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NP Proofs

Proof = 

For the NP-complete problem of graph 3-coloring

Prover P has a witness, 
the 3-coloring of G

Verifier V checks:
(a) only 3 colors are used &
(b) any two vertices 
connected by an edge are 
colored differently. 



Zero-Knowledge (Interactive) Proof

Commitments

𝑒 ← 𝐸

Because NP proofs reveal too much



Zero-Knowledge (Interactive) Proof
Because NP proofs reveal too much

1. Completeness: For every 𝐺 ∈ 3COL, V accepts P’s proof. 

2. Soundness: For every 𝐺 ∉ 3COL and any cheating 𝑃∗, V 
rejects 𝑃∗’s proof with probability ≥ 1 − neg(𝑛)

3. Zero Knowledge: For every cheating 𝑉∗, there is a PPT simulator 
S such that for every G ∈ 3COL, S simulates the view of 𝑉∗.



Zero Knowledge Proofs

Theorem [Goldreich-Micali-Wigderson’87] Assuming 
one-way functions exist, all of NP has computational 
zero-knowledge proofs.





Proofs of Knowledge

Topic 1:



So far: Decision Problems
𝑦 ∈ 𝐿 or 𝑦 ∉ 𝐿

(e.g. 𝑦 is a quadratic residue mod 𝑁 or it is not)

Here is a different scenario:

𝑦 = 𝑔" (mod 𝑝)𝑥

Alice wants to convince Bob that she knows a solution to a 
problem, e.g. that she knows the discrete log of 𝑦

Discrete log of 𝑦 always exists (assuming 𝑔 is a generator)…



So far: Decision Problems

𝑦 = 𝑔" (mod 𝑝)𝑥

Completeness: When Alice and Bob run the protocol where 
Alice has input 𝑥, Bob outputs accept. 

Acc/Rej

Zero Knowledge: There is a simulator that, given only 𝑦, 
outputs a view of Bob that is indistinguishable from his view in 
an interaction with Alice. 

Soundness? How to define it? 



Proof of Knowledge

𝑦 = 𝑔" (mod 𝑝)𝑥 Acc/Rej

If Alice knows 𝒙, there must be a way to “extract it from her”. 

I will not define an extractor formally but will show you an 
example (see Goldreich’s book for more)



ZK Proof of Knowledge of Discrete Log

𝑦 = 𝑔" (mod 𝑝)𝑥 Acc/Rej

𝑧 = 𝑔# (mod 𝑝)

𝑐 ← {0,1}

𝑠 = 𝑟 + 𝑐𝑥 (mod 𝑞)

𝑝 = 2𝑞 + 1

Completeness and Zero Knowledge: Exercise.

Accept iff 𝑔$ = 𝑧 M 𝑦%



Proof of Knowledge: Extractor

𝑦 = 𝑔" (mod 𝑝)

𝑧 = 𝑔# (mod 𝑝)

𝑐 = 0

𝑠&

Assume 𝑃∗ convinces the verifier 
with prob. > '

(
+ 1/𝑝𝑜𝑙𝑦

𝑃∗

Extractor runs 𝑃∗ to get a 𝑧.

𝑐 = 1

𝑠'

Runs 𝑃∗ with 𝑐 = 0 and gets 𝑠&

Rewinds 𝑃∗ to the first message.

Runs 𝑃∗ with 𝑐 = 1 and gets 𝑠'

𝑔$! = 𝑧 and 𝑔$" = 𝑧𝑦 w.p. 1/𝑝𝑜𝑙𝑦

𝑔$")$! = 𝑦. 
So, 𝑠' − 𝑠& is the discrete log of 𝑦.



Zero Knowledge vs. Proof of Knowledge

Zero knowledge is a property of the prover 
against malicious verifiers. A prover P reveals zero 
knowledge if for all 𝑉∗ …

Soundness and Proof of knowledge are properties 
of the verifier against malicious provers. A verifier V 
is sound (resp. satisfied PoK) if for all 𝑃∗ …



Zero Knowledge Proofs of Knowledge

Theorem [Goldreich-Micali-Wigderson’87] Assuming 
one-way functions exist, all of NP has computational 
zero-knowledge proofs of knowledge.



The Round-Complexity of ZK

Topic 2:



Reducing Soundness Error

The 3COL protocol has a large soundness error of 1 − 1/|𝐸|
(probability that 𝑉 accepts even though 𝐺 ∉ 3𝐶𝑂𝐿)

Theorem: Sequential Repetition reduces soundness error for 
interactive proofs (and preserves the ZK property.)

Theorem: Parallel Repetition reduces soundness error for 
interactive proofs. It is also honest-verifier ZK.

Problem: Lots of rounds



Theorem [Goldreich-Krawczyk’90] There exist ZK proofs whose 
parallel repetition is NOT (malicious verifier) zero knowledge.

But the GK 90 counterexample is quite contrived. How about 
“natural protocols”, e.g. the GMW 3-coloring protocol from 
the last lecture?  



Theorem [Goldreich-Krawczyk’90] There exist ZK proofs whose 
parallel repetition is NOT (malicious verifier) zero knowledge.

Theorem [Holmgren-Lombardi-Rothblum’21] Parallel Repetition 
of the (Goldreich-Micali-Wigderson) 3COL protocol is not zero-
knowledge.



Reducing Soundness Error

Theorem [Goldreich-Kahan’95] There is a constant-round ZK 
proof system for 3COL (with exponentially small soundness 
error), assuming discrete logarithms are hard (more generally, 
assuming the existence of collision-resistant hash functions).

Fortunately, we have:



Topic 3:

Can we make proofs non-interactive 
again?

Why?
1. V does not need to be online during the proof process.
2. Proofs are not ephemeral, can stay into the future. 



Topic 3:

Can we make proofs non-interactive 
again?

NO!YES, WE CAN!



Non-Interactive ZK is Impossible

𝜋

Suppose there were an NIZK proof system for 3COL.

Graph G Graph G

Step 1. When G is in 3COL, V accepts the proof 𝜋.
(Completeness)



Non-Interactive ZK is Impossible

"𝜋

Suppose there were an NIZK proof system for 3COL.

Graph G Graph G

Step 2. PPT Simulator S, given only G in 3COL, produces 
an indistinguishable proof %𝜋 (Zero Knowledge).

In particular, V accepts &𝝅. 



Non-Interactive ZK is Impossible

"𝜋

Suppose there were an NIZK proof system for 3COL.

Graph G Graph G

Step 3. Imagine running the Simulator S on a 𝐺 ∉ 3COL. 
It produces a proof %𝜋which the verifier still accepts!

(WHY?! Because S and V are PPT. They together 
cannot tell if  the input graph is 3COL or not)



Non-Interactive ZK is Impossible

𝜋

Suppose there were an NIZK proof system for 3COL.

Graph G Graph G

Step 4. Therefore, S is a cheating prover! 
Produces a proof for a 𝐺 ∉ 3COL that the verifier 
nevertheless accepts.

Ergo, the proof system is NOT SOUND!



THE END

Or, is it?



Two Roads to Non-Interactive ZK (NIZK)
1. Random Oracle Model & Fiat-Shamir Transform.

2. Common Random String Model (We won’t go into 
this in the course, but if you are curious, see L16 
slides from Fall 2021.)

𝜋
Graph G Graph G

Random Oracle



NIZK Proof for 3COL

Graph G

1 2

4 3

1 2

4 3

Graph G
=(V,E)

Start with the parallel repetition of the 3COL protocol.

Recall: it is complete, has exponentially small soundness 
error, and is HVZK.

random challenge c



NIZK Proof for 3COL

Graph G

1 2

4 3

1 2

4 3

Graph G
=(V,E)

Fiat and Shamir 1986: Let c = H(a). Now the prover can 
compute the challenge herself!

random challenge c

Random Oracle

H

Potentially harmful for soundness. But in the random 
oracle model for H, can prove soundness. 

a

z

a, c=H(a), z



Topic 4:

The Power of Interactive Proofs

What can we prove with interaction?



Prover Verifier

Interactive Proof for Graph Non-Isomorphism

Graph 𝑮𝟎 Graph 𝑮𝟏

𝜌(𝐺*)

𝑏′

≇

Pick a random bit 𝑏 and a 
random permutation 𝜌

Accept if 𝑏 = 𝑏+.

Completely unclear 
how to prove in NP.



A window into a promised land…



The Power of Interactive Proofs

Theorem [Nisan’90, Lund-Fornow-Karloff-Nisan’90] 
There is an interactive proof for the statement that 
the number of satisfying assignments to a formula is a 
given number (this complexity class is called #𝑃).

Theorem [Shamir’90] 𝐼𝑃 = 𝑃𝑆𝑃𝐴𝐶𝐸.



The Power of Interactive Proofs

Theorem [Babai-Fornow-Lund’90] M𝐼𝑃 = 𝑁𝐸𝑋𝑃.

Definition of multi-prover interactive proofs [BenOr-
Goldwasser-Kilian-Wigderson’88] 

V MIP



The Power of Interactive Proofs

Theorem [Arora-Lund-Motwani-Sudan-Szegedy’92] 
PCP(3) = 𝑁𝑃.

Definition of probabilistically checkable proofs [Arora-
Safra’92, Feige-Goldwasser-Lovasz-Safra-Szegedy’91] 

V

𝜋' 𝜋( 𝜋* 𝜋+ 𝜋, 𝜋- 𝜋.… … …





By Ryan O’Donnell



Next Lecture:

Succinct Interactive Proofs*:

Vitalik Buterin, founder of Ethereum: “I expect zk-SNARKs to be 
a significant revolution as they permeate the mainstream world 
over the next 10-20 years.”

SNARGs, SNARKs and other beasts of the crypto zoo


