MIT 6.875

Foundations of Cryptography
Lecture 15

Zero Knowledge Proofs

ZK Definition

An Interactive Protocol (PV) is perfect zero-knowledge
for a language L if for every PPT V", there exists a
(expected) poly time simulator S s.t. for every x € L, the
following two distributions are identical:

1. viewy (P, V") 2. S(x,1%)

Analogously:
statistical and computational zero-knowledge

Zero Knowledge Interactive Proof for QR

L ={(N,y):vyis aquadratic residue mod N}.

s =1r? (mod N)

(N,y)
b « {0,1} Q
fb=0:z =1 Check:

Ifb=1: z = rx z% = sy®? (mod N)

We Proved:

Thm: The QR protocol is honest verifier zero knowledge.

Simulator S works as follows:

s =r? (mod N)

b U\g 1. First pick a random bit b.
fb=0:z=7 [Check: 2. pick arandom z € Zy,.
fb=l:z=rx |z2=sy? (modN)

| 3. compute s = z% /yP.
viewy (P, V): '
(s, b, 2) 4. output (s, b, z).

Claim: The simulated transcript is identically distributed
as the real transcript in the interaction (PV).

NOW: (Malicious Ver) Zero Knowledge

Theorem: The QR protocol is (malicious verifier) zero

Knowledge.
s =12 (mod N)
: b < {0,1} (N;'i)
fb=0:z=7 [Check:
If b=1: z = rx z? = sy? (mod N)
viewy+(P,V™*):

(s, b,z)

Simulator S works as follows:

1. First pick a random s and
“feed it to” V™.

2. Letb = V*(s).

Now what???

(Malicious Ver) Zero Knowledge

Theorem: The QR protocol is (malicious verifier) zero
knowledge.

Simulator S works as follows:
2

1. First set s = % for arandom z and b and feedsto V".

2. Letb’ = V*(s).
3.1f b’ = b, output (s, b, z) and stop.

4. Otherwise, go back to step 1 and repeat. (also
called “rewinding”).

Simulator S works as follows:
2

1. First set s = % for arandom z and feed sto VV'*.

2. Letb’ = V*(s).
3.1f b’ = b, output (s, b, z) and stop.

4. Otherwise, go back to step 1 and repeat. (also
called “rewinding”).

Lemma:

(1) S runs in expected polynomial-time.

(2) When S outputs a view, it is identically
distributed to the view of V™ in a real execution.

What Made it Possible?

1. Each statement had multiple proofs of which the
prover chooses one at random.

2. Each such proof is made of two parts: seeing either
one on its own gives the verifier no knowledge; seeing
both imply 100% correctness.

3. Verifier chooses to see either part, at random.
The prover’s ability to provide either part on
demand convinces the verifier.

ZK Prloof for Graph Isomorqhism

2 6
3 8
4 10
9 7
Graph H
K =p(G)
H=n(G6) g

where p is a random permutation Q

Q random challenge bit b -
< Verifier

Prover
b = 0:send my s.t. K=1,(G)

b = 1:sendm; s.t. H = m;(K)

ZK Proof for Graph Isomorphism

Completeness: Exercise.

K = p(G)

—_— >
H = Tl'(G) where p is a random permutation Q

Q . random challenge bit b Verifier

Prover

b=0:sendmy=p

b=1:sendm; =mop~?!

ZK Proof for Graph Isomorphism

Soundness: Suppose G and H are non-isomorphic, and a

prover could answer both the verifier challenges. Then,
K=my,(G)and H = m{(K).

In other words, H = ;0 m,(G), a contradiction!

K = p(G)

_ >
H = (G) where p is a random permutation Q

Q random challenge bit b -
< Verifier

Prover

b=0:sendmy=p

b=1:sendm; =mop~?!

ZK Proof for Graph Isomorphism

Zero Knowledge: Exercise.

K = p(G)

—_— >
H = Tl'(G) where p is a random permutation Q

Q random challenge bit b
< Verifier

Prover

b=0:sendmy=p

b=1:sendm; =mop~?!

Efficient Prover (given a Witness)

In both these protocols, the (honest) prover is actually
polynomial-time given the NP witness (the square root
of y in the case of QR, and the isomorphism in the case

of graph-iso.)

Soundness is nevertheless against any, even
computationally unbounded, prover P*.

Do all NP languages have Perfect ZK proofs?

We showed two languages with perfect ZK proofs. Can
we show this for all NP languages?

Theorem [Fortnow’89, Aiello-Hastad’87] No, unless

bizarre stuff happens in complexity theory (technically:
the polynomial hierarchy collapses.)

Do all NP languages have ZK proofs?

Nevertheless, today, we will show:

Theorem [Goldreich-Micali-Wigderson’87] Assuming
one-way functions exist, all of NP has computational
zero-knowledge proofs.

This theorem is amazing: it tells us that everything that
can be proved (in the sense of Euclid) can be proved in
zero knowledge!

Zero Knowledge Proof for 3-Coloring

NP-Complete Problem:

Every other problem in NP can be
reduced to it.

We need a commitment scheme (aka a “locking
scheme” from pset 1).

‘ Bit b

.Q Commit to b: QA b

>

1. Hiding: The locked box should completely hide b.

2. Binding: Sender shouldn’t be able to open to 1-b.

In pset 1, you implemented a commitment scheme using
PRGs. We will later show another construction using one-
way permutations.

‘ Bit b
: . ACCEPT/
.Q Commit to b: : ! EIECT
> \

1. Hiding: The locked box should completely hide b.

2. Binding: Sender shouldn’t be able to open to 1-b.

Zero Knowledge Proof for 3COL

p(1)

P

p(n)

1 2

Graph G

4 3

Graph G
=(V,E)
4

- R

Come up with a randomrandom edge (i, j)

. <
permutation of the colors

p:V - {R,B,G}

open p(¢) and p(j)

wnN =

nec
nec
nec

O 0O 0

< the openings
<: p(i), p(j) € {R,B, G}

<:p(i) #p() .

Zero Knowledge Proof for 3COL

1 2
Graph G
_(VE) m Graph G
4 4 3
p(D|) ~ |p(m) Q
E i >

random edge (i,)

<

open p(¢) and p(j)

Completeness: Exercise.

Zero Knowledge Proof for 3COL

1 2

Graph G

=(V,E)
4

Graph G

4 3

-2

p(D|) ~ |p(0)

random edge (i,)

<

open p(i) and p(j)>

Soundness: If the graph is not 3COL, in every 3-coloring (that P
commits to), there is some edge whose end-points have the same color.

V will catch this edge and reject with probability = 1/|E]|.

Zero Knowledge Proof for 3COL

1 2
Graph G
_(VE) z Graph G
4 4 3
p(D|) ~ |p(m) Q
E : >

random edge (i,)

<

open p(i) and p(j)>

Repeat |E| - A times to get the verifier to accept with probability
< (1-1/|EDIEI* < 274

Commitment Schemes

Commitment Schemes

ACCEPT/
. Commitment Protocol REJECT
itb
L 1 (DEC,cOM) « (5(b,1%),R(1%))
>
) S e
Receiver R

Sender S
DEC COM

b, DEC

1. Completeness: R always accepts in an honest execution.

Commitment Schemes

ACCEPT/
. Commitment Protocol REJECT
itb
L 1 (DEC,cOM) « (5(b,1%),R(1%))
>
X ‘
> Receiver R
Sender S
DEC COM

b, DEC

2. Computational Hiding: For every possibly malicious
(PPT) R,
viewg=(5(0),R*) =, viewp+(5(1),R")

Commitment Schemes

ACCEPT/
‘ Bit b Commitment Protocol REJECT
(DEC,COM) « (S(b, 1’1),R(1’1))
>
X 2
Receiver R

Sender S
DEC COM

b, DEC

>

3. Perfect Binding: For every possibly malicious S, let
COM be the receiver’s output in an execution of (§*, R).
There is no pair of decommitments (DEC,, DEC;) s.t. R
accepts both (com, 0, DEC,) and (com, 1, DEC,).

A Commitment Scheme from any OWP

Bit b
Q COM = (f(r),HCB(r) @ b) /‘ ;
Sender S > Receiver R
DEC =T Let COM = (x,y).
Check that
OPEN: (b,7) 1. f(r) = x and

" 2. HCB(r)®b=y

1. Completeness: Exercise.

2. Comp. Hiding: by the hardcore bit property.

3. Perfect Binding: because f is a permutation.

Back to ZK Proof for 3COL

1
Graph G
(V) z Graph G
4 4

.Q {Com(p(k); 1) }i=1 Q

random edge (i,)

<

send openings p(i),; and p(j), 1;

Why is this zero-knowledge?

Simulator S works as follows:

1. First pick a random edge (i*,j*)

Color edge (i*,j*) with random, {Com(p(k); 1) }k=1
different colors >

Color all other vertices red.
. edge (i,))
2. Feed the commitments of the colors <

to V* and get edge (i, j)

3.1f(i,j) + (i*,j*), go back and send openings 1; and i
repeat.

A.1f (i,j) = (i%,j"), output the commitments and openings r;
and 7; as the simulated transcript.

Why is this zero-knowledge?

Lemma: {Com(p(k); r"k)}’ié=1>

(1) Assuming the commitment is

hiding, S .run§ in expected edge (i,)
polynomial-time. <

(2) When S outputs a view, it is
comp. indist. from the view of
/" in a real execution.

send openings 1; and 1;
>

Why is this zero-knowledge?
Simulator S works as follows (call this Hybrid 0)

1. First pick a random edge (i*,j*)

Color edge (i*,j*) with random, {Com(p(k); 1) }k=1
different colors >

Color all other vertices red.
. edge (i,))
2. Feed the commitments of the colors <

to V* and get edge (i, j)

3.1f(i,j) # (i*,j*), go back and send openings 1; and i
repeat.

A.1f (i,j) = (i%,j"), output the commitments and openings r;
and 7; as the simulated transcript.

Why is this zero-knowledge?

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (i*,j*)

Permute a legal coloring and {Com(p(k); i)}Y—y
color all edges correctly. >

. edge (i, /)
2. Feed the commitments of the colors <
to V* and get edge (i,)

3.1f(i,j) + (i*,j*), go back and send openings 7; and i
repeat.

A.1f (i,j) = (i%,j"), output the commitments and openings r;
and 7; as the simulated transcript.

Why is this zero-knowledge?

Claim: Hybrids 0 and 1 are computationally

indistinguishable, assuming the commitment scheme is
computationally hiding.

Proof: By contradiction. Show a reduction that breaks
the hiding property of the commitment scheme,
assuming there is a distinguisher between hybrids O
and 1.

Why is this zero-knowledge?

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (i*,j*)

Permute a legal coloring and {Com(p(k); i)}Y—y
color all edges correctly. >

. edge (i, /)
2. Feed the commitments of the colors <
to V* and get edge (i,)

3.1f(i,j) + (i*,j*), go back and send openings 7; and i
repeat.

A.1f (i,j) = (i%,j"), output the commitments and openings r;
and 7; as the simulated transcript.

Why is this zero-knowledge?

Here is the real view of V* (Hybrid 2)
1 Eirst oicl | ge (it i+

Permute a legal coloring and {Com(p(k); i)}Y—y
color all edges correctly. >

. edge (i, /)
2. Feed the commitments of the colors <
to V™ and get edge (i,) .

3. K+ ({54 eobackand send openings 7; and r;
>
repeat:

4, H-H—=-{5F)-output the commitments and openings 7;

and 7; as the transcript.

Why is this zero-knowledge?

Claim: Hybrids 1 and 2 are identical.

Hybrid 1 merely samples from the same distribution as
Hybrid 2 and, with probability 1 — 1/|E|, decides to
throw it away and resample.

Put together:

Theorem: The 3COL protocol is zero knowledge.

Examples of NP Assertions

My public key is well-formed (e.g. in RSA, the public
key is N, a product of two primes together with an e
that is relatively prime to ¢ (N).)

Encrypted bitcoin (or Zcash): “I have enough
money to pay you.” (e.g. | will publish an encryption
of my bank account and prove to you that my
balance is > $X.)

Running programs on encrypted inputs: Given
Enc(x) and y, prove that y = PROG(x).

Examples of NP Assertions

* Running programs on encrypted inputs: Given
Enc(x) and y, prove that y = PROG(x).

More generally: A tool to enforce honest
behavior without revealing information.

Interaction is Necessary for ZK

Suppose there were a non-interactive ZK proof
system for 3COL.

Graph G Graph G
P g IN

Step 1. When Gis in 3COL, V accepts the proof .

(Completeness)

Interaction is Necessary for ZK

Suppose there were a non-interactive ZK proof
system for 3COL.

Graph G Graph G

" V

Step 2. PPT Simulator S, given only G in 3COL, produces
an indistinguishable proof 7 (Zero Knowledge).

S

In particular, V accepts 7t.

Interaction is Necessary for ZK

Suppose there were a non-interactive ZK proof
system for 3COL.

Graph G / Graph G |
S - V

Step 3. Imagine running the Simulator Son a G & 3COL.
It produces a proof T which the verifier still accepts!

(WHY?! Because S and V are PPT. They together
cannot tell if the input graph is 3COL or not)

Interaction is Necessary for ZK

Suppose there were a non-interactive ZK proof
system for 3COL.

Graph G / Graph G |
P V

Step 4. Therefore, S is a cheating prover!

Produces a proof for a G & 3COL that the verifier
nevertheless accepts.

Ergo, the proof system is NOT SOUND!

THE END

Or, is it?

Two Roads to Non-Interactive ZK (NIZK)

1. Random Oracle Model & Fiat-Shamir Transform.

Random Oracle

Graph G | / Q > Q Graph G | /

A

2. Common Random String Model.

