
MIT 6.875

Lecture 10
Foundations of Cryptography

Lectures 8-10

Constructions of Public-key Encryption

2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

✅ Diffie-Hellman/El Gamal

4: Post-Quantum Security & Lattice-based Encryption

One-way Functions
F

domain
range

Easy to
compute

Hard to
invert

Easy to
invert

given a
trapdoor

Trapdoor One-way Functions

range

Trapdoor One-way Permutations

Domain = Range

Trapdoor Functions: The Definition
A function (family) ℱ = ℱ! !∈ℕ where each 𝓕𝒏 is itself a
collection of functions ℱ! = {𝐹%: {0,1}!→ {0,1}&(!)}%∈)!
is a trapdoor one-way function family if:

• Easy to sample function index with a trapdoor: There is
a PPT algorithm 𝐺𝑒𝑛(1!) that outputs a function index
𝑖 ∈ 𝐼! together with a trapdoor 𝑡%.

Trapdoor Functions: The Definition
A function (family) ℱ = ℱ! !∈ℕ where each 𝓕𝒏 is itself a
collection of functions ℱ! = {𝐹%: {0,1}!→ {0,1}&(!)}%∈)!
is a trapdoor one-way function family if:

• Easy to sample function index with a trapdoor.

• Easy to compute 𝐹%(𝑥) given 𝑖 and 𝑥.

Trapdoor Functions: The Definition
A function (family) ℱ = ℱ! !∈ℕ where each 𝓕𝒏 is itself a
collection of functions ℱ! = {𝐹%: {0,1}!→ {0,1}&(!)}%∈)!
is a trapdoor one-way function family if:

• Easy to sample function index with a trapdoor.
• Easy to compute 𝐹%(𝑥) given 𝑖 and 𝑥.

• Easy to compute an inverse of 𝐹%(𝑥) given 𝑡% .

Trapdoor Functions: The Definition
A function (family) ℱ = ℱ! !∈ℕ where each 𝓕𝒏 is itself a
collection of functions ℱ! = {𝐹%: {0,1}!→ {0,1}&(!)}%∈)!
is a trapdoor one-way function family if:

• Easy to sample function index with a trapdoor.
• Easy to compute 𝐹%(𝑥) given 𝑖 and 𝑥.
• Easy to compute an inverse of 𝐹%(𝑥) given 𝑡% .

• It is one-way: that is, for every p.p.t. 𝐴, there is a
negligible function 𝜇 s.t.

Pr 𝒊, 𝒕 ← 𝑮𝒆𝒏 𝟏𝒏 ; 𝑥 ← 0,1 "; 𝑦 = 𝐹# 𝑥 ;
𝐴 1", 𝑖, 𝑦 = 𝑥$: 𝑦 = 𝐹# 𝑥$

≤ 𝜇(𝑛)

From Trapdoor Permutations to
IND-Secure Public-key Encryption

• 𝐺𝑒𝑛 1! : Sample function index 𝑖 with a trapdoor 𝑡%.
The public key is 𝑖 and the private key is 𝑡%.

• 𝐸𝑛𝑐 𝑝𝑘 = 𝑖,𝑚 : Output 𝑐 = 𝐹%(𝑚) as the
ciphertext.

• 𝐷𝑒𝑐 𝑠𝑘 = 𝑡% , 𝑐 : Output 𝐹%*+(𝑐) computed using the
private key 𝑡%.

Could reveal partial info about m!
So, not IND-secure!

From Trapdoor Permutations to
IND-Secure Public-key Encryption

• 𝐺𝑒𝑛 1! : Sample function index 𝑖 with a trapdoor 𝑡%.
The public key is 𝑖 and the private key is 𝑡%.

• 𝐸𝑛𝑐 𝑝𝑘 = 𝑖,𝑚 where 𝑚 is a bit: Pick a random
𝒓. Output 𝒄 = (𝑭𝒊 𝒓 ,𝑯𝑪𝑩 𝒓 ⨁𝒎).

• 𝐷𝑒𝑐 𝑠𝑘 = 𝑡% , 𝑐 : Recover 𝑟 using the private key 𝑡%,
and using it 𝑚.

This is IND-CPA secure:
Proof by Hybrid argument (exercise).

Trapdoor Permutations: Candidates

Trapdoor Permutations are exceedingly rare.

Two candidates (both need factoring to be hard):

• The RSA (Rivest-Shamir-Adleman) Function

• The Rabin/Blum-Williams Function

• The RSA (Rivest-Shamir-Adleman) Function

Review: Number Theory

Let’s review some number theory from L9.

Let 𝑁 = 𝑝𝑞 be a product of two large primes.

Fact: 𝑍-∗ = {𝑎 ∈ 𝑍-: gcd a, N = 1} is a group.

• group operation is multiplication mod 𝑁.
• inverses exist and are easy to compute.

• the order of the group is ϕ 𝑁 = 𝑝 − 1 (𝑞 − 1)

The RSA Trapdoor Permutation

Today: Let 𝑒 be an integer with gcd 𝑒, ϕ(𝑁) = 1. Then,
the map 𝐹-,0 𝑥 = 𝑥0 mod 𝑁 is a trapdoor permutation.

{𝐹-,0: gcd 𝑒, 𝑁 = 1}

Key Fact: Given 𝑑 such that 𝑒𝑑 = 1 mod ϕ 𝑁 , it is easy
to compute 𝑥 given 𝑥0.

Proof: (𝑥0)1 = 𝑥23 - 4+ = (𝑥3 -)2 R 𝑥 = 𝑥 mod 𝑁
(for some integer k)

This gives us the RSA trapdoor permutation collection.

Trapdoor for inversion: 𝑑 = 𝑒*+mod ϕ 𝑁 .

The RSA Trapdoor Permutation

Today: Let 𝑒 be an integer with gcd 𝑒, ϕ(𝑁) = 1. Then,
the map 𝐹-,0 𝑥 = 𝑥0 mod 𝑁 is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption

We know that if factoring is easy, RSA is broken (and
that’s the only known way to break RSA)

Major Open Problem: Are factoring and RSA equivalent?

given 𝑁, 𝑒 (as above) and 𝑥0 mod N, hard to compute 𝑥.

The RSA Trapdoor Permutation

Today: Let 𝑒 be an integer with gcd 𝑒, ϕ(𝑁) = 1. Then,
the map 𝐹-,0 𝑥 = 𝑥0 mod 𝑁 is a trapdoor permutation.

Hardcore bits (galore) for the RSA trapdoor one-way perm:

• The Goldreich-Levin bit GL 𝑟; 𝑟5 = 𝑟, 𝑟′ mod 2

• The least significant bit LSB 𝑟

• The “most significant bit” 𝐻𝐴𝐿𝐹- 𝑟 = 1 iff 𝑟 < 𝑁/2

• In fact, any single bit of 𝑟 is hardcore.

RSA Encryption
• 𝐺𝑒𝑛 1! : Let 𝑁 = 𝑝𝑞 and 𝑒, 𝑑 be such that
𝑒𝑑 = 1 𝑚𝑜𝑑 𝜙(𝑁).

Let 𝑝𝑘 = (𝑁, 𝑒) and let 𝑠𝑘 = 𝑑.

• 𝐸𝑛𝑐 𝑝𝑘, 𝑏 where 𝑏 is a bit: Generate random 𝑟 ∈
𝑍-∗ and output 𝑟0 mod 𝑁 and LSB 𝑟 ⨁𝑚.

• 𝐷𝑒𝑐 𝑠𝑘, 𝑐 : Recover 𝑟 via RSA inversion.

IND-secure under the RSA assumption: given 𝑁, 𝑒 (as
above) and 𝑟0 mod N, hard to compute 𝑟.

Lectures 8-10

Constructions of Public-key Encryption

✅ Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

✅ Diffie-Hellman/El Gamal

4: Post-Quantum Security & Lattice-based Encryption

Quadratic Residues mod P
Let P be prime. We saw that exactly half of 𝑍6∗ are squares.

Define the Legendre Symbol 7
6 = 1 if x is a square, -1

if x is not a square, and 0 if x = 0 mod P.

𝐿𝑒𝑔*+ 𝐿𝑒𝑔4+
𝑍6∗

{𝑥:
𝑥
𝑃

= −1} {𝑥:
𝑥
𝑃

= +1}

So: 7
6 = 𝑥(6*+)/9

Quadratic Residues mod P
Let P be prime. We saw that exactly half of 𝑍6∗ are squares.

It is easy to compute square roots mod P. We will show
it for the case where P = 3 (mod 4).

Claim: The square roots of 𝑥 mod P are ± 𝑥(64+)/:

Proof: (± 𝑥(64+)/:)9 = 𝑥(64+)/9 = 𝑥 R 𝑥(6*+)/9 = 𝑥 mod 𝑃

Quadratic Residues mod N

Now, let N = PQ be a product of two primes and look at 𝑍-∗

𝐽𝑎𝑐*+ 𝐽𝑎𝑐4+

𝑍-∗

{𝑥:
𝑥
𝑁

= −1} {𝑥:
𝑥
𝑁

= +1}

Define the Jacobi symbol 𝒙
𝑵 = 𝒙

𝑷
𝒙
𝑸 to be +1 if 𝑥 is a

square mod both 𝑃 and 𝑄 or a non-square mod both 𝑃
and 𝑄.

Quadratic Residues mod N

Let 𝑁 = 𝑃𝑄 be a product of two large primes.

𝐽𝑎𝑐*+ 𝐽𝑎𝑐4+
𝑍-∗

{𝑥:
𝑥
𝑁

= −1} {𝑥:
𝑥
𝑁

= +1}

Surprising fact: Jacobi symbol 7
- = 7

6
7
? is

computable in poly time without knowing 𝑃 and 𝑄.

Quadratic Residues mod N

𝑥 is square mod 𝑁 iff 𝑥 is square mod 𝑃 and it is a
square mod 𝑄.

𝐽𝑎𝑐4+

𝑄𝑅- is the set of squares mod 𝑁 and 𝑄𝑁𝑅- is the set
of non-squares mod 𝑁 with Jacobi symbol +1.

𝑄𝑅-

𝑄𝑁𝑅-

So: 𝑄𝑅! = {𝑥: "
= "

$ = +1}

𝑄𝑁𝑅! = {𝑥: "
= "

$ = −1}

Finding Square Roots Mod N
… is as hard as factoring N

⇐ Suppose you know P and Q and you want to find
the square root of x mod N.

Find the square roots of y mod P and mod Q.

𝑥 = 𝑦69 mod 𝑃 𝑥 = 𝑦?9 mod 𝑄

Use the Chinese remainder theorem. Let y =
𝑐6𝑦6 + 𝑐?𝑦? where the CRT coefficients

𝑐6 = 1𝑚𝑜𝑑 𝑃 𝑎𝑛𝑑 𝑐6 = 0𝑚𝑜𝑑 𝑄
𝑐? = 0𝑚𝑜𝑑 𝑃 𝑎𝑛𝑑 𝑐? = 1𝑚𝑜𝑑 𝑄

Then y is a square root of x mod N.

Finding Square Roots Mod N
… is as hard as factoring N

Suppose you know P and Q and you want to find the
square root of x mod N.

Find the square roots of y mod P and mod Q.

𝑥 = 𝑦69 mod 𝑃 𝑥 = 𝑦?9 mod 𝑄

Let y = 𝑐6𝑦6 + 𝑐?𝑦? where the CRT coefficients
𝑐6 = 1𝑚𝑜𝑑 𝑃 𝑎𝑛𝑑 0 𝑚𝑜𝑑 𝑄
𝑐? = 0𝑚𝑜𝑑 𝑃 𝑎𝑛𝑑 1 𝑚𝑜𝑑 𝑄

So, if x is a square, it has 4 distinct square roots mod N.

Finding Square Roots Mod N
… is as hard as factoring N

⇒ Suppose you have a box that computes square
roots mod N. Can we use it to factor N?

𝑥 𝑦 s.t. 𝑦9 = 𝑥 𝑚𝑜𝑑 𝑁

Feed the box 𝑥 = 𝑧9 𝑚𝑜𝑑 𝑁 for a random z.

Claim (Pf on the board): with probability 1/2,
gcd(z + y, N) is a non-trivial factor of N.

Recognizing Squares mod N

Let 𝑁 = 𝑃𝑄 be a product of two large primes.

Quadratic Residuosity Assumption (QRA)

Let 𝑁 = 𝑃𝑄 be a product of two large primes.
No PPT algorithm can distinguish between a random
element of 𝑄𝑅- from a random element of 𝑄𝑁𝑅-
given only 𝑁.

… also seems hard

Goldwasser-Micali (GM) Encryption

𝐺𝑒𝑛 1! : Generate random 𝑛-bit primes 𝑝 and 𝑞 and
let 𝑁 = 𝑝𝑞. Let 𝑦 ∈ 𝑄𝑁𝑅- be some quadratic non-
residue with Jacobi symbol +1.

Let 𝑝𝑘 = (𝑁, 𝑦) and let 𝑠𝑘 = (𝑝, 𝑞).

𝐸𝑛𝑐 𝑝𝑘, 𝑏 where 𝑏 is a bit:
Generate random 𝑟 ∈ 𝑍-∗ and output 𝑟9 mod 𝑁 if
𝑏 = 0 and 𝑟9𝑦 mod 𝑁 if 𝑏 = 1.

𝐷𝑒𝑐 𝑠𝑘, 𝑐 : Check if c ∈ 𝑍-∗ is a quadratic residue
using 𝑝 and 𝑞. If yes, output 0 else 1.

Goldwasser-Micali (GM) Encryption

𝐸𝑛𝑐 𝑝𝑘, 𝑏 where 𝑏 is a bit:
Generate random 𝑟 ∈ 𝑍-∗ and output 𝑟9 mod 𝑁 if
𝑏 = 0 and 𝑟9𝑦 mod 𝑁 if 𝑏 = 1.

IND-security follows directly from the quadratic
residuosity assumption.

GM is a Homomorphic Encryption

𝐸𝑛𝑐 𝑝𝑘, 𝑏 where 𝑏 is a bit:
Generate random 𝑟 ∈ 𝑍-∗ and output 𝑟9𝑦K mod 𝑁.

Given a GM-ciphertext of 𝑏 and a GM-ciphertext of
𝑏′, I can compute a GM-ciphertext of 𝑏 + 𝑏5𝑚𝑜𝑑 2.
without knowing anything about 𝒃 or 𝒃′!

Claim: 𝐸𝑛𝑐 𝑝𝑘, 𝑏 R 𝐸𝑛𝑐(𝑝𝑘, 𝑏5) is an encryption of
𝑏⨁𝑏5 = 𝑏 + 𝑏5𝑚𝑜𝑑 2.

Lectures 8-10

Constructions of Public-key Encryption

✅ Trapdoor Permutations (RSA)

✅ Quadratic Residuosity/Goldwasser-Micali

✅ Diffie-Hellman/El Gamal

4: Post-Quantum Security & Lattice-based Encryption

Solving Linear Equations

Find 𝒔𝟏 𝒔𝟐
𝒔𝟏 𝒔𝟐

𝟓 𝟏 𝟑
𝟔 𝟐 𝟏 = 11 3 9

Find 𝑠

How about:

(e1,e2,e3) are “small” numbers

Easy!

𝒔𝟏 𝒔𝟐
𝟓 𝟏 𝟑
𝟔 𝟐 𝟏 + 𝑒+ 𝑒9 𝑒N = 11 3 9

Very hard!

in large dimensions

Solving Noisy Linear Equations

Learning with Errors (LWE)

Find 𝒔(A, 𝒔A+e)

𝒆 ∈ 𝑍!": random “small” error vector)

Decisional LWE:

LWE:

(A, b)(A, sA+𝑒)
(b uniformly random)≈c

(A ∈ 𝑍!"#$
s ∈ 𝑍!" random “small” secret vector

[Regev05, following BFKL93, Ale03]

“Decisional LWE is as hard as LWE”.

very hard!

Basic (Secret-key) Encryption

• Secret key sk = Uniformly random vector s Î 𝑍'"

• Encryption Encs(m): // mÎ {0,1}

– Sample uniformly random a Î 𝑍'", “short” noise e Î 𝑍

– The ciphertext c = (a, b = áa, sñ + e + m 𝑞/2)

n = security parameter, q = “small” prime

[Regev05]

• Decryption Decsk(c): Output Roundq/2(b − áa, sñ mod q)

// correctness as long as |e| < q/4

Basic (Secret-key) Encryption
[Regev05]

This is an incredibly cool scheme. In particular, additively
homomorphic.

𝒄 = (a, b = áa, sñ + e + m 𝑞/2)

𝒄′ = (a′ , b′ = áa′, sñ + e′ + m′ 𝑞/2)

𝒄 + 𝒄′ = (a+a′ , b+ b′ = á a +a′, sñ + (e+e′) + (m+m′) 𝑞/2)

+

In words: 𝑐 + 𝑐′ is an encryption of m+m′ (mod 2)

Public-key Encryption
[Regev05]

Here is a crazy idea. Public key has an encryption of 0
(call it 𝑐O) and an encryption of 1 (call it 𝑐+).
If you want to encrypt 0, output 𝑐O and if you want to
encrypt 1, output 𝑐+.

Well, turns out to be a crazy bad idea.

If only we could produce fresh encryptions of 0 or 1 given
just the pk…

Public-key Encryption
[Regev05]

Here is another crazy idea.
Public key has many encryptions of 0 and an encryption
of 1 (call it 𝑐+).

This one turns out to be a crazy good idea.

If you want to encrypt 0, output a random linear
combination of the 0-encryptions.

If you want to encrypt 1, output a random linear
combination of the 0-encryptions plus 𝑐+.

Public-key Encryption

• Secret key sk = Uniformly random vector s Î 𝑍'"

[Regev05]

• Public key pk: for 𝑖 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑘 = 𝑝𝑜𝑙𝑦(𝑛)

𝒄𝟎 = (𝒂𝟎, 𝒂𝟎, 𝒔 + 𝑒) +
𝑞
2
), 𝒄𝒊 = (𝒂𝒊, 𝒂𝒊, 𝒔 + 𝑒#)

Security: decisional LWE + “Leftover Hash Lemma”

• Encrypting a bit 𝑚: pick 𝑘 random bits 𝑟+, … , 𝑟,

T
#-+

,

𝑟#𝒄𝒊 +𝑚 U 𝒄𝟎

Correctness: additive homomorphism

Practical Considerations

I want to encrypt to Bob. How do I know his public key?

Public-key Infrastructure: a directory of identities
together with their public keys.

Needs to be “authenticated”:
otherwise Eve could replace Bob’s pk with her own.

Practical Considerations
Public-key encryption is orders of magnitude slower
than secret-key encryption.

1. We mostly showed (except El Gamal) how to
encrypt bit-by-bit! Super-duper inefficient.

2. Exponentiation takes 𝑂(𝑛9) time as opposed to
typically linear time for secret key encryption (AES).

3. The 𝑛 itself is large for PKE (RSA: 𝑛 ≥ 2048)
compared to SKE (AES: 𝑛 = 128).

Can solve problem 1 and minimize problems 2&3 using
hybrid encryption.

(For Elliptic Curve El-Gamal, it’s 320 bits)

Hybrid Encryption

To encrypt a long message 𝑚 (think 1 GB):

Pick a random key K (think 128 bits) for a secret-
key encryption

Encrypt K with the PKE: 𝑃𝐾𝐸. 𝐸𝑛𝑐(𝑝𝑘, 𝐾)

Encrypt m with the SKE: SKE. 𝐸𝑛𝑐(𝐾,𝑚)

To decrypt: recover 𝐾 using 𝑠𝑘. Then using 𝐾, recover 𝑚

