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Zero Knowledge Proofs



ZK Definition

Analogously: 
statistical and computational zero-knowledge

An Interactive Protocol (P,V) is perfect zero-knowledge 
for a language 𝐿 if for every PPT 𝑽∗, there exists a 
(expected) poly time simulator S s.t. for every 𝑥 ∈ 𝐿, the 
following two distributions are identical:

1. 𝑣𝑖𝑒𝑤!∗(𝑃, 𝑉∗) 2. 𝑆(𝑥, 1#)



Zero Knowledge Interactive Proof for QR

𝑠 = 𝑟" (mod 𝑁)

𝑏 ← {0,1}

If b=0: 𝑧 = 𝑟 Check: 
𝑧" = 𝑠𝑦# (mod 𝑁)If b=1: 𝑧 = 𝑟𝑥

ℒ = { 𝑁, 𝑦 : 𝑦 is a quadratic residue mod 𝑁}.

𝑁, 𝑦 𝑁, 𝑦



We Proved:

Thm: The QR protocol is honest verifier zero knowledge.

𝑣𝑖𝑒𝑤! 𝑃, 𝑉 :
𝑠, 𝑏, 𝑧

Simulator S works as follows:

1. First pick a random bit b.

2. pick a random 𝑧 ∈ 𝑍$∗ .

3. compute s = 𝑧"/𝑦#.

Claim: The simulated transcript is identically distributed 
as the real transcript in the interaction (P,V).

4. output (s, b, z).



NOW: (Malicious Ver) Zero Knowledge
Theorem: The QR protocol is (malicious verifier) zero 
knowledge.

Simulator S works as follows:

1. First pick a random s and 
“feed it to” 𝑉∗.
2. Let b = 𝑉∗(𝑠).

Now what???𝑣𝑖𝑒𝑤!∗ 𝑃, 𝑉∗ :
𝑠, 𝑏, 𝑧



(Malicious Ver) Zero Knowledge
Theorem: The QR protocol is (malicious verifier) zero 
knowledge.

Simulator S works as follows:

1. First set 𝑠 = %!

&"
for a random z and b and feed s to 𝑉∗.

2. Let b′ = 𝑉∗(𝑠).

3. If 𝑏' = 𝑏, output (s, b, z) and stop.  

4. Otherwise, go back to step 1 and repeat. (also 
called “rewinding”).



Simulator S works as follows:

1. First set 𝑠 = %!

&"
for a random z and feed s to 𝑉∗.

2. Let b′ = 𝑉∗(𝑠).

3. If 𝑏' = 𝑏, output (s, b, z) and stop.  

4. Otherwise, go back to step 1 and repeat. (also 
called “rewinding”).

Lemma: 
(1) S runs in expected polynomial-time. 
(2) When S outputs a view, it is identically 

distributed to the view of 𝑉∗ in a real execution. 



What Made it Possible?

1. Each statement had multiple proofs of which the 
prover chooses one at random.

2. Each such proof is made of two parts: seeing either 
one on its own gives the verifier no knowledge; seeing 
both imply 100% correctness.

3. Verifier chooses to see either part, at random. 
The prover’s ability to provide either part on 
demand convinces the verifier. 



Prover
Verifier

𝐾 = 𝜌(𝐺)

1

2 5

3 4

6
7

8 9

10

1
2

3

4

5

9

6

8

10

7

ZK Proof for Graph Isomorphism

Graph G Graph H

𝐇 = 𝝅(𝑮) where 𝜌 is a random permutation

random challenge bit 𝑏

𝑏 = 0: send 𝜋( s.t. K = 𝜋((𝐺)

𝑏 = 1: send 𝜋) s.t. H = 𝜋)(𝐾)



Prover
Verifier

𝐾 = 𝜌(𝐺)

ZK Proof for Graph Isomorphism

𝐇 = 𝝅(𝑮) where 𝜌 is a random permutation

random challenge bit 𝑏

𝑏 = 0: send 𝜋( = 𝜌

𝑏 = 1: send 𝜋) = 𝜋 ∘ 𝜌*)

Completeness: Exercise. 



Prover
Verifier

𝐾 = 𝜌(𝐺)

ZK Proof for Graph Isomorphism

𝐇 = 𝝅(𝑮) where 𝜌 is a random permutation

random challenge bit 𝑏

𝑏 = 0: send 𝜋( = 𝜌

𝑏 = 1: send 𝜋) = 𝜋 ∘ 𝜌*)

Soundness: Suppose G and H are non-isomorphic, and a 
prover could answer both the verifier challenges. Then, 
K = 𝜋((𝐺) and H = 𝜋) 𝐾 .
In other words, H = 𝜋)∘ 𝜋((𝐺), a contradiction!



Prover
Verifier

𝐾 = 𝜌(𝐺)

ZK Proof for Graph Isomorphism

𝐇 = 𝝅(𝑮) where 𝜌 is a random permutation

random challenge bit 𝑏

𝑏 = 0: send 𝜋( = 𝜌

𝑏 = 1: send 𝜋) = 𝜋 ∘ 𝜌*)

Zero Knowledge: Exercise.



Efficient Prover (given a Witness)

In both these protocols, the (honest) prover is actually 
polynomial-time given the NP witness (the square root 
of 𝑦 in the case of QR, and the isomorphism in the case 
of graph-iso.)   

Soundness is nevertheless against any, even 
computationally unbounded, prover 𝑃∗.



Do all NP languages have Perfect ZK proofs?

We showed two languages with perfect ZK proofs. Can 
we show this for all NP languages?

Theorem [Fortnow’89, Aiello-Hastad’87] No, unless 
bizarre stuff happens in complexity theory (technically: 
the polynomial hierarchy collapses.)  



Do all NP languages have ZK proofs?
Nevertheless, today, we will show:

Theorem [Goldreich-Micali-Wigderson’87] Assuming 
one-way functions exist, all of NP has computational 
zero-knowledge proofs.

This theorem is amazing: it tells us that everything that 
can be proved (in the sense of Euclid) can be proved in 
zero knowledge!



Zero Knowledge Proof for 3-Coloring

NP-Complete Problem:
Every other problem in NP can be 
reduced to it.



We need a commitment scheme (aka a “locking 
scheme” from pset 1).

Sender Receiver

Bit b

bCommit to b:

1. Hiding: The locked box should completely hide b.

2. Binding: Sender shouldn’t be able to open to 1-b.

b

Open:  b,



In pset 1, you implemented a commitment scheme using 
PRGs. We will later show another construction using one-
way permutations.

Sender Receiver

Bit b

bCommit to b:

1. Hiding: The locked box should completely hide b.

2. Binding: Sender shouldn’t be able to open to 1-b.

Open:  b,

ACCEPT/
REJECT



Zero Knowledge Proof for 3COL
Graph G
=(V,E)

Graph G

1 2

4 3

1 2

4 3

Come up with a random 
permutation of the colors

𝜌: 𝑉 → {𝑅, 𝐵, 𝐺}

𝜌 1 ,… , 𝜌(𝑛)

random edge (𝑖, 𝑗)

open ρ(𝑖) and ρ(𝑗)

1. Check the openings
2. Check: ρ 𝑖 , ρ 𝑗 ∈ {𝑅, 𝐵, 𝐺}
3.   Check: ρ 𝑖 ≠ ρ 𝑗 .

𝜌(1) 𝜌(𝑛)…



Zero Knowledge Proof for 3COL

Graph G

1 2

4 3

1 2

4 3

random edge (𝑖, 𝑗)

open ρ(𝑖) and ρ(𝑗)

Completeness: Exercise.

Graph G
=(V,E)

𝜌(1) 𝜌(𝑛)…



Zero Knowledge Proof for 3COL

Graph G

1 2

4 3

1 2

4 3

random edge (𝑖, 𝑗)

open ρ(𝑖) and ρ(𝑗)

Soundness: If the graph is not 3COL, in every 3-coloring (that P 
commits to), there is some edge whose end-points have the same color.
V will catch this edge and reject with probability ≥ 1/|𝐸|. 

Graph G
=(V,E)

𝜌(1) 𝜌(𝑛)…



Zero Knowledge Proof for 3COL

Graph G

1 2

4 3

1 2

4 3

random edge (𝑖, 𝑗)

open ρ(𝑖) and ρ(𝑗)

Repeat |𝑬| \ 𝝀 times to get the verifier to accept with probability 
≤ (1 − 1/|𝐸|)|"|#$ ≤ 2%$

Graph G
=(V,E)

𝜌(1) 𝜌(𝑛)…



Commitment Schemes



Sender S
Receiver R

Bit b

Commitment Schemes

Commitment Protocol 
𝐷𝐸𝐶, 𝐶𝑂𝑀 ← (𝑆 𝑏, 1$ , 𝑅 1$ )

COMDEC
b, DEC

ACCEPT/
REJECT

1. Completeness: R always accepts in an honest execution.



Sender S
Receiver R

Bit b

2. Computational Hiding: For every possibly malicious 
(PPT) 𝑅∗,

𝑣𝑖𝑒𝑤+∗(𝑆 0 , 𝑅∗) ≈, 𝑣𝑖𝑒𝑤+∗(𝑆 1 , 𝑅∗)

Commitment Schemes

Commitment Protocol 
𝐷𝐸𝐶, 𝐶𝑂𝑀 ← (𝑆 𝑏, 1$ , 𝑅 1$ )

COMDEC
b, DEC

ACCEPT/
REJECT



Sender S
Receiver R

Bit b

3. Perfect Binding: For every possibly malicious 𝑆∗, let 
COM be the receiver’s output in an execution of 𝑆∗, 𝑅 .
There is no pair of decommitments 𝐷𝐸𝐶(, 𝐷𝐸𝐶) s.t. R 
accepts both com, 0, 𝐷𝐸𝐶( and (com, 1, 𝐷𝐸𝐶)).

Commitment Schemes

Commitment Protocol 
𝐷𝐸𝐶, 𝐶𝑂𝑀 ← (𝑆 𝑏, 1$ , 𝑅 1$ )

COMDEC
b, DEC

ACCEPT/
REJECT



Sender S Receiver R

Bit b

A Commitment Scheme from any OWP

𝐶𝑂𝑀 = (𝑓 𝑟 , 𝐻𝐶𝐵(𝑟) ⊕ 𝑏)

𝐷𝐸𝐶 = 𝑟

𝑂𝑃𝐸𝑁: (𝑏, 𝑟)

Let 𝐶𝑂𝑀 = 𝑥, 𝑦 .
Check that
1. 𝑓 𝑟 = 𝑥 and 
2. 𝐻𝐶𝐵(𝑟) ⊕ 𝑏 = y

1. Completeness: Exercise.
2. Comp. Hiding: by the hardcore bit property.

3. Perfect Binding: because f is a permutation. 



Back to ZK Proof for 3COL

Graph G

1 2

4 3

1 2

4 3

{𝐶𝑜𝑚 𝜌 𝑘 ; 𝑟& }&'()

random edge (𝑖, 𝑗)

send openings 𝜌 𝑖 , 𝑟- and 𝜌 𝑗 , 𝑟.

Graph G
=(V,E)



Why is this zero-knowledge?

{𝐶𝑜𝑚 𝜌 𝑘 ; 𝑟! }!"#$

edge (𝑖, 𝑗)

send openings 𝑟% and 𝑟&

Simulator S works as follows:

1. First pick a random edge (𝑖∗, 𝑗∗)

2. Feed the commitments of the colors 
to 𝑉∗ and get edge (𝑖, 𝑗)

3. If 𝑖, 𝑗 ≠ (𝑖∗, 𝑗∗), go back and 
repeat.

Color edge (𝑖∗, 𝑗∗) with random, 
different colors
Color all other vertices red.

4. If 𝑖, 𝑗 = (𝑖∗, 𝑗∗), output the commitments and openings 𝑟+
and 𝑟, as the simulated transcript.



Why is this zero-knowledge?

{𝐶𝑜𝑚 𝜌 𝑘 ; 𝑟! }!"#$

edge (𝑖, 𝑗)

send openings 𝑟% and 𝑟&

Lemma: 
(1) Assuming the commitment is 

hiding, S runs in expected 
polynomial-time. 

(2) When S outputs a view, it is 
comp. indist. from the view of 
𝑉∗ in a real execution. 



Why is this zero-knowledge?

{𝐶𝑜𝑚 𝜌 𝑘 ; 𝑟! }!"#$

edge (𝑖, 𝑗)

send openings 𝑟% and 𝑟&

1. First pick a random edge (𝑖∗, 𝑗∗)

2. Feed the commitments of the colors 
to 𝑉∗ and get edge (𝑖, 𝑗)

3. If 𝑖, 𝑗 ≠ (𝑖∗, 𝑗∗), go back and 
repeat.

Color edge (𝑖∗, 𝑗∗) with random, 
different colors
Color all other vertices red.

4. If 𝑖, 𝑗 = (𝑖∗, 𝑗∗), output the commitments and openings 𝑟+
and 𝑟, as the simulated transcript.

Simulator S works as follows (call this Hybrid 0) 



Why is this zero-knowledge?

{𝐶𝑜𝑚 𝜌 𝑘 ; 𝑟! }!"#$

edge (𝑖, 𝑗)

send openings 𝑟% and 𝑟&

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (𝑖∗, 𝑗∗)

2. Feed the commitments of the colors 
to 𝑉∗ and get edge (𝑖, 𝑗)

3. If 𝑖, 𝑗 ≠ (𝑖∗, 𝑗∗), go back and 
repeat.

Permute a legal coloring and 
color all edges correctly.

4. If 𝑖, 𝑗 = (𝑖∗, 𝑗∗), output the commitments and openings 𝑟+
and 𝑟, as the simulated transcript.



Why is this zero-knowledge?

Claim: Hybrids 0 and 1 are computationally 
indistinguishable, assuming the commitment scheme is 
computationally hiding.

Proof: By contradiction. Show a reduction that breaks 
the hiding property of the commitment scheme, 
assuming there is a distinguisher between hybrids 0 
and 1.



Why is this zero-knowledge?

{𝐶𝑜𝑚 𝜌 𝑘 ; 𝑟! }!"#$

edge (𝑖, 𝑗)

send openings 𝑟% and 𝑟&

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (𝑖∗, 𝑗∗)

2. Feed the commitments of the colors 
to 𝑉∗ and get edge (𝑖, 𝑗)

3. If 𝑖, 𝑗 ≠ (𝑖∗, 𝑗∗), go back and 
repeat.

Permute a legal coloring and 
color all edges correctly.

4. If 𝑖, 𝑗 = (𝑖∗, 𝑗∗), output the commitments and openings 𝑟+
and 𝑟, as the simulated transcript.



Why is this zero-knowledge?

{𝐶𝑜𝑚 𝜌 𝑘 ; 𝑟! }!"#$

edge (𝑖, 𝑗)

send openings 𝑟% and 𝑟&

Here is the real view of V* (Hybrid 2)

1. First pick a random edge (𝑖∗, 𝑗∗)

2. Feed the commitments of the colors 
to 𝑉∗ and get edge (𝑖, 𝑗)

3. If 𝑖, 𝑗 ≠ (𝑖∗, 𝑗∗), go back and 
repeat.

Permute a legal coloring and 
color all edges correctly.

4. If 𝑖, 𝑗 = (𝑖∗, 𝑗∗), output the commitments and openings 𝑟+
and 𝑟, as the transcript.



Why is this zero-knowledge?

Claim: Hybrids 1 and 2 are identical.

Hybrid 1 merely samples from the same distribution as 
Hybrid 2 and, with probability 1 − 1/|𝐸|, decides to 
throw it away and resample.



Put together:

Theorem: The 3COL protocol is zero knowledge.



Examples of NP Assertions
• My public key is well-formed (e.g. in RSA, the public 

key is 𝑁, a product of two primes together with an e 
that is relatively prime to 𝜑 𝑁 .)

• Encrypted bitcoin (or Zcash):  “I have enough 
money to pay you.” (e.g. I will publish an encryption 
of my bank account and prove to you that my 
balance is ≥ $𝑋. )

• Running programs on encrypted inputs: Given 
Enc(x) and y, prove that y = PROG(x).



Examples of NP Assertions

• Running programs on encrypted inputs: Given 
Enc(x) and y, prove that y = PROG(x).

More generally: A tool to enforce honest 
behavior without revealing information.



Interaction is Necessary for ZK

𝜋

Suppose there were a non-interactive ZK proof 
system for 3COL.

Graph G Graph G

Step 1. When G is in 3COL, V accepts the proof 𝜋.
(Completeness)



"𝜋

Step 2. PPT Simulator S, given only G in 3COL, produces 
an indistinguishable proof l𝜋 (Zero Knowledge).

In particular, V accepts m𝝅. 

Interaction is Necessary for ZK

Graph G Graph G

Suppose there were a non-interactive ZK proof 
system for 3COL.



"𝜋

Step 3. Imagine running the Simulator S on a 𝐺 ∉ 3COL. 
It produces a proof l𝜋which the verifier still accepts!

(WHY?! Because S and V are PPT. They together 
cannot tell if  the input graph is 3COL or not)

Interaction is Necessary for ZK
Suppose there were a non-interactive ZK proof 
system for 3COL.

Graph G Graph G



𝜋

Step 4. Therefore, S is a cheating prover! 
Produces a proof for a 𝐺 ∉ 3COL that the verifier 
nevertheless accepts.

Ergo, the proof system is NOT SOUND!

Interaction is Necessary for ZK
Suppose there were a non-interactive ZK proof 
system for 3COL.

Graph G Graph G



THE END

Or, is it?



Two Roads to Non-Interactive ZK (NIZK)
1. Random Oracle Model & Fiat-Shamir Transform.

2. Common Random String Model.

𝜋
Graph G Graph G

Random Oracle


