MIT 6.875

Foundations of Cryptography Lecture 10

Lectures 8-10

Constructions of Public-key Encryption
Diffie-Hellman/El Gamal

2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security \& Lattice-based Encryption

Trāporatucoviayamapermentidions

Trapdoor Functions: The Definition

A function (family) $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ where each $\mathcal{F}_{\boldsymbol{n}}$ is itself a collection of functions $\mathcal{F}_{n}=\left\{F_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}\right\}_{i \in I_{n}}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor: There is a PPT algorithm $\operatorname{Gen}\left(1^{n}\right)$ that outputs a function index $i \in I_{n}$ together with a trapdoor t_{i}.

Trapdoor Functions: The Definition

A function (family) $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ where each $\mathcal{F}_{\boldsymbol{n}}$ is itself a collection of functions $\mathcal{F}_{n}=\left\{F_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}\right\}_{i \in I_{n}}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_{i}(x)$ given i and x.

Trapdoor Functions: The Definition

A function (family) $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ where each $\mathcal{F}_{\boldsymbol{n}}$ is itself a collection of functions $\mathcal{F}_{n}=\left\{F_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}\right\}_{i \in I_{n}}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_{i}(x)$ given i and x.
- Easy to compute an inverse of $F_{i}(x)$ given t_{i}.

Trapdoor Functions: The Definition

A function (family) $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ where each $\mathcal{F}_{\boldsymbol{n}}$ is itself a collection of functions $\mathcal{F}_{n}=\left\{F_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}\right\}_{i \in I_{n}}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_{i}(x)$ given i and x.
- Easy to compute an inverse of $F_{i}(x)$ given t_{i}.
- It is one-way: that is, for every p.p.t. A, there is a negligible function μ s.t.

$$
\operatorname{Pr}\left[\begin{array}{c}
(\boldsymbol{i}, \boldsymbol{t}) \leftarrow \boldsymbol{\operatorname { G e n }}\left(\mathbf{1}^{n}\right) ; x \leftarrow\{0,1\}^{n} ; y=F_{i}(x) ; \\
A\left(1^{n}, i, y\right)=x^{\prime}: y=F_{i}\left(x^{\prime}\right)
\end{array}\right] \leq \mu(n)
$$

From Trapdoor Permutations to IND-Secure Public-key Encryption

- $\operatorname{Gen}\left(1^{n}\right)$: Sample function index i with a trapdoor t_{i}. The public key is i and the private key is t_{i}.
- $\operatorname{Enc}(p k=i, m)$: Output $c=F_{i}(m)$ as the ciphertext.
- $\operatorname{Dec}\left(s k=t_{i}, c\right)$: Output $F_{i}^{-1}(c)$ computed using the private key t_{i}.

Could reveal partial info about m! So, not IND-secure!

From Trapdoor Permutations to IND-Secure Public-key Encryption

- $\operatorname{Gen}\left(1^{n}\right)$: Sample function index i with a trapdoor t_{i}. The public key is i and the private key is t_{i}.
- $\operatorname{Enc}(p k=i, m)$ where m is a bit: Pick a random r. Output $\boldsymbol{c}=\left(\boldsymbol{F}_{i}(\boldsymbol{r}), \boldsymbol{H C B}(\boldsymbol{r}) \oplus \boldsymbol{m}\right)$.
- $\operatorname{Dec}\left(s k=t_{i}, c\right)$: Recover r using the private key t_{i}, and using it m.

This is IND-CPA secure:
Proof by Hybrid argument (exercise).

Trapdoor Permutations: Candidates

Trapdoor Permutations are exceedingly rare.

Two candidates (both need factoring to be hard):

- The RSA (Riverest-SthramirfAddlermant))FEunactión
- The Rabin/Blum-Williams Function

Review: Number Theory

Let's review some number theory from $\mathrm{L9}$.
Let $N=p q$ be a product of two large primes.
Fact: $Z_{N}^{*}=\left\{a \in Z_{N}: \operatorname{gcd}(\mathrm{a}, \mathrm{N})=1\right\}$ is a group.

- group operation is multiplication $\bmod N$.
- inverses exist and are easy to compute.
- the order of the group is $\phi(N)=(p-1)(q-1)$

The RSA Trapdoor Permutation

Today: Let e be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the $\operatorname{map} F_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.

Key Fact: Given d such that $e d=1 \bmod \phi(N)$, it is easy to compute x given x^{e}.

Proof: $\left(x^{e}\right)^{d}$

This gives us the RSA trapdoor permutation collection.

$$
\left\{F_{N, e}: \operatorname{gcd}(e, N)=1\right\}
$$

Trapdoor for inversion: $d=e^{-1} \bmod \phi(N)$.

The RSA Trapdoor Permutation

Today: Let e be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the $\operatorname{map} F_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption given N, e (as above) and $x^{e} \bmod \mathrm{~N}$, hard to compute x.

We know that if factoring is easy, RSA is broken (and that's the only known way to break RSA)

Major Open Problem: Are factoring and RSA equivalent?

The RSA Trapdoor Permutation

Today: Let e be an integer with $\operatorname{gcd}(e, \phi(N))=1$. Then, the $\operatorname{map} F_{N, e}(x)=x^{e} \bmod N$ is a trapdoor permutation.

Hardcore bits (galore) for the RSA trapdoor one-way perm:

- The Goldreich-Levin bit $\mathrm{GL}\left(r ; r^{\prime}\right)=\left\langle r, r^{\prime}\right\rangle \bmod 2$
- The least significant bit $\operatorname{LSB}(r)$
- The "most significant bit" $\operatorname{HALF}_{N}(r)=1$ iff $r<N / 2$
- In fact, any single bit of r is hardcore.

RSA Encryption

- $\operatorname{Gen}\left(1^{n}\right)$: Let $N=p q$ and (e, d) be such that $e d=1 \bmod \phi(N)$.

Let $p k=(N, e)$ and let $s k=d$.

- $\operatorname{Enc}(p k, b)$ where b is a bit: Generate random $r \in$ Z_{N}^{*} and output $r^{e} \bmod N$ and $\operatorname{LSB}(r) \oplus m$.
- $\operatorname{Dec}(s k, c)$: Recover r via RSA inversion.

IND-secure under the RSA assumption: given N, e (as above) and $r^{e} \bmod \mathrm{~N}$, hard to compute r.

Lectures 8-10

Constructions of Public-key Encryption
\checkmark Diffie-Hellman/El Gamal
\checkmark Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security \& Lattice-based Encryption

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z_{P}^{*} are squares.
Define the Legendre Symbol $\left(\frac{x}{P}\right)=1$ if x is a square, -1
if x is not a square, and 0 if $x=0 \bmod P$.

$$
\text { So: }\binom{x}{P}=x^{(P-1) / 2}
$$

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z_{P}^{*} are squares.
It is easy to compute square roots mod P . We will show it for the case where $P=3(\bmod 4)$.

Claim: The square roots of $x \bmod \mathrm{P}$ are $\pm x^{(P+1) / 4}$
Proof: $\left(\pm x^{(P+1) / 4}\right)^{2}=x^{(P+1) / 2}=x \cdot x^{(P-1) / 2}=x \bmod P$

Quadratic Residues mod N

Now, let $\mathrm{N}=\mathrm{PQ}$ be a product of two primes and look at Z_{N}^{*} Define the Jacobi symbol $\binom{x}{N}=\binom{x}{P}\binom{x}{Q}$ to be +1 if x is a square \bmod both P and Q or a non-square mod both P and Q.

Quadratic Residues mod N

Let $N=P Q$ be a product of two large primes.

Surprising fact: Jacobi symbol $\binom{x}{N}=\binom{x}{P}\binom{x}{Q}$ is computable in poly time without knowing P and Q.

Quadratic Residues mod \mathbf{N}

x is square $\bmod N$ iff x is square $\bmod P$ and it is a square $\bmod Q$.

$$
\begin{aligned}
\text { So: } Q R_{N} & =\left\{x:\binom{x}{P}=\binom{x}{Q}=+1\right\} \\
Q N R_{N} & =\left\{x:\binom{x}{P}=\binom{x}{Q}=-1\right\}
\end{aligned}
$$

$Q R_{N}$ is the set of squares $\bmod N$ and $Q N R_{N}$ is the set of non-squares $\bmod N$ with Jacobi symbol +1 .

Finding Square Roots Mod N
 ... is as hard as factoring N

\Leftarrow Suppose you know P and Q and you want to find the square root of $x \bmod N$.

Find the square roots of $\mathrm{y} \bmod \mathrm{P}$ and $\bmod \mathrm{Q}$.

$$
x=y_{P}^{2} \bmod P \quad x=y_{Q}^{2} \bmod Q
$$

Use the Chinese remainder theorem. Let $\mathrm{y}=$ $c_{P} y_{P}+c_{Q} y_{Q}$ where the CRT coefficients

$$
\begin{aligned}
& c_{P}=1 \bmod P \text { and } c_{P}=0 \bmod Q \\
& c_{Q}=0 \bmod P \text { and } c_{Q}=1 \bmod Q
\end{aligned}
$$

Then y is a square root of $x \bmod N$.

Finding Square Roots Mod N
 ... is as hard as factoring N

Suppose you know P and Q and you want to find the square root of $x \bmod N$.

Find the square roots of $y \bmod P$ and $\bmod \mathrm{Q}$.

$$
x=y_{P}^{2} \bmod P \quad x=y_{Q}^{2} \bmod Q
$$

Let $\mathrm{y}=c_{P} y_{P}+c_{Q} y_{Q}$ where the CRT coefficients

$$
\begin{aligned}
& c_{P}=1 \bmod P \text { and } 0 \bmod Q \\
& c_{Q}=0 \bmod P \text { and } 1 \bmod Q
\end{aligned}
$$

So, if \mathbf{x} is a square, it has 4 distinct square roots $\bmod \mathbf{N}$.

Finding Square Roots Mod N
 ... is as hard as factoring N

\Rightarrow Suppose you have a box that computes square roots $\bmod \mathrm{N}$. Can we use it to factor N ?

Feed the box $x=z^{2} \bmod N$ for a random z.
Claim (Pf on the board): with probability 1/2, $\operatorname{gcd}(z+y, N)$ is a non-trivial factor of N.

Recognizing Squares mod N ... also seems hard

Let $N=P Q$ be a product of two large primes.

Quadratic Residuosity Assumption (QRA)
Let $N=P Q$ be a product of two large primes.
No PPT algorithm can distinguish between a random element of $Q R_{N}$ from a random element of $Q N R_{N}$ given only N.

Goldwasser-Micali (GM) Encryption

$\operatorname{Gen}\left(1^{n}\right)$: Generate random n-bit primes p and q and let $N=p q$. Let $y \in Q N R_{N}$ be some quadratic nonresidue with Jacobi symbol +1 .

Let $p k=(N, y)$ and let $s k=(p, q)$.
$\operatorname{Enc}(p k, b)$ where b is a bit:
Generate random $r \in Z_{N}^{*}$ and output $r^{2} \bmod N$ if $b=0$ and $r^{2} y \bmod N$ if $b=1$.
$\operatorname{Dec}(s k, c)$: Check if $\mathrm{c} \in Z_{N}^{*}$ is a quadratic residue using p and q. If yes, output 0 else 1 .

Goldwasser-Micali (GM) Encryption

$\operatorname{Enc}(p k, b)$ where b is a bit:
Generate random $r \in Z_{N}^{*}$ and output $r^{2} \bmod N$ if $b=0$ and $r^{2} y \bmod N$ if $b=1$.

IND-security follows directly from the quadratic residuosity assumption.

GM is a Homomorphic Encryption

Given a GM-ciphertext of b and a GM-ciphertext of b^{\prime}, I can compute a GM-ciphertext of $b+b^{\prime} \bmod 2$. without knowing anything about \boldsymbol{b} or \boldsymbol{b}^{\prime} !
$\operatorname{Enc}(p k, b)$ where b is a bit:
Generate random $r \in Z_{N}^{*}$ and output $r^{2} y^{b} \bmod N$.
Claim: $\operatorname{Enc}(p k, b) \cdot \operatorname{Enc}\left(p k, b^{\prime}\right)$ is an encryption of $b \oplus b^{\prime}=b+b^{\prime} \bmod 2$.

Lectures 8-10

Constructions of Public-key Encryption
\checkmark Diffie-Hellman/El Gamal
\checkmark Trapdoor Permutations (RSA)
Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security \& Lattice-based Encryption

SolSiphyingeikinkimeaquratiations

$$
\left(s_{1} \mid s_{2}\right)\left[\begin{array}{lll}
5 & 1 & 3 \\
6 & 2 & 1
\end{array}\right]=\left[\begin{array}{lll}
11 & 3 & 9
\end{array}\right]
$$

Easy!

How about:

$\left(\boldsymbol{s}_{\mathbf{1}} \mid \boldsymbol{s}_{\mathbf{2}}\right)\left[\begin{array}{lll}\mathbf{5} & \mathbf{1} & \mathbf{3} \\ \mathbf{6} & \mathbf{2} & \mathbf{1}\end{array}\right]+\left[\begin{array}{lll}e_{1} & e_{2} & e_{3}\end{array}\right]=\left[\begin{array}{lll}11 & 3 & 9\end{array}\right]$
$\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right)$ are "small" numbers

Find \vec{s}

Learning with Errors (LWE)

 [Regev05, following BFKL93, Ale03]
LWE:

$$
(\mathbf{A}, \boldsymbol{s} \mathbf{A}+e)
$$ very hard!

$\left(\mathrm{A} \in Z_{q}^{n X m}\right.$
$\mathbf{s} \in Z_{q}^{n}$ random "small" secret vector
$\boldsymbol{e} \in Z_{q}^{n}$: random "small" error vector)
Decisional LWE:

$$
(\mathbf{A}, \mathrm{s} \mathbf{A}+e)
$$

(A, b)
(b uniformly random)

Basic (Secret-key) Encryption

 [Regev05]$\mathrm{n}=$ security parameter, $\mathrm{q}=$ "small" prime

- Secret key sk $=$ Uniformly random vector $\mathbf{s} \in Z_{q}^{n}$
- Encryption $\mathrm{Enc}_{\mathrm{s}}(\mathrm{m}): / / \mathrm{m} \in\{0,1\}$
- Sample uniformly random $\mathbf{a} \in Z_{q}^{n}$, "short" noise $\mathrm{e} \in Z$
- The ciphertext $\mathbf{c}=(\mathbf{a}, \mathrm{b}=\langle\mathrm{a}, \mathbf{s}\rangle+\mathrm{e}+\mathrm{m}$
- Decryption $\operatorname{Dec}_{\text {sk }}(\mathbf{c}):$ Output
($(\mathrm{b}-\langle\mathbf{a}, \mathbf{s}\rangle \bmod \mathrm{q})$
// correctness as long as $|\mathrm{e}|<\mathrm{q} / 4$

Basic (Secret-key) Encryption

 [Regev05]This is an incredibly cool scheme. In particular, additively homomorphic.

$$
\begin{aligned}
& c=(\mathrm{a}, \mathrm{~b}=\langle\mathrm{a}, \mathrm{~s}\rangle+\mathrm{e}+\mathrm{m}\lfloor q / 2\rfloor)+ \\
& \boldsymbol{c}^{\prime}=\left(\mathrm{a}^{\prime}, \mathrm{b}^{\prime}=\left\langle\mathrm{a}^{\prime}, \mathrm{s}\right\rangle+\mathrm{e}^{\prime}+\mathrm{m}^{\prime}\lfloor q / 2\rfloor\right)
\end{aligned}
$$

$\boldsymbol{c}+\boldsymbol{c}^{\prime}=\left(\mathrm{a}+\mathrm{a}^{\prime}, \mathrm{b}+\mathrm{b}^{\prime}=\left\langle\mathrm{a}+\mathrm{a}^{\prime}, \mathrm{s}\right\rangle+\left(\mathrm{e}+\mathrm{e}^{\prime}\right)+\left(\mathrm{m}+\mathrm{m}^{\prime}\right)\lfloor q / 2\rfloor\right)$
In words: $c+c^{\prime}$ is an encryption of $m+m^{\prime}(\bmod 2)$

Public-key Encryption

[Regev05]

Here is a crazy idea. Public key has an encryption of 0 (call it c_{0}) and an encryption of 1 (call it c_{1}). If you want to encrypt 0 , output c_{0} and if you want to encrypt 1, output c_{1}.

Well, turns out to be a crazy bad idea.

If only we could produce fresh encryptions of 0 or 1 given just the pk...

Public-key Encryption

[Regev05]
Here is another crazy idea.
Public key has many encryptions of 0 and an encryption of 1 (call it c_{1}).

If you want to encrypt 0 , output a random linear combination of the 0 -encryptions.

If you want to encrypt 1, output a random linear combination of the 0 -encryptions plus c_{1}.

This one turns out to be a crazy good idea.

Public-key Encryption

[Regev05]

- Secret key sk = Uniformly random vector $\mathbf{s} \in Z_{q}^{n}$
- Public key pk: for i from 1 to $k=\operatorname{poly}(n)$

$$
\left(\boldsymbol{c}_{\mathbf{0}}=\left(\boldsymbol{a}_{\mathbf{0}},\left\langle\boldsymbol{a}_{\mathbf{0}}, \boldsymbol{s}\right\rangle+e_{0}+\left\lfloor\frac{q}{2}\right\rfloor\right), \boldsymbol{c}_{\boldsymbol{i}}=\left(\boldsymbol{a}_{\boldsymbol{i}},\left\langle\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{s}\right\rangle+e_{i}\right)\right)
$$

- Encrypting a bit m : pick k random bits r_{1}, \ldots, r_{k}

$$
\sum_{i=1}^{k} r_{i} \boldsymbol{c}_{\boldsymbol{i}}+m \cdot \boldsymbol{c}_{\mathbf{0}}
$$

Correctness: additive homomorphism
Security: decisional LWE + "Leftover Hash Lemma"

Practical Considerations

I want to encrypt to Bob. How do I know his public key?
Public-key Infrastructure: a directory of identities together with their public keys.

Needs to be "authenticated":
otherwise Eve could replace Bob's pk with her own.

Practical Considerations

Public-key encryption is orders of magnitude slower than secret-key encryption.

1. We mostly showed how to encrypt bit-by-bit! Super-duper inefficient.
2. Exponentiation takes $O\left(n^{2}\right)$ time as opposed to typically linear time for secret key encryption (AES).
3. The n itself is large for PKE (RSA: $n \geq 2048$) compared to SKE (AES: $n=128$).
(For Elliptic Curve El-Gamal, it's 320 bits)
Can solve problem 1 and minimize problems $2 \& 3$ using hybrid encryption.

Hybrid Encryption

To encrypt a long message m (think 1 GB):
Pick a random key K (think 128 bits) for a secretkey encryption

Encrypt K with the PKE: PKE.Enc $(p k, K)$
Encrypt m with the SKE: $\operatorname{SKE} . \operatorname{Enc}(K, m)$

To decrypt: recover K using $s k$. Then using K, recover m

