𝒆) + 𝑒// + 𝜇 𝑞/2 − 𝒓𝑨 + 𝒆/ 𝐬

= 𝒓𝒆 + 𝑒// − 𝒆/𝒔 + 𝜇 𝑞/2

Decryption works as long as |𝒓𝒆 − 𝒆/𝒔 + 𝑒′′| < 𝒒
𝟒 .



Security
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

We show this by a hybrid argument.

Let’s stare at a public key, ciphertext pair.

𝒑𝒌 = 𝑨, 𝒃 = 𝑨𝒔 + 𝒆 , 𝒄 = 𝑬𝒏𝒄 𝒑𝒌, 𝜇 = 𝒓𝑨 + 𝒆/, 𝒓𝒃 + 𝑒// + 𝜇 𝑞/2 )

Call this distribution Hybrid 0.



Security
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

Hybrid 1. Change the public key to random (from LWE).

T𝒑𝒌 = 𝑨, 𝒃 , U𝒄 = 𝑬𝒏𝒄 T𝒑𝒌, 𝜇 = 𝒓𝑨 + 𝒆/, 𝒓𝒃 + 𝑒// + 𝜇 𝑞/2 )

Hybrids 0 and 1 are comp. indist. by decisional LWE.



Security
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

Hybrid 2. Change 𝒓𝑨 + 𝒆-, 𝒓𝒃 + 𝑒′′ into random.

T𝒑𝒌 = 𝑨, 𝒃 , U𝒄 = 𝑬𝒏𝒄 T𝒑𝒌, 𝜇 = 𝒂′, 𝑏′ + 𝜇 𝑞/2 )

Hybrids 1 and 2 are comp. indist. by LWE.



Security
Theorem: under decisional LWE, the scheme is IND-
secure. In fact, even more: a ciphertext together with 
the public key is pseudorandom.

Hybrid 2. Change 𝒓𝑨 + 𝒆-, 𝒓𝒃 + 𝑒′′ into random.

T𝒑𝒌 = 𝑨, 𝒃 , U𝒄 = 𝑬𝒏𝒄 T𝒑𝒌, 𝜇 = 𝒂′, 𝑏′ + 𝜇 𝑞/2 )

Now, we have the message 𝜇 encrypted with a one-time
pad which perfectly hides 𝜇.



Public-key Encryption

• Secret key sk = Small secret s from 𝜒!

• Public key pk: for 𝑖 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑛

(𝑨, 𝒃 = 𝑨𝒔 + 𝒆)

• Encrypting a message bit 𝜇: pick a random vector 𝒓 from 𝜒!

(𝒓𝑨 + 𝒆/, 𝒓𝒃 + 𝑒// + 𝜇 𝑞/2 )

• Decryption: compute 

(𝒓𝒃 + 𝑒// + 𝜇 𝑞/2 ) − 𝒓𝑨 + 𝒆/ 𝐬

and round to nearest multiple of q/2.

[Regev05, Micciancio’10, Lyubashevsky-Peikert-Regev’10]



Homomorphic Encryption



Application 1. Secure Outsourcing

Client Server (the Cloud)

Input: x Program: P

Enc(P(x))

Enc(x) 

A Special Case: Encrypted Database Lookup

– also called “private information retrieval” (we’ll see 
in two lectures)

x 

P(x)



Application 2. Secure Collaboration

Hospital

ID Genome ID Phenotype

“Parties learn the genotype-phenotype correlations and nothing else”



Homomorphic Encryption: Syntax

• 𝑠𝑘, 𝑒𝑘 ← 𝐺𝑒𝑛 1& .
PPT Key generation algorithm generates a secret key as 
well as a (public) evaluation key.
• 𝑐 ← 𝐸𝑛𝑐 𝑠𝑘,𝑚 .
Encryption algorithm uses the secret key to encrypt 
message 𝑚.

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐 .
Decryption algorithm uses the secret key to decrypt 
ciphertext 𝑐.

4-tuple of PPT algorithms (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐, 𝐸𝑣𝑎𝑙) s.t.

(can be either secret-key or public-key enc)

• 𝑐′ ← 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝑐 .
Homomorphic evaluation algorithm uses the evaluation key 
to produce an “evaluated ciphertext” 𝑐′.



Homomorphic Encryption: Correctness

𝐷𝑒𝑐(𝑠𝑘, 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝐸𝑛𝑐(𝑥)) = 𝑓(𝑥).

𝑥

𝑐

𝑬𝒏𝒄𝒑𝒌 𝑬𝒏𝒄𝒔𝒌

𝑬𝒗𝒂𝒍𝒇
𝑐′

𝑓(𝑥)

Ciphertext world

Plaintext world



Homomorphic Encryption: Security

𝑥

Client Server (the Cloud)

Input: x Function: f

Enc(f(x))

Enc(sk,x) 

Security against the “curious cloud” = standard 
IND-security of secret-key encryption  

Key Point: Eval is an entirely public algorithm with 
public inputs. 



Here is a homomorphic encryption scheme…

• 𝑠𝑘, − ← 𝐺𝑒𝑛 1& .
Use any old secret key enc scheme.

• 𝑐 ← 𝐸𝑛𝑐 𝑠𝑘,𝑚 .
Just the secret key encryption algorithm…

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐′ .
Parse 𝑐/ = 𝑐||𝑓 as a ciphertext concatenated with a function 
description. Decrypt 𝑐 and compute the function 𝑓.

• 𝑐′ ← 𝐸𝑣𝑎𝑙 𝑒𝑘, 𝑓, 𝑐 .
Output 𝑐′ = 𝑐 || 𝑓.  So Eval is basically the identity function!!

This is correct and it is IND-secure.



Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext and 
the runtime of the decryption is independent of the 
complexity of the evaluated function.

A Relaxation:  The size (bit-length) of the evaluated 
ciphertext and the runtime of the decryption depends 
sublinearly on the complexity of the evaluated 
function.



How to Compute Arbitrary Functions

X+

X

For us, programs = functions = Boolean circuits with 
XOR (+𝑚𝑜𝑑 2) and AND (×𝑚𝑜𝑑 2) gates.

Takeaway: If you can compute XOR and AND on 
encrypted bits, you can compute everything.

𝐸𝑛𝑐(𝑥!) 𝐸𝑛𝑐(𝑥") 𝐸𝑛𝑐(𝑥#) 𝐸𝑛𝑐(𝑥$)

𝐸𝑛𝑐(𝑥! + 𝑥") 𝐸𝑛𝑐(𝑥#𝑥$)

𝐸𝑛𝑐((𝑥! + 𝑥")𝑥#𝑥$)



How to Compute Arbitrary Functions

X+

X

For us, programs = functions = Boolean circuits with 
XOR (+𝑚𝑜𝑑 2) and AND (×𝑚𝑜𝑑 2) gates.

We already know how to add (XOR), can we 
multiply?? Next lecture… 

𝐸𝑛𝑐(𝑥!) 𝐸𝑛𝑐(𝑥") 𝐸𝑛𝑐(𝑥#) 𝐸𝑛𝑐(𝑥$)

𝐸𝑛𝑐(𝑥! + 𝑥") 𝐸𝑛𝑐(𝑥#𝑥$)

𝐸𝑛𝑐((𝑥! + 𝑥")𝑥#𝑥$)


