MIT 6.875

Foundations of Cryptography Lecture 10

Lectures 8-10

Constructions of Public-key Encryption

✓ Diffie-Hellman/El Gamal

2: Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security & Lattice-based Encryption

Trapator Prome Repair Connectations

A function (family) $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ where each \mathcal{F}_n is itself a collection of functions $\mathcal{F}_n = \{F_i: \{0,1\}^n \rightarrow \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

• Easy to sample function index with a trapdoor: There is a PPT algorithm $Gen(1^n)$ that outputs a function index $i \in I_n$ together with a trapdoor t_i .

A function (family) $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ where each \mathcal{F}_n is itself a collection of functions $\mathcal{F}_n = \{F_i: \{0,1\}^n \rightarrow \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_i(x)$ given *i* and *x*.

A function (family) $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ where each \mathcal{F}_n is itself a collection of functions $\mathcal{F}_n = \{F_i: \{0,1\}^n \rightarrow \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_i(x)$ given *i* and *x*.
- Easy to compute an inverse of $F_i(x)$ given t_i .

A function (family) $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ where each \mathcal{F}_n is itself a collection of functions $\mathcal{F}_n = \{F_i: \{0,1\}^n \rightarrow \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_i(x)$ given *i* and *x*.
- Easy to compute an inverse of $F_i(x)$ given t_i .
- It is one-way: that is, for every p.p.t. A, there is a negligible function μ s.t.

$$\Pr\begin{bmatrix} (\mathbf{i}, \mathbf{t}) \leftarrow \mathbf{Gen}(\mathbf{1}^n); \ x \leftarrow \{0, 1\}^n; \ y = F_i(x); \\ A(1^n, i, y) = x'; \ y = F_i(x') \end{bmatrix} \le \mu(n)$$

From Trapdoor Permutations to IND-Secure Public-key Encryption

- $Gen(1^n)$: Sample function index *i* with a trapdoor t_i . The public key is *i* and the private key is t_i .
- Enc(pk = i, m): Output $c = F_i(m)$ as the ciphertext.
- $Dec(sk = t_i, c)$: Output $F_i^{-1}(c)$ computed using the private key t_i .

Could reveal partial info about m! So, not IND-secure!

From Trapdoor Permutations to IND-Secure Public-key Encryption

- $Gen(1^n)$: Sample function index *i* with a trapdoor t_i . The public key is *i* and the private key is t_i .
- Enc(pk = i, m) where m is a bit: Pick a random r. Output $c = (F_i(r), HCB(r) \oplus m)$.
- $Dec(sk = t_i, c)$: Recover r using the private key t_i , and using it m.

This is IND-CPA secure: Proof by Hybrid argument (exercise).

Trapdoor Permutations: Candidates

Trapdoor Permutations are *exceedingly* rare.

Two candidates (both need factoring to be hard):

- The RSA (Rivest-Shamir-Adleman) Function
- The Rabin/Blum-Williams Function

Review: Number Theory

Let's review some number theory from L9.

Let N = pq be a product of two large primes.

<u>Fact</u>: $Z_N^* = \{a \in Z_N : gcd(a, N) = 1\}$ is a group.

- group operation is multiplication mod N.
- inverses exist and are easy to compute.
- the order of the group is $\phi(N) = (p-1)(q-1)$

The RSA Trapdoor Permutation

<u>Today</u>: Let *e* be an integer with $gcd(e, \phi(N)) = 1$. Then, the map $F_{N,e}(x) = x^e \mod N$ is a trapdoor permutation.

<u>Key Fact</u>: Given d such that $ed = 1 \mod \phi(N)$, it is easy to compute x given x^e .

Proof: $(x^e)^d$

This gives us the RSA trapdoor permutation collection.

 $\{F_{N,e}: \operatorname{gcd}(e, N) = 1\}$ Trapdoor for inversion: $d = e^{-1} \operatorname{mod} \phi(N)$.

The RSA Trapdoor Permutation

<u>Today</u>: Let *e* be an integer with $gcd(e, \phi(N)) = 1$. Then, the map $F_{N,e}(x) = x^e \mod N$ is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption

given N, e (as above) and $x^e \mod N$, hard to compute x.

We know that if factoring is easy, RSA is broken (and that's the only *known* way to break RSA)

Major Open Problem: Are factoring and RSA equivalent?

The RSA Trapdoor Permutation

<u>Today</u>: Let *e* be an integer with $gcd(e, \phi(N)) = 1$. Then, the map $F_{N,e}(x) = x^e \mod N$ is a trapdoor permutation.

Hardcore bits (galore) for the RSA trapdoor one-way perm:

- The Goldreich-Levin bit $GL(r; r') = \langle r, r' \rangle \mod 2$
- The least significant bit LSB(r)
- The "most significant bit" $HALF_N(r) = 1$ iff r < N/2
- In fact, any single bit of r is hardcore.

RSA Encryption

• $Gen(1^n)$: Let N = pq and (e, d) be such that $ed = 1 \mod \phi(N)$.

Let pk = (N, e) and let sk = d.

- Enc(pk, b) where b is a bit: Generate random $r \in Z_N^*$ and output $r^e \mod N$ and $LSB(r) \oplus m$.
- *Dec*(*sk*, *c*): Recover *r* via RSA inversion.

<u>IND-secure under the RSA assumption</u>: given N, e (as above) and $r^e \mod N$, hard to compute r.

Lectures 8-10

Constructions of Public-key Encryption

V Diffie-Hellman/El Gamal

Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security & Lattice-based Encryption

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z_P^* are squares.

Define the Legendre Symbol $\left(\frac{x}{P}\right) = 1$ if x is a square, -1 if x is not a square, and 0 if x = 0 mod P.

So:
$$\binom{x}{p} = x^{(P-1)/2}$$

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z_P^* are squares.

It is easy to compute square roots mod P. We will show it for the case where $P = 3 \pmod{4}$.

Claim: The square roots of x mod P are $\pm x^{(P+1)/4}$

Proof: $(\pm x^{(P+1)/4})^2 = x^{(P+1)/2} = x \cdot x^{(P-1)/2} = x \mod P$

Quadratic Residues mod N

Now, let N = PQ be a product of two primes and look at Z_N^*

Define the Jacobi symbol $\binom{x}{N} = \binom{x}{P} \binom{x}{Q}$ to be +1 if x is a square mod both P and Q or a non-square mod both P and Q.

Quadratic Residues mod N

Let N = PQ be a product of two large primes.

Surprising fact: Jacobi symbol $\binom{x}{N} = \binom{x}{P} \binom{x}{Q}$ is computable in poly time without knowing *P* and *Q*.

Quadratic Residues mod N

x is square mod N iff x is square mod P and it is a square mod Q.

So:
$$QR_N = \{x: \begin{pmatrix} x \\ p \end{pmatrix} = \begin{pmatrix} x \\ q \end{pmatrix} = +1\}$$

 QR_N
 $QNR_N = \{x: \begin{pmatrix} x \\ p \end{pmatrix} = \begin{pmatrix} x \\ q \end{pmatrix} = -1\}$
 QNR_N

 QR_N is the set of squares mod N and QNR_N is the set of non-squares mod N with Jacobi symbol +1.

Finding Square Roots Mod N

... is as hard as factoring N

⇐ Suppose you know P and Q and you want to find the square root of x mod N.

Find the square roots of y mod P and mod Q.

$$x = y_P^2 \mod P \qquad \qquad x = y_Q^2 \mod Q$$

Use the Chinese remainder theorem. Let $y = c_P y_P + c_Q y_Q$ where the CRT coefficients $c_P = 1 \mod P \pmod{c_P} = 0 \mod Q$ $c_Q = 0 \mod P \pmod{c_Q} = 1 \mod Q$

Then y is a square root of x mod N.

Finding Square Roots Mod N

... is as hard as factoring N

Suppose you know P and Q and you want to find the square root of x mod N.

Find the square roots of y mod P and mod Q.

$$x = y_P^2 \mod P \qquad \qquad x = y_Q^2 \mod Q$$

Let $y = c_P y_P + c_Q y_Q$ where the CRT coefficients $c_P = 1 \mod P \pmod{0 \mod Q}$ $c_Q = 0 \mod P \pmod{1 \mod Q}$

So, if x is a square, it has 4 distinct square roots mod N.

Finding Square Roots Mod N

... is as hard as factoring N

 \Rightarrow Suppose you have a box that computes square roots mod N. Can we use it to factor N?

$$x = \sqrt{y \text{ s.t. } y^2} = x \mod N$$

Feed the box $x = z^2 \mod N$ for a random z.

Claim (Pf on the board): with probability 1/2, gcd(z + y, N) is a non-trivial factor of N.

Recognizing Squares mod N

... also seems hard

Let N = PQ be a product of two large primes.

Quadratic Residuosity Assumption (QRA)

Let N = PQ be a product of two large primes. No PPT algorithm can distinguish between a random element of QR_N from a random element of QNR_N given only N.

Goldwasser-Micali (GM) Encryption

Gen (1^n) : Generate random *n*-bit primes *p* and *q* and let N = pq. Let $y \in QNR_N$ be some quadratic nonresidue with Jacobi symbol +1.

Let pk = (N, y) and let sk = (p, q).

Enc(pk, b) where b is a bit: Generate random $r \in Z_N^*$ and output $r^2 \mod N$ if b = 0 and $r^2y \mod N$ if b = 1.

Dec(sk, c): Check if $c \in Z_N^*$ is a quadratic residue using p and q. If yes, output 0 else 1.

Goldwasser-Micali (GM) Encryption

Enc(pk, b) where b is a bit: Generate random $r \in Z_N^*$ and output $r^2 \mod N$ if b = 0 and $r^2y \mod N$ if b = 1.

IND-security follows directly from the quadratic residuosity assumption.

GM is a Homomorphic Encryption

Given a GM-ciphertext of b and a GM-ciphertext of b', I can compute a GM-ciphertext of b + b' mod 2. without knowing anything about b or b'!

Enc(*pk*, *b*) where *b* is a bit: Generate random $r \in Z_N^*$ and output $r^2 y^b \mod N$.

Claim: $Enc(pk, b) \cdot Enc(pk, b')$ is an encryption of $b \oplus b' = b + b' \mod 2$.

Lectures 8-10

Constructions of Public-key Encryption

☑ Diffie-Hellman/El Gamal

Trapdoor Permutations (RSA)

V Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security & Lattice-based Encryption

Sol Sindy in git in time Equations

$$(s_1|s_2)\begin{bmatrix}5 & 1 & 3\\ 6 & 2 & 1\end{bmatrix} = \begin{bmatrix}11 & 3 & 9\end{bmatrix} \xrightarrow{\mathsf{Easy!}} \operatorname{Find}(s_1|s_2)$$

How about:

$$(s_{1}|s_{2})\begin{bmatrix}5 & 1 & 3\\ 6 & 2 & 1\end{bmatrix} + \begin{bmatrix}e_{1} & e_{2} & e_{3}\end{bmatrix} = \begin{bmatrix}11 & 3 & 9\end{bmatrix}$$

$$(e_{1},e_{2},e_{3}) \text{ are "small" numbers}$$

$$Very hard!$$
Find \vec{s}
in large dimensions

Learning with Errors (LWE)

[Regev05, following BFKL93, Ale03]

very hard!

Find s

 $(\mathbf{A} \in Z_q^{nXm}$ $\mathbf{s} \in Z_q^n$ random "small" secret vector $\mathbf{e} \in Z_q^n$: random "small" error vector)

Decisional LWE:

"Decisional LWE is as hard as LWE".

Basic (Secret-key) Encryption

n = security parameter, q = "small" prime

- Secret key sk = Uniformly random vector $\mathbf{s} \in Z_q^n$
- Encryption Enc_s(m): // m∈ {0,1}

– Sample uniformly random $\mathbf{a} \in \mathbb{Z}_q^n$, "short" noise $\mathbf{e} \in \mathbb{Z}$

- The ciphertext $c = (a, b = \langle a, s \rangle + e + m$

Decryption Dec_{sk}(c): Output

_:(b − ⟨**a, s**⟩ mod q)

// correctness as long as |e| < q/4

Basic (Secret-key) Encryption

This is an incredibly cool scheme. In particular, additively homomorphic.

 $c = (a, b = \langle a, s \rangle + e + m \lfloor q/2 \rfloor) + e$

 $c' = (a', b' = \langle a', s \rangle + e' + m' \lfloor q/2 \rfloor)$

 $c + c' = (a+a', b+b' = \langle a+a', s \rangle + (e+e') + (m+m') \lfloor q/2 \rfloor)$

In words: c + c' is an encryption of m+m' (mod 2)

Public-key Encryption

Here is a crazy idea. Public key has an encryption of 0 (call it c_0) and an encryption of 1 (call it c_1). If you want to encrypt 0, output c_0 and if you want to encrypt 1, output c_1 .

Well, turns out to be a crazy *bad* idea.

If only we could produce *fresh* encryptions of 0 or 1 given just the pk...

Public-key Encryption

Here is another crazy idea. Public key has *many* encryptions of 0 and an encryption of 1 (call it c_1).

If you want to encrypt 0, output a random linear combination of the 0-encryptions.

If you want to encrypt 1, output a random linear combination of the 0-encryptions plus c_1 .

This one turns out to be a crazy **good** idea.

Public-key Encryption

- Secret key sk = Uniformly random vector $\mathbf{s} \in Z_q^n$
- Public key pk: for *i* from 1 to k = poly(n)

$$\left(\boldsymbol{c_0} = (\boldsymbol{a_0}, \langle \boldsymbol{a_0}, \boldsymbol{s} \rangle + \boldsymbol{e_0} + \left\lfloor \frac{q}{2} \right\rfloor\right), \boldsymbol{c_i} = (\boldsymbol{a_i}, \langle \boldsymbol{a_i}, \boldsymbol{s} \rangle + \boldsymbol{e_i})\right)$$

• Encrypting a bit m: pick k random bits r_1, \ldots, r_k

$$\sum_{i=1}^{k} r_i \boldsymbol{c_i} + \boldsymbol{m} \cdot \boldsymbol{c_0}$$

Correctness: additive homomorphism

Security: decisional LWE + "Leftover Hash Lemma"

Practical Considerations

I want to encrypt to Bob. How do I know his public key?

Public-key Infrastructure: a directory of identities together with their public keys.

Needs to be "authenticated":

otherwise Eve could replace Bob's pk with her own.

Practical Considerations

Public-key encryption is orders of magnitude slower than secret-key encryption.

- We mostly showed how to encrypt bit-by-bit! Super-duper inefficient.
- 2. Exponentiation takes $O(n^2)$ time as opposed to typically linear time for secret key encryption (AES).
- 3. The *n* itself is large for PKE (RSA: $n \ge 2048$) compared to SKE (AES: n = 128).

(For Elliptic Curve El-Gamal, it's 320 bits)

Can solve problem 1 and minimize problems 2&3 using **hybrid encryption**.

Hybrid Encryption

To encrypt a long message m (think 1 GB):

<u>Pick a random key K (think 128 bits) for a secret-</u> key encryption

Encrypt K with the PKE: *PKE*. *Enc*(*pk*, *K*)

Encrypt m with the SKE: SKE. Enc(K, m)

To decrypt: recover K using sk. Then using K, recover m