
MIT 6.875

Lecture 11
Foundations of Cryptography

TODAY: Digital Signatures

Message Authentication Codes

sk sk

m

𝑚, 𝑡 = 𝑀𝐴𝐶(𝑠𝑘,𝑚)

Authenticity: Bob wants to ensure that the message
came from Alice.

Needs Bob and Alice to share a secret key beforehand.

Verify(𝑠𝑘,𝑚, 𝑡)

Digital Signatures:
Public-key Analog of MACs

sk

m

𝑚, σ ← Sign(𝑠𝑘,𝑚)

Only Alice can produce signatures; but Bob (or indeed,
anyone else) can verify them.

Alice vk

Verify(𝑣𝑘,𝑚, σ)

(Public) verification keys are stored in a “directory”.

Digital Signatures vs. MACs

Publicly Verifiable

𝑛 users require 𝑛 key-pairs

Privately Verifiable

Signatures MACs

𝑛 users require 𝑛!keys

Transferable Not Transferable

Provides Non-Repudiation Does not provide Non-Rep.
(is this a good thing or a bad thing?)

Other Applications

1. Certificates, or a public-key directory in practice:

Alice pk,vk

When Alice (=www.google.com) wants to register her
public (encryption and signing) keys 𝑝𝑘 and 𝑣𝑘, first check
that she is Alice.

Issue a “certificate” 𝜎 ← 𝑆𝑖𝑔𝑛(𝑆𝐾"#$%&%'(, 𝐴𝑙𝑖𝑐𝑒| 𝑝𝑘 |𝑣𝑘)

Trusted Certificate Authority, e.g. Verisign, Let’s Encrypt.

Alice can later produce this certificate to prove that she
“owns” 𝑝𝑘 and 𝑣𝑘.

Browsers store 𝑉𝐾"#$%&%'(and check the certificate.

Other Applications

2. Bitcoin and other cryptocurrencies:
I am identified by my verification key 𝑣𝑘.
When I pay you (= 𝑣𝑘’), I sign “$x paid to 𝑣𝑘′” with my 𝑠𝑘.

Digital Signatures: Definition

• 𝑣𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛 1(.
PPT Key generation algorithm generates a public-private key pair.

• 𝜎 ← 𝑆𝑖𝑔𝑛 𝑠𝑘,𝑚 .
(possibly probabilistic) Signing algorithm uses the secret signing
key to produce a signature 𝜎.

• A𝑐𝑐(1)/𝑅𝑒𝑗(0) ← 𝑉𝑒𝑟𝑖𝑓𝑦 𝑣𝑘,𝑚, 𝜎 .
Verification algorithm uses the public verification key to check the
signature 𝜎 against a message 𝑚.

Correctness: For all vk, sk, m:
𝑉𝑒𝑟𝑖𝑓𝑦 𝑣𝑘,𝑚, 𝑆𝑖𝑔𝑛 𝑠𝑘,𝑚 = accept.

A triple of PPT algorithms (𝐺𝑒𝑛, 𝑆𝑖𝑔𝑛, 𝑉𝑒𝑟𝑖𝑓𝑦) s.t.

Digital Signatures: Security

“The adversary after seeing signatures of many msgs,
should not be able to produce a signature of any new msg.”

1. What are the adversary’s powers? Request for, and
obtain, signatures of (poly many) messages 𝑚), 𝑚!, …

2. What is her goal? She wins if she produces a signature of
any message 𝑚∗ ∉ {𝑚), 𝑚!, … }.

Chosen-message attack

Existential Forgery

EUF-CMA Security
(Existentially Unforgeable against a Chosen Message Attack)

EveChallenger
𝑣𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛 1! 𝑣𝑘

𝑚"

𝜎" ← 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚")
𝜎"

𝑚∗, 𝜎∗

Eve wins if Verify(𝑣𝑘,𝑚∗, 𝜎∗)= 1 and 𝑚∗ ∉ {𝑚", 𝑚#, … }.
The signature scheme is EUF-CMA-secure if no PPT Eve can win with
probability better than negl(𝑛).

poly many times

Lamport (One-time) Signatures

Signing Key 𝑆𝐾: [𝑥;, 𝑥)]

Verification Key 𝑉𝐾: [𝑦; = 𝑓(𝑥;), 𝑦) = 𝑓(𝑥))]

Signing a bit b: The signature is 𝜎 = 𝑥<

Verifying (b, 𝜎): Check if 𝑓 𝜎 = 𝑦<
?

Claim: Assuming 𝑓 is a OWF, no PPT adversary can
produce a signature of Q𝑏 given a signature of 𝑏.

How to sign a bit

Lamport (One-time) Signatures

Signing Key 𝑆𝐾:

Verification Key 𝑉𝐾:

Signing an n-bit message (𝑚), … ,𝑚():
The signature is 𝑥),=! , … , 𝑥(,=" .

Verifying (𝑚, 𝜎⃗): Check if ∀𝑖: 𝑓 𝜎% = 𝑦%,=#

?

How to sign n bits

𝑥),;
𝑥),)

𝑥!,;
𝑥!,)

𝑥(,;
𝑥(,)

𝑦),;
𝑦),)

𝑦!,;
𝑦!,)

𝑦(,;
𝑦(,)

where 𝑦%,> = 𝑓(𝑥%,>).

