
MIT 6.875

Lecture 13
Foundations of Cryptography

Digital Signatures

Theorem: Assuming the existence of one-way functions
and collision-resistant hash function families, there are
digital signature schemes.

We showed:

Collision-Resistant Hash Functions
A compressing family of functions 𝓗 = {h: 0,1 ! → 0,1 "}
(where 𝑚 > 𝑛) for which it is computationally hard to find
collisions.

Def: ℋ is collision-resistant if for every PPT algorithm A,
there is a negligible function 𝜇 s.t.

Pr#←ℋ 𝐴 1" , ℎ = 𝑥, 𝑦 : 𝑥 ≠ 𝑦, ℎ 𝑥 = ℎ 𝑦 = 𝜇(𝑛)

Construction of CRHF from Discrete Log

ℋ = {h: (ℤ&)'→ 𝑄𝑅(}

Each function ℎ)! ,)" ∈ ℋ is parameterized by two
generators 𝑔+ and 𝑔' of 𝑄𝑅((a group of order q).

ℎ)! ,)" 𝑥+, 𝑥' = 𝑔+
,!𝑔'

," mod p.

This compresses 2 log q bits into log p ≈ log q + 1 bits.

𝑝 = 2𝑞 + 1 is a “safe” prime.

Construction of CRHF from Discrete Log

ℋ = {h: (ℤ&)'→ 𝑄𝑅(}

Each function ℎ)! ,)" ∈ ℋ is parameterized by two
generators 𝑔+ and 𝑔' of 𝑄𝑅((a group of order q).

ℎ)! ,)" 𝑥+, 𝑥' = 𝑔+
,!𝑔'

," mod p.

Why is this collision-resistant? Suppose there is an
adversary that finds a collision 𝑥+, 𝑥' and 𝑦+, 𝑦' …

𝑝 = 2𝑞 + 1 is a “safe” prime.

Construction of CRHF from Discrete Log

ℎ)! ,)" 𝑥+, 𝑥' = 𝑔+
,!𝑔'

," mod p.

Why is this collision-resistant? Suppose there is an
adversary that finds a collision 𝑥+, 𝑥' and 𝑦+, 𝑦' …

𝑔+
,!𝑔'

," = 𝑔+
-!𝑔'

-" mod p.

𝑔+
,!.-!= 𝑔'

-".," mod p.

𝑔+ = 𝑔'
(-".,")(,!.-!)#! mod p. 𝐷𝐿𝑂𝐺)"(𝑔+)!

(assume wlog 𝑥+ − 𝑦+ ≠ 0𝑚𝑜𝑑 𝑞)

What if I want to compress more?

Solution 1: Modify the Discrete Log construction

ℎ)! ,)",)$ 𝑥+, 𝑥', 𝑥1 = 𝑔+
,!𝑔'

," 𝑔1
,$ mod p.

Solution 2: Domain-extension Theorems.

“If there exist hash functions compressing 𝑛 +
1 bits to 𝑛 bits, then there are hash functions
that compress any poly(𝑛) bits into 𝑛 bits.”

Digital Signatures

Theorem: Assuming the hardness of the discrete logarithm
problem, there are digital signature schemes.

Other Constructions of CRHFs

From the hardness of factoring, lattice problems etc.

Not known to follow from the existence of one-way
functions.

“Black-box separations”: Certain ways of constructing
CRHF from OWF/OWP cannot work.
“Finding collisions on a one-way street”, Daniel Simon, Eurocrypt 1998.

Nevertheless, big open problem: OWF ⟹? CRHF?

Digital Signatures

Theorem: Digital Signature schemes exist if and only if
one-way functions exist.

It turns out that collision-resistant hashing is not necessary.

Worlds in Crypto

OWF

PRG

Secret-key
encryptionPRF

Digital
Signatures

MAC

Bit
Commitment

Zero-
Knowledge
proofs

Public-key
encryption

…

OWF

CRHF

Minicrypt:

Cryptomania:

Digital Signature Construction
Start from 𝑂𝑇. 𝐺𝑒𝑛, 𝑂𝑇. 𝑆𝑖𝑔𝑛, 𝑂𝑇. 𝑉𝑒𝑟 , a one-time
signature scheme that can sign arbitrarily long messages.

(Lamport + collision-resistant hashing)

Build a (virtual) tree of depth 𝜆 = security param.

Let 𝐾 be a PRF key, 𝑟3 = 𝑃𝑅𝐹(𝐾, 𝑖) for 𝑖 ∈ 0,1 45 ,
and 𝑉𝐾3 , 𝑆𝐾3 ← 𝑂𝑇. 𝐺𝑒𝑛(15; 𝑟3).

Digital Signature Construction

Signature keys: 𝑆𝐾 = 𝐾 and 𝑉𝐾 = 𝑂𝑇𝑉𝐾6.
Signing Algorithm:
Pick a random leaf r ∈ 0,1 5 ,
Generate the authentication path 𝜎6, 𝜎7! , 𝜎7" , … , 𝜎7 & 𝜎∗

𝜎∗ ← 𝑂𝑇. 𝑆𝑖𝑔𝑛 𝑆𝐾7 , 𝑚
𝜎, ← 𝑂𝑇. 𝑆𝑖𝑔𝑛 𝑆𝐾, , 𝑉𝐾,9||𝑉𝐾,+

The signature is (r, 𝜎6, 𝜎7! , 𝜎7" , … , 𝜎7 , 𝜎
∗).

Digital Signature Construction

• Historically regarded as inefficient; therefore, never
used in practice.

• However, this signature scheme (or variants thereof)
are now called “hash-based signatures” and seeing a
re-emergence as a candidate post-quantum secure
signature scheme. E.g. https://sphincs.org/

Direct Constructions
“Hash-and-Sign”: Secure in the “random oracle model”.

“Vanilla” RSA Signatures

Start with any trapdoor permutation, e.g. RSA.

Gen(15): Pick primes 𝑃, 𝑄 and let 𝑁 = 𝑃𝑄. Pick 𝑒
relatively prime to 𝜑 𝑁 and let 𝑑 = 𝑒.+ (mod 𝜑 𝑁).

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑚: mod 𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎; = 𝑚 mod 𝑁 .

SK = 𝑁, 𝑑 and VK = 𝑁, 𝑒

Problem: Existentially forgeable!

“Vanilla” RSA Signatures

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑚: mod 𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎; = 𝑚 mod 𝑁 .

Problem: Existentially forgeable!

Attack: Pick a random 𝜎 and output (𝑚 = 𝜎;, 𝜎) as
the forgery.

Problem: Malleable!
Attack: Given a signature of 𝑚, you can produce a
signature of 2; ∗ 𝑚, 3; ∗ 𝑚,… ,𝑚', 𝑚1, …

“Vanilla” RSA Signatures

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑚: mod 𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎; = 𝑚 mod 𝑁 .

Fundamental Issues:

1. Can ”reverse-engineer” the message starting from
the signature (Attack 1)

2. Algebraic structure allows malleability (Attack 2)

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(15): Pick primes 𝑃, 𝑄 and let 𝑁 = 𝑃𝑄. Pick 𝑒
relatively prime to 𝜑 𝑁 and let 𝑑 = 𝑒.+ (mod 𝜑 𝑁).

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑯(𝒎): mod 𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎; = 𝑯(𝒎) mod 𝑁 .

SK = 𝑁, 𝑑 and VK = 𝑁, 𝑒,𝑯

So, what is H? Some very complicated “hash” function.

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(15): Pick primes 𝑃, 𝑄 and let 𝑁 = 𝑃𝑄. Pick 𝑒
relatively prime to 𝜑 𝑁 and let 𝑑 = 𝑒.+ (mod 𝜑 𝑁).

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑯(𝒎): mod 𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎; = 𝑯(𝒎) mod 𝑁 .

SK = 𝑁, 𝑑 and VK = 𝑁, 𝑒,𝑯

H should be at least one-way to prevent Attack #1.

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(15): Pick primes 𝑃, 𝑄 and let 𝑁 = 𝑃𝑄. Pick 𝑒
relatively prime to 𝜑 𝑁 and let 𝑑 = 𝑒.+ (mod 𝜑 𝑁).

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑯(𝒎): mod 𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎; = 𝑯(𝒎) mod 𝑁 .

SK = 𝑁, 𝑑 and VK = 𝑁, 𝑒,𝑯

Hard to “algebraically manipulate” H(m) into H(related m’).
(to prevent Attack #2.)

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(15): Pick primes 𝑃, 𝑄 and let 𝑁 = 𝑃𝑄. Pick 𝑒
relatively prime to 𝜑 𝑁 and let 𝑑 = 𝑒.+ (mod 𝜑 𝑁).

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑯(𝒎): mod 𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎; = 𝑯(𝒎) mod 𝑁 .

SK = 𝑁, 𝑑 and VK = 𝑁, 𝑒,𝑯

Collision-resistance does not seem to be enough. (Given a
CRHF h(m), you may be able to produce h(m’) for related m’.)

The Random Oracle Heuristic

Want: A public H that is “non-malleable”.

Given H(m), it is hard to produce H(m’) for any non-
trivially related m’.

For every PPT adv 𝐴 and “every non-trivial relation” 𝑅,
Pr 𝐴 ℎ 𝑚 = ℎ 𝑚< : 𝑅 𝑚,𝑚< = 1 = negl(𝜆)

How about the relation 𝑅 where
𝑅 𝑥, 𝑦 = 1 if and only if 𝑦 = H x ?

The Random Oracle Heuristic

Proxy: A public H that “behaves like a random function”

𝒜()

(A PRF also behaves like a random function,
but 𝑃𝑅𝐹= is not publicly computable.)

Reality: Random Oracle Heuristic:

𝒜 (1!)H
H

H is virtually a black box.The only way to compute H
is by calling the oracle.

Proof
Assume there is a PPT adversary 𝒜 that breaks the EUF-
CMA security of hashed RSA in the random oracle model.

𝒜“Give me a signature of m”

“Give me H(m)”

𝑉𝐾

(𝑚∗, 𝜎∗)
Then, there is an
algorithm ℬ that
solves the RSA
problem.

Proof
Assume there is a (𝑄-query) PPT adversary 𝒜 that
breaks the EUF-CMA security of hashed RSA in the
random oracle model.

𝒜

ℬ 𝑉𝐾 = (𝑁, 𝑒)
(𝑁, 𝑒, 𝑦)

Hash Query: m

𝐻 +𝑚 = 𝑦

o.w., 𝐻 𝑚 = 𝑥!

Sign Query: m

“trap”

“normal”

𝑚 = +𝑚? !abort!
o.w., 𝜎 = 𝑥

Pick random +𝑚

Forgery: 𝑚∗, 𝜎∗

Proof
Claim: To produce a successful forgery, 𝒜 must have
queried the hash oracle on 𝑚∗. W.p. 1/𝑄, 𝑚∗ is the trap.

𝒜

ℬ 𝑉𝐾 = (𝑁, 𝑒)
(𝑁, 𝑒, 𝑦)

Hash Query: m

𝐻 +𝑚 = 𝑦

o.w., 𝐻 𝑚 = 𝑥!

Sign Query: m

𝑚 = +𝑚? !abort!
o.w., 𝜎 = 𝑥
Forgery: 𝑚∗, 𝜎∗If 𝑚∗ = +𝑚, yay!

𝑦#/! “trap”

Bottomline: Hashed RSA

In practice, we let 𝐻 be the SHA-3 hash function.

… and believe that SHA-3 ”acts like a random function”.
That’s the heuristic. On the one hand, it doesn’t make
any sense, but on the other, it has served us well so far.
No attacks against RSA + SHA-3, for example.

(PKCS Standard, used everywhere)

An Application:
Authenticated Key Exchange

𝑔%

𝑔&

An Application:

𝑔%, Sign(𝑠𝑘', 𝑔%)

Authenticated Key Exchange
Bob 𝒗𝒌𝑩

Alice 𝒗𝒌𝑨

𝑔&, Sign(𝑠𝑘(, 𝑔&)

Many Variants of Signatures

Ring Signatures: Protection for Whistleblowers

Threshold Signatures: Protecting against loss of secret key

Aggregate Signatures: Compressing many signatures into one

(on the board)

