MIT 6.875

Foundations of Cryptography Lecture 15

Zero Knowledge Proofs

ZK Definition

An Interactive Protocol (P,V) is **perfect zero-knowledge** for a language L if **for every PPT** V^* , there exists a (expected) poly time simulator S s.t. for every $x \in L$, the following two distributions are identical:

1. $view_{V^*}(P, V^*)$ 2. $S(x, 1^{\lambda})$

Analogously:

statistical and computational zero-knowledge

Zero Knowledge Interactive Proof for QR

 $\mathcal{L} = \{(N, y): y \text{ is a quadratic residue mod } N\}.$

$$(N, y)$$

$$b \leftarrow \{0,1\}$$

$$(N, y)$$

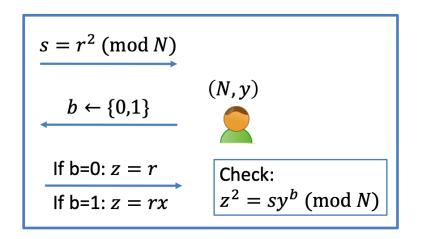
$$b \leftarrow \{0,1\}$$

$$(N, y)$$

$$(N,$$

We Proved:

Thm: The QR protocol is honest verifier zero knowledge.



$$view_V(P,V):$$

(s,b,z)

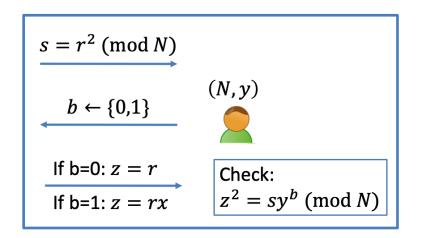
Simulator S works as follows:

- 1. First pick a random bit b.
- 2. pick a random $z \in Z_N^*$.
- 3. compute $s = z^2/y^b$.
- 4. output (s, b, z).

Claim: The simulated transcript is identically distributed as the real transcript in the interaction (P,V).

NOW: (Malicious Ver) Zero Knowledge

Theorem: The QR protocol is (malicious verifier) zero knowledge.



$$view_{V^*}(P,V^*):$$

(s, b, z)

Simulator S works as follows:

1. First pick a random s and "feed it to" V^* .

2. Let
$$b = V^*(s)$$
.

Now what???

(Malicious Ver) Zero Knowledge

Theorem: The QR protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:

1. First set $s = \frac{z^2}{y^b}$ for a random z and b and feed s to V^* . 2. Let b' = $V^*(s)$.

3. If b' = b, output (s, b, z) and stop.

4. Otherwise, go back to step 1 and repeat. (also called "rewinding").

Simulator S works as follows:

1. First set $s = \frac{z^2}{y^b}$ for a random z and feed s to V^* . 2. Let $b' = V^*(s)$.

3. If b' = b, output (s, b, z) and stop.

4. Otherwise, go back to step 1 and repeat. (also called "rewinding").

Lemma:

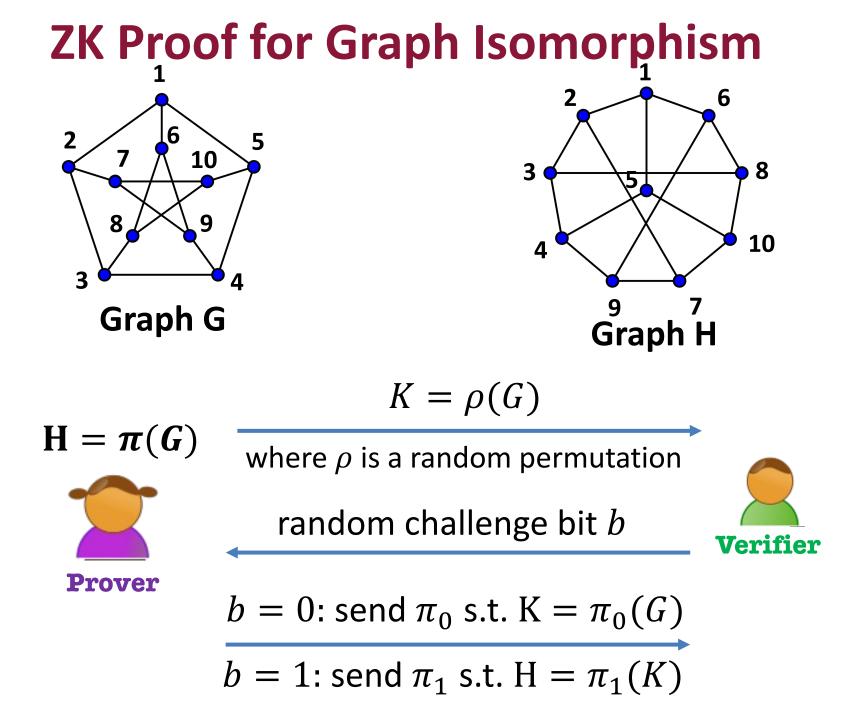
- (1) S runs in expected polynomial-time.
- (2) When S outputs a view, it is identically distributed to the view of V^* in a real execution.

What Made it Possible?

1. Each statement had multiple proofs of which the prover chooses one at random.

2. Each such proof is made of two parts: seeing either one on its own gives the verifier no knowledge; seeing both imply 100% correctness.

3. Verifier chooses to see either part, at random. The prover's ability to provide either part on demand convinces the verifier.



ZK Proof for Graph Isomorphism

Completeness: Exercise.

$$K = \rho(G)$$

$$H = \pi(G)$$
where ρ is a random permutation
random challenge bit b

$$Verifier$$

$$b = 0: \text{ send } \pi_0 = \rho$$

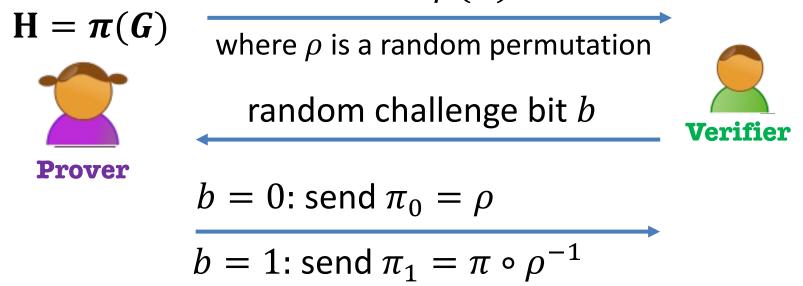
$$b = 1: \text{ send } \pi_1 = \pi \circ \rho^{-1}$$

ZK Proof for Graph Isomorphism

Soundness: Suppose G and H are non-isomorphic, and a prover could answer both the verifier challenges. Then, $K = \pi_0(G)$ and $H = \pi_1(K)$.

In other words, $H = \pi_1 \circ \pi_0(G)$, a contradiction!

$$K = \rho(G)$$



ZK Proof for Graph Isomorphism

Zero Knowledge: Exercise.

$$\mathbf{H} = \boldsymbol{\pi}(\boldsymbol{G})$$
where ρ is a random permutation
random challenge bit b

$$b = 0: \text{ send } \pi_0 = \rho$$

$$b = 1: \text{ send } \pi_1 = \pi \circ \rho^{-1}$$

T7

 (α)

Efficient Prover (given a Witness)

In both these protocols, the (honest) prover is actually polynomial-time *given the NP witness* (the square root of y in the case of QR, and the isomorphism in the case of graph-iso.)

Soundness is nevertheless against any, even computationally unbounded, prover P^* .

Do all NP languages have Perfect ZK proofs?

We showed two languages with perfect ZK proofs. Can we show this for *all* NP languages?

<u>Theorem</u> [Fortnow'89, Aiello-Hastad'87] No, unless bizarre stuff happens in complexity theory (technically: the polynomial hierarchy collapses.)

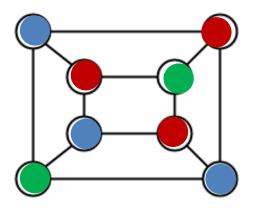
Do all NP languages have ZK proofs?

Nevertheless, today, we will show:

<u>Theorem</u> [Goldreich-Micali-Wigderson'87] Assuming one-way functions exist, all of NP has computational zero-knowledge proofs.

This theorem is amazing: it tells us that everything that can be proved (in the sense of Euclid) can be proved in zero knowledge!

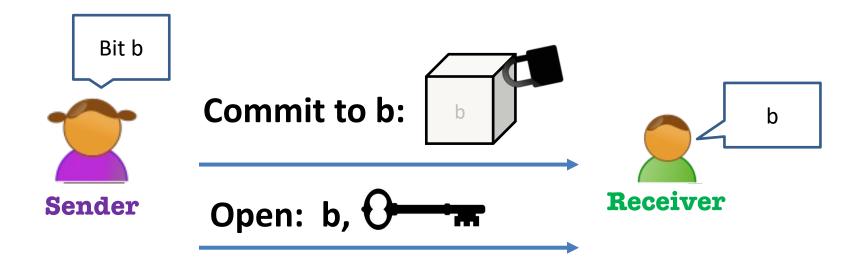
Zero Knowledge Proof for 3-Coloring



NP-Complete Problem:

Every other problem in NP can be reduced to it.

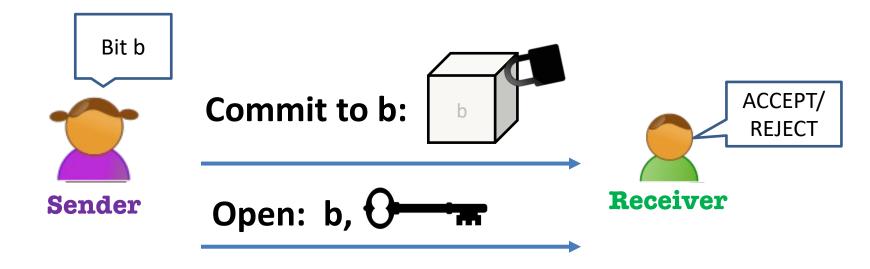
We need a commitment scheme (aka a "locking scheme" from pset 1).



1. Hiding: The locked box should completely hide b.

2. Binding: Sender shouldn't be able to open to 1-b.

In pset 1, you implemented a commitment scheme using PRGs. We will later show another construction using one-way permutations.



- **1. Hiding:** The locked box should completely hide b.
- **2. Binding:** Sender shouldn't be able to open to 1-b.

$\begin{array}{c} \text{Graph G} \\ = (V, E) \end{array} \stackrel{2}{\overbrace{4}} \\ \overbrace{4} \\ \overbrace{4} \\ \overbrace{6} \\ \overbrace{7} } _ \overbrace{7} \\ \overbrace{7} \\ \overbrace{7} \\ \overbrace{7} \\ \overbrace{7} } _{1} \overbrace{7} \overbrace{7} _ \overbrace{7} _ \overbrace{7} _ \overbrace{7} _ \overbrace{7} \overbrace{7} _ _ _ \overbrace{7} _ _3 \overbrace{7} _3 \overbrace{$

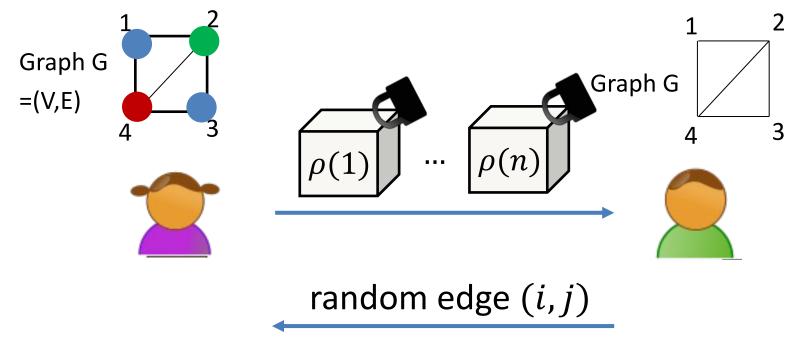
Come up with a random random edge (i, j) permutation of the colors

$$\rho \colon V \to \{R, B, G\}$$

open $\rho(i)$ and $\rho(j)$

- 1. Check the openings
- 2. Check: $\rho(i), \rho(j) \in \{R, B, G\}$
- 3. Check: $\rho(i) \neq \rho(j)$.

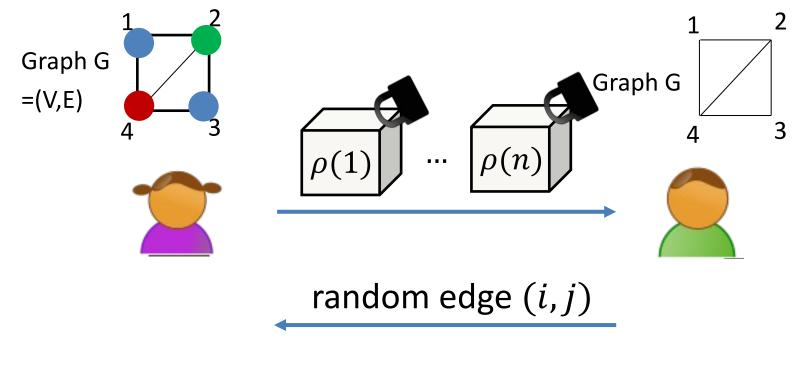
Zero Knowledge Proof for 3COL



open $\rho(i)$ and $\rho(j)$

Completeness: Exercise.

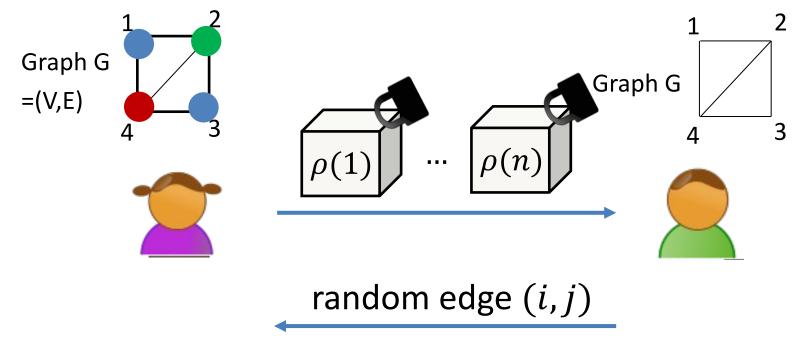
Zero Knowledge Proof for 3COL



open $\rho(i)$ and $\rho(j)$

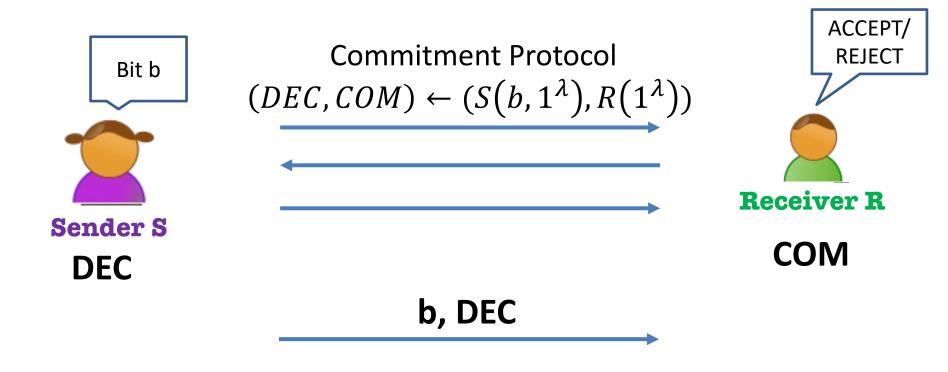
Soundness: If the graph is not 3COL, in every 3-coloring (that P commits to), there is some edge whose end-points have the same color. V will catch this edge and reject with probability $\geq 1/|E|$.

Zero Knowledge Proof for 3COL

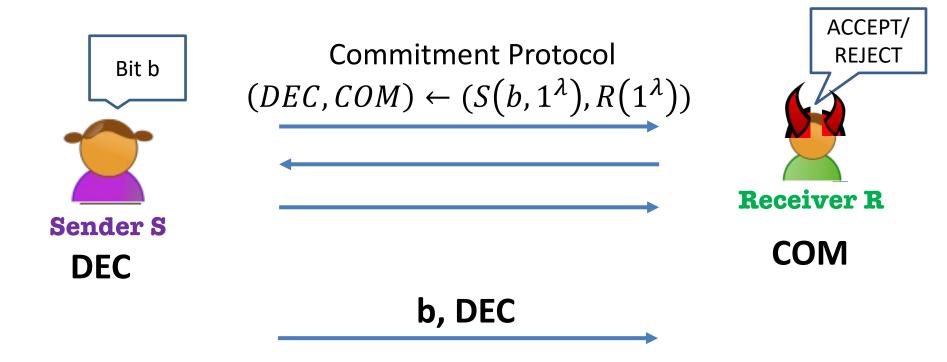


open $\rho(i)$ and $\rho(j)$

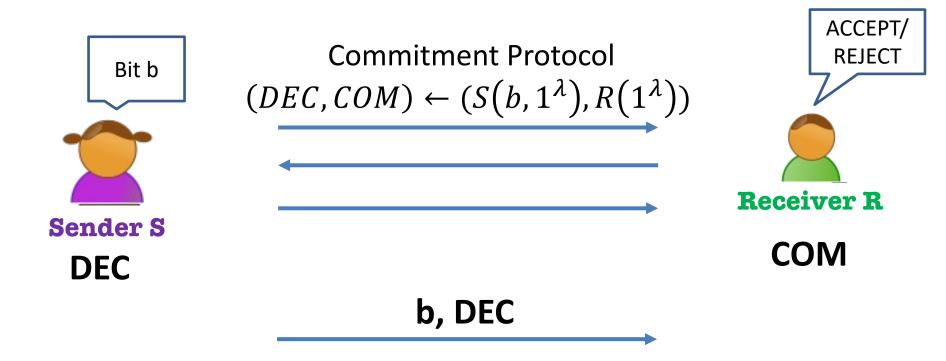
Repeat $|E| \cdot \lambda$ times to get the verifier to accept with probability $\leq (1 - 1/|E|)^{|E| \cdot \lambda} \leq 2^{-\lambda}$



1. Completeness: R always accepts in an honest execution.

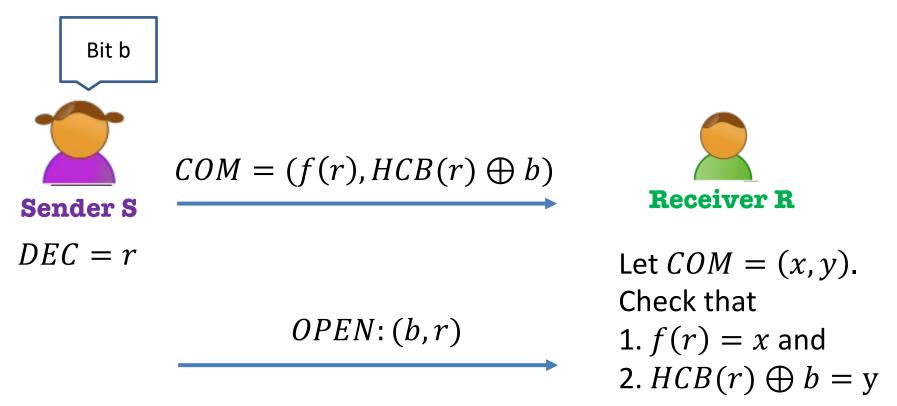


2. Computational Hiding: For every possibly malicious (PPT) R^* , $view_{R^*}(S(0), R^*) \approx_c view_{R^*}(S(1), R^*)$

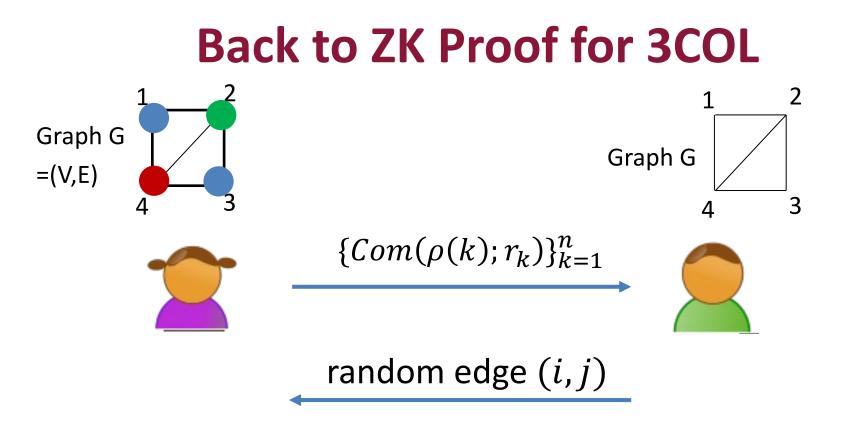


3. Perfect Binding: For every possibly malicious S^* , let COM be the receiver's output in an execution of (S^*, R) . There is no pair of decommitments (DEC_0, DEC_1) s.t. R accepts both (com, 0, DEC_0) and (com, 1, DEC_1).

A Commitment Scheme from any OWP



- 1. Completeness: Exercise.
- **2. Comp. Hiding:** by the hardcore bit property.
- 3. Perfect Binding: because f is a permutation.



send openings $\rho(i)$, r_i and $\rho(j)$, r_j

Simulator S works as follows:

- 1. First pick a random edge (i^*, j^*)
 - Color edge (i^*, j^*) with random, different colors
 - Color all other vertices red.
- 2. Feed the commitments of the colors to V^* and get edge (i, j)
- 3. If $(i, j) \neq (i^*, j^*)$, go back and repeat.

edge (i,j)

 $\{Com(\rho(k);r_k)\}_{k=1}^n$

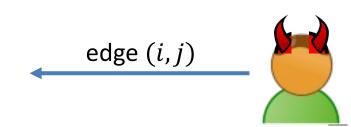
send openings r_i and r_j

4. If $(i, j) = (i^*, j^*)$, output the commitments and openings r_i and r_j as the simulated transcript.

Lemma:

- (1) Assuming the commitment is hiding, S runs in expected polynomial-time.
- When S outputs a view, it is comp. indist. from the view of V* in a real execution.

 $\{Com(\rho(k); r_k)\}_{k=1}^n$



send openings r_i and r_j

Simulator S works as follows (call this Hybrid 0)

1. First pick a random edge (i^*, j^*)

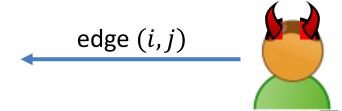
Color edge (i^*, j^*) with random, different colors

Color all other vertices red.

2. Feed the commitments of the colors to V^* and get edge (i, j)

3. If $(i, j) \neq (i^*, j^*)$, go back and repeat.

 $\{Com(\rho(k);r_k)\}_{k=1}^n$



send openings r_i and r_j

4. If $(i, j) = (i^*, j^*)$, output the commitments and openings r_i and r_j as the simulated transcript.

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (i^*, j^*)

Permute a legal coloring and color all edges correctly.

2. Feed the commitments of the colors to V^* and get edge (i, j)

3. If $(i, j) \neq (i^*, j^*)$, go back and repeat.

4. If $(i, j) = (i^*, j^*)$, output the commitments and openings r_i and r_j as the simulated transcript.

 $\{Com(\rho(k);r_k)\}_{k=1}^n$

send openings r_i and r_j

Claim: Hybrids 0 and 1 are computationally indistinguishable, assuming the commitment scheme is computationally hiding.

Proof: By contradiction. Show a reduction that breaks the hiding property of the commitment scheme, assuming there is a distinguisher between hybrids 0 and 1.

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (i^*, j^*)

Permute a legal coloring and color all edges correctly.

2. Feed the commitments of the colors to V^* and get edge (i, j)

3. If $(i, j) \neq (i^*, j^*)$, go back and repeat.

4. If $(i, j) = (i^*, j^*)$, output the commitments and openings r_i and r_j as the simulated transcript.

 $\{Com(\rho(k);r_k)\}_{k=1}^n$

send openings r_i and r_j

Here is the real view of V* (Hybrid 2)

1. First pick a random edge (i^*, j^*)

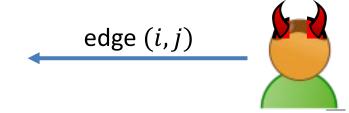
Permute a legal coloring and color all edges correctly.

2. Feed the commitments of the colors to V^* and get edge (i, j)

3. If
$$(i, j) \neq (i^*, j^*)$$
, go back and repeat.

4. If $(i, j) = (i^*, j^*)$, output the commitments and openings r_i and r_j as the transcript.

 $\{Com(\rho(k);r_k)\}_{k=1}^n$



send openings r_i and r_j

Claim: Hybrids 1 and 2 are identical.

Hybrid 1 merely samples from the same distribution as Hybrid 2 and, with probability 1 - 1/|E|, decides to throw it away and resample.

Put together:

Theorem: The 3COL protocol is zero knowledge.

Examples of NP Assertions

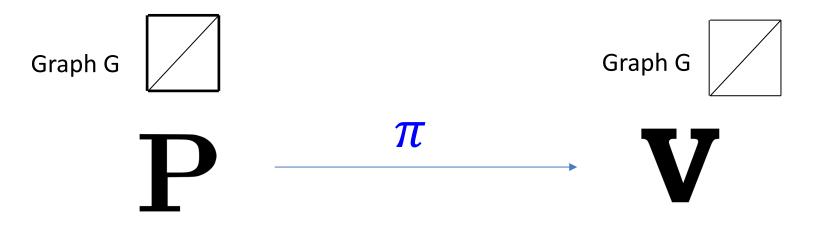
- My public key is well-formed (e.g. in RSA, the public key is N, a product of two primes together with an e that is relatively prime to $\varphi(N)$.)
- Encrypted bitcoin (or Zcash): "I have enough money to pay you." (e.g. I will publish an encryption of my bank account and prove to you that my balance is $\geq \$X$.)
- Running programs on encrypted inputs: Given
 Enc(x) and y, prove that y = PROG(x).

Examples of NP Assertions

 Running programs on encrypted inputs: Given Enc(x) and y, prove that y = PROG(x).

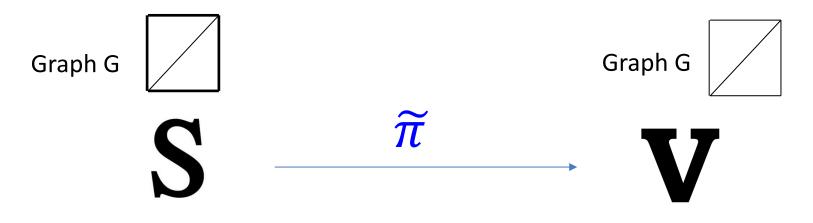
More generally: A tool to enforce honest behavior without revealing information.

Suppose there *were* a non-interactive ZK proof system for 3COL.



Step 1. When G is in 3COL, V accepts the proof π . (Completeness)

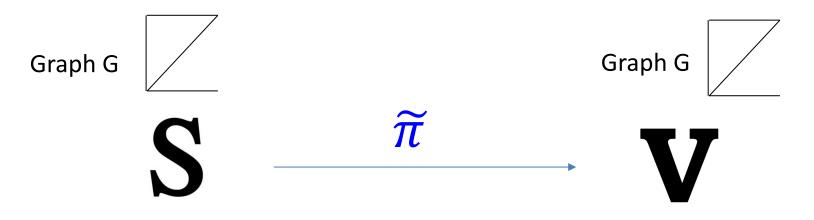
Suppose there *were* a non-interactive ZK proof system for 3COL.



Step 2. **PPT** Simulator S, **given only G in 3COL**, produces an indistinguishable proof $\tilde{\pi}$ (Zero Knowledge).

In particular, V accepts $\widetilde{\pi}$.

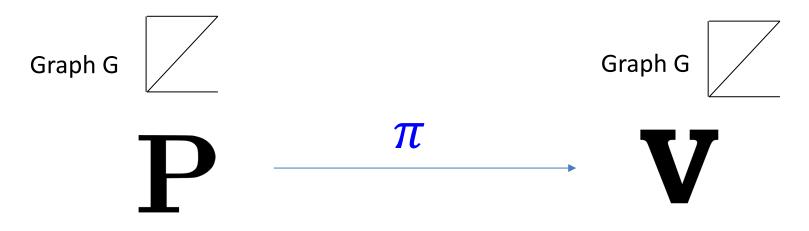
Suppose there *were* a non-interactive ZK proof system for 3COL.



Step 3. Imagine running the Simulator S on a $G \notin$ 3COL. It produces a proof $\tilde{\pi}$ which the verifier still accepts!

(WHY?! Because S and V are PPT. They together cannot tell if the input graph is 3COL or not)

Suppose there *were* a non-interactive ZK proof system for 3COL.



Step 4. Therefore, S is a cheating prover!

Produces a proof for a $G \notin 3COL$ that the verifier nevertheless accepts.

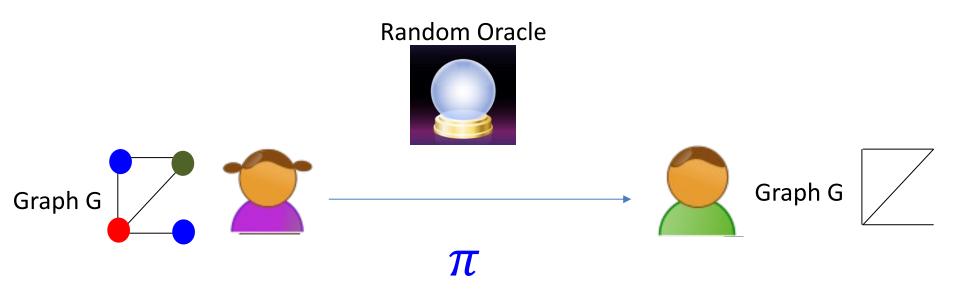
Ergo, the proof system is NOT SOUND!

THE END

Or, is it?

Two Roads to Non-Interactive ZK (NIZK)

1. Random Oracle Model & Fiat-Shamir Transform.



2. Common Random String Model.