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Digital Signatures

Theorem: Assuming the existence of one-way functions 
and collision-resistant hash function families, there are 
digital signature schemes.  

We showed:



Collision-Resistant Hash Functions
A compressing family of functions 𝓗 = {h: 0,1 ! → 0,1 "}
(where 𝑚 > 𝑛) for which it is computationally hard to find 
collisions.

Def: ℋ is collision-resistant if for every PPT algorithm A, 
there is a negligible function 𝜇 s.t.

Pr#←ℋ 𝐴 1" , ℎ = 𝑥, 𝑦 : 𝑥 ≠ 𝑦, ℎ 𝑥 = ℎ 𝑦 = 𝜇(𝑛)



Construction of CRHF from Discrete Log

ℋ = {h: (ℤ&)'→ 𝑄𝑅( }

Each function ℎ)! ,)" ∈ ℋ is parameterized by two 
generators 𝑔+ and 𝑔' of 𝑄𝑅( (a group of order q). 

ℎ)! ,)" 𝑥+, 𝑥' = 𝑔+
,!𝑔'

," mod p.

This compresses 2 log q bits into log p ≈ log q + 1 bits.

𝑝 = 2𝑞 + 1 is a “safe” prime.
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Construction of CRHF from Discrete Log

ℎ)! ,)" 𝑥+, 𝑥' = 𝑔+
,!𝑔'

," mod p.

Why is this collision-resistant? Suppose there is an 
adversary that finds a collision 𝑥+, 𝑥' and 𝑦+, 𝑦' …

𝑔+
,!𝑔'

," = 𝑔+
-!𝑔'

-" mod p.

𝑔+
,!.-!= 𝑔'

-".," mod p.

𝑔+ = 𝑔'
(-".,")(,!.-!)#! mod p. 𝐷𝐿𝑂𝐺)"(𝑔+)!

(assume wlog 𝑥+ − 𝑦+ ≠ 0𝑚𝑜𝑑 𝑞)



What if I want to compress more?

Solution 1: Modify the Discrete Log construction 

ℎ)! ,)",)$ 𝑥+, 𝑥', 𝑥1 = 𝑔+
,!𝑔'

," 𝑔1
,$ mod p.

Solution 2: Domain-extension Theorems.

“If there exist hash functions compressing 𝑛 +
1 bits to 𝑛 bits, then there are hash functions 
that compress any poly(𝑛) bits into 𝑛 bits.”



Digital Signatures

Theorem: Assuming the hardness of the discrete logarithm 
problem, there are digital signature schemes.  



Other Constructions of CRHFs

From the hardness of factoring, lattice problems etc.

Not known to follow from the existence of one-way 
functions.

“Black-box separations”: Certain ways of constructing 
CRHF from OWF/OWP cannot work. 
“Finding collisions on a one-way street”, Daniel Simon, Eurocrypt 1998.

Nevertheless, big open problem: OWF ⟹? CRHF?



Digital Signatures

Theorem: Digital Signature schemes exist if and only if 
one-way functions exist.

It turns out that collision-resistant hashing is not necessary.
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Digital Signature Construction 
Start from 𝑂𝑇. 𝐺𝑒𝑛, 𝑂𝑇. 𝑆𝑖𝑔𝑛, 𝑂𝑇. 𝑉𝑒𝑟 , a one-time 
signature scheme that can sign arbitrarily long messages.  

(Lamport + collision-resistant hashing)

Build a (virtual) tree of depth 𝜆 = security param.

Let 𝐾 be a PRF key, 𝑟3 = 𝑃𝑅𝐹(𝐾, 𝑖) for 𝑖 ∈ 0,1 45 ,
and 𝑉𝐾3 , 𝑆𝐾3 ← 𝑂𝑇. 𝐺𝑒𝑛(15; 𝑟3).



Digital Signature Construction 

Signature keys:  𝑆𝐾 = 𝐾 and 𝑉𝐾 = 𝑂𝑇𝑉𝐾6.
Signing Algorithm:  
Pick a random leaf r ∈ 0,1 5 ,
Generate the authentication path 𝜎6, 𝜎7! , 𝜎7" , … , 𝜎7 & 𝜎∗

𝜎∗ ← 𝑂𝑇. 𝑆𝑖𝑔𝑛 𝑆𝐾7 , 𝑚
𝜎, ← 𝑂𝑇. 𝑆𝑖𝑔𝑛 𝑆𝐾, , 𝑉𝐾,9||𝑉𝐾,+

The signature is (r, 𝜎6, 𝜎7! , 𝜎7" , … , 𝜎7 , 𝜎
∗).



Digital Signature Construction 

• Historically regarded as inefficient; therefore, never 
used in practice. 

• However, this signature scheme (or variants thereof) 
are now called “hash-based signatures” and seeing a 
re-emergence as a candidate post-quantum secure 
signature scheme.  E.g. https://sphincs.org/



Direct Constructions
“Hash-and-Sign”: Secure in the “random oracle model”.  



“Vanilla” RSA Signatures

Start with any trapdoor permutation, e.g. RSA.

Gen(15): Pick primes 𝑃, 𝑄 and let 𝑁 = 𝑃𝑄. Pick 𝑒
relatively prime to 𝜑 𝑁 and let 𝑑 = 𝑒.+ (mod 𝜑 𝑁 ).

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑚: mod 𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎; = 𝑚 mod 𝑁 .

SK = 𝑁, 𝑑 and   VK = 𝑁, 𝑒

Problem: Existentially forgeable! 
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Verify(V𝐾,𝑚, 𝜎): Check if 𝜎; = 𝑚 mod 𝑁 .

Problem: Existentially forgeable! 

Attack: Pick a random 𝜎 and output (𝑚 = 𝜎;, 𝜎) as 
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Attack: Given a signature of 𝑚, you can produce a 
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“Vanilla” RSA Signatures

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑚: mod 𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎; = 𝑚 mod 𝑁 .

Fundamental Issues:

1. Can ”reverse-engineer” the message starting from 
the signature  (Attack 1)

2. Algebraic structure allows malleability (Attack 2)



How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(15): Pick primes 𝑃, 𝑄 and let 𝑁 = 𝑃𝑄. Pick 𝑒
relatively prime to 𝜑 𝑁 and let 𝑑 = 𝑒.+ (mod 𝜑 𝑁 ).

Sign(𝑆𝐾,𝑚): Output signature 𝜎 = 𝑯(𝒎): mod 𝑁 .

Verify(V𝐾,𝑚, 𝜎): Check if 𝜎; = 𝑯(𝒎) mod 𝑁 .

SK = 𝑁, 𝑑 and   VK = 𝑁, 𝑒,𝑯

So, what is H? Some very complicated “hash” function. 
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H should be at least one-way to prevent Attack #1.
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Hard to “algebraically manipulate” H(m) into H(related m’).
(to prevent Attack #2.)



How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(15): Pick primes 𝑃, 𝑄 and let 𝑁 = 𝑃𝑄. Pick 𝑒
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Collision-resistance does not seem to be enough.  (Given a 
CRHF h(m), you may be able to produce h(m’) for related m’.)



The Random Oracle Heuristic 

Want: A public H that is “non-malleable”. 

Given H(m), it is hard to produce H(m’) for any non-
trivially related m’.

For every PPT adv 𝐴 and “every non-trivial relation” 𝑅,
Pr 𝐴 ℎ 𝑚 = ℎ 𝑚< : 𝑅 𝑚,𝑚< = 1 = negl(𝜆)

How about the relation 𝑅 where 
𝑅 𝑥, 𝑦 = 1 if and only if 𝑦 = H x ?



The Random Oracle Heuristic 

Proxy: A public H that “behaves like a random function”

𝒜( )

(A PRF also behaves like a random function, 
but 𝑃𝑅𝐹= is not publicly computable.)

Reality: Random Oracle Heuristic:

𝒜 (1!)H
H

H is virtually a black box.The only way to compute H 
is by calling the oracle.



Proof
Assume there is a PPT adversary 𝒜 that breaks the EUF-
CMA security of hashed RSA in the random oracle model.

𝒜“Give me a signature of m”

“Give me H(m)”

𝑉𝐾

(𝑚∗, 𝜎∗)
Then, there is an 
algorithm ℬ that 
solves the RSA 
problem.



Proof
Assume there is a (𝑄-query) PPT adversary 𝒜 that 
breaks the EUF-CMA security of hashed RSA in the 
random oracle model.

𝒜

ℬ 𝑉𝐾 = (𝑁, 𝑒)
(𝑁, 𝑒, 𝑦)

Hash Query: m

𝐻 +𝑚 = 𝑦

o.w., 𝐻 𝑚 = 𝑥!

Sign Query: m

“trap”

“normal”

𝑚 = +𝑚? !abort!
o.w., 𝜎 = 𝑥

Pick random +𝑚

Forgery: 𝑚∗, 𝜎∗



Proof
Claim: To produce a successful forgery, 𝒜 must have 
queried the hash oracle on 𝑚∗. W.p. 1/𝑄, 𝑚∗ is the trap.

𝒜

ℬ 𝑉𝐾 = (𝑁, 𝑒)
(𝑁, 𝑒, 𝑦)

Hash Query: m

𝐻 +𝑚 = 𝑦

o.w., 𝐻 𝑚 = 𝑥!

Sign Query: m

𝑚 = +𝑚? !abort!
o.w., 𝜎 = 𝑥
Forgery: 𝑚∗, 𝜎∗If 𝑚∗ = +𝑚, yay!

𝑦#/! “trap”



Bottomline: Hashed RSA

In practice, we let 𝐻 be the SHA-3 hash function.

… and believe that SHA-3 ”acts like a random function”. 
That’s the heuristic. On the one hand, it doesn’t make 
any sense, but on the other, it has served us well so far. 
No attacks against RSA + SHA-3, for example.

(PKCS Standard, used everywhere)



An Application:
Authenticated Key Exchange

𝑔%

𝑔&



An Application:

𝑔%, Sign(𝑠𝑘', 𝑔%)

Authenticated Key Exchange
Bob 𝒗𝒌𝑩

Alice 𝒗𝒌𝑨

𝑔&, Sign(𝑠𝑘(, 𝑔&)



Many Variants of Signatures

Ring Signatures: Protection for Whistleblowers 

Threshold Signatures: Protecting against loss of secret key

Aggregate Signatures: Compressing many signatures into one

(on the board)


