MIT 6.875

Foundations of Cryptography
Lecture 10

Lectures 8-10

Constructions of Public-key Encryption

Diffie-Hellman/El Gamal

2: Trapdoor Permutations (RSA)
3: Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security & Lattice-based Encryption

Tr3paiutheidd anpRysReisnutidions

F

Easy to
compute

Hard to

invert
<

Easy to

invert
domain D
given a rarse

| trapdoor range
Domain = Range

Trapdoor Functions: The Definition

A function (family) F = {F,},,ey Where each F,, is itself a
collection of functions ,, = {F;: {0,1}"— {0,1}m(")}i61n
is a trapdoor one-way function family if:

 Easy to sample function index with a trapdoor: There is

a PPT algorithm Gen(1™) that outputs a function index
[€ I, together with a trapdoor t;.

Trapdoor Functions: The Definition

A function (family) F = {F,},,ey Where each F,, is itself a
collection of functions ,, = {F;: {0,1}"— {0,1}m(")}i61n
is a trapdoor one-way function family if:

* Easy to sample function index with a trapdoor.

* Easy to compute F;(x) given i and x.

Trapdoor Functions: The Definition

A function (family) F = {F,},,ey Where each F,, is itself a
collection of functions ,, = {F;: {0,1}"— {0,1}m(")}i61n
is a trapdoor one-way function family if:

* Easy to sample function index with a trapdoor.
* Easy to compute F;(x) given i and x.

* Easy to compute an inverse of F;(x) given t;.

Trapdoor Functions: The Definition

A function (family) F = {F,},,ey Where each F,, is itself a
collection of functions ,, = {F;: {0,1}"— {O,l}m(")}ian
is a trapdoor one-way function family if:

* Easy to sample function index with a trapdoor.
* Easy to compute F;(x) given i and x.
* Easy to compute an inverse of F;(x) given t;.

* |tis one-way: thatis, for every p.p.t. 4, thereis a
negligible function u s.t.

(i,t) « Gen(1™); x « {0,1}"; y = F;(x);

<
Pr A(A™ i, y) =x"1y = F;(x") < u(n)

From Trapdoor Permutations to
IND-Secure Public-key Encryption

Gen(1™): Sample function index i with a trapdoor t;.
The public key is i and the private key is t;.

Enc(pk = i,m): Output ¢ = F;(m) as the
ciphertext.

Dec(sk = t;, ¢): Output F; *(c) computed using the
private key t;.

Could reveal partial info about m!
So, not IND-secure!

From Trapdoor Permutations to
IND-Secure Public-key Encryption

* Gen(1™): Sample function index i with a trapdoor t;.
The public key is i and the private key is t;.

 Enc(pk =i,m) where mis a bit: Pick a random
r.Output ¢ = (F;(r), HCB(r) ® m).

* Dec(sk = t;, c): Recover r using the private key t;,
and using it m.

This is IND-CPA secure:
Proof by Hybrid argument (exercise).

Trapdoor Permutations: Candidates

Trapdoor Permutations are exceedingly rare.

Two candidates (both need factoring to be hard):
* The RSA (Rivest-ShamiirAtdéenzar) JFeunctibon

 The Rabin/Blum-Williams Function

Review: Number Theory

Let’s review some number theory from LO.

Let N = pq be a product of two large primes.
Fact: Zy = {a € Zy:gcd(a,N) = 1}is a group.

 group operation is multiplication mod N.

* inverses exist and are easy to compute.
e the order of the groupis p(N) = (p — 1)(q — 1)

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e, d(N)) = 1. Then,
the map Fy .(x) = x® mod N is a trapdoor permutation.

Key Fact: Given d such that ed = 1 mod p(N), it is easy
to compute x given x°©.

Proof: (x¢)4

This gives us the RSA trapdoor permutation collection.
{Fnc:gcd(e,N) = 1}

Trapdoor for inversion: d = e tmod ¢p(N).

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e, d(N)) = 1. Then,
the map Fy .(x) = x® mod N is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption

given N, e (as above) and x® mod N, hard to compute x.

We know that if factoring is easy, RSA is broken (and
that’s the only known way to break RSA)

Major Open Problem: Are factoring and RSA equivalent?

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e, d(N)) = 1. Then,
the map Fy .(x) = x® mod N is a trapdoor permutation.

Hardcore bits (galore) for the RSA trapdoor one-way perm:
* The Goldreich-Levin bit GL(r;r') = (r,r’) mod 2
* The least significant bit LSB(r)
* The “most significant bit” HALFy(r) = 1iffr < N/2

* In fact, any single bit of 7 is hardcore.

RSA Encryption

 Gen(1™):Let N = pq and (e, d) be such that
ed = 1 mod ¢p(N).

Let pk = (N, e) and let sk = d.

 Enc(pk,b) where b is a bit: Generate random r €
Zy and output ¢ mod N and LSB(r)®m.

 Dec(sk,c): Recover r via RSA inversion.

IND-secure under the RSA assumption: given N, e (as
above) and r® mod N, hard to compute r.

Lectures 8-10

Constructions of Public-key Encryption

Diffie-Hellman/El Gamal

Trapdoor Permutations (RSA)

3: Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security & Lattice-based Encryption

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z, are squares.

Define the Legendre Symbol (ﬁ = 1 if xis a square, -1
if X is not a square, and O if x =0 mod P.

So: (;f) = x(P~1)/2

Legiq

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z, are squares.

It is easy to compute square roots mod P. We will show
it for the case where P = 3 (mod 4).

Claim: The square roots of x mod P are + x(Pt1)/4

Proof: (+ x(PHD/4)2 = x(P+1)/2 — 5 . x(P=1)/2 = x mod P

Quadratic Residues mod N

Now, let N = PQ be a product of two primes and look at Z,

Define the Jacobi symbol (1’\6,) = (;) (g) tobe +1if x is a
square mod both P and Q or a non-square mod both P
and Q.

Quadratic Residues mod N

Let N = PQ be a product of two large primes.

Surprising fact: Jacobi symbol (;\C/) = (;f) (g) is

computable in poly time without knowing P and Q.

Quadratic Residues mod N

x is square mod N iff x is square mod P and it is a
square mod 0.

| Jac,q
So: QRy = {x: (;) = (g) = +1} m
QNRy = {x:(}) = (¥) =-1) y

QR is the set of squares mod N and QNRy is the set
of non-squares mod N with Jacobi symbol +1.

Finding Square Roots Mod N

... iIs as hard as factoring N

< Suppose you know P and Q and you want to find
the square root of x mod N.

Find the square roots of y mod P and mod Q.
x = y5 mod P x = y5 mod Q

Use the Chinese remainder theorem. Let y =
CpYp + CoYo Where the CRT coefficients

cp = 1mod P and cp = 0 mod Q
co = 0mod P and cy; = 1 mod Q

Then y is a square root of x mod N.

Finding Square Roots Mod N

... iIs as hard as factoring N

Suppose you know P and Q and you want to find the
square root of x mod N.

Find the square roots of y mod P and mod Q.
x = y5 mod P x = y§ mod Q

Let y = cpyp + coyo Where the CRT coefficients
cp = 1 mod P and 0 mod Q
co = 0mod P and 1 mod Q

So, if x is a square, it has 4 distinct square roots mod N.

Finding Square Roots Mod N

... iIs as hard as factoring N

= Suppose you have a box that computes square
roots mod N. Can we use it to factor N?

R

Feed the box x = z% mod N for a random z.

Claim (Pf on the board): with probability 1/2,
gcd(z + y, N) is a non-trivial factor of N.

Recognizing Squares mod N

... also seems hard

Let N = PQ be a product of two large primes.

Quadratic Residuosity Assumption (QRA)

Let N = PQ be a product of two large primes.
No PPT algorithm can distinguish between a random
element of QRy from a random element of QNR

given only N.

Goldwasser-Micali (GM) Encryption

Gen(1™): Generate random n-bit primes p and g and

let N = pg. Lety € QNRy be some quadratic non-
residue with Jacobi symbol +1.

Let pk = (N, y) and let sk = (p, q).

Enc(pk,b) where b is a bit:
Generate random r € Zy and output 7% mod N if
b=0andr*ymodN if b = 1.

Dec(sk,c): Check if c € Zy is a quadratic residue
using p and q. If yes, output O else 1.

Goldwasser-Micali (GM) Encryption

Enc(pk, b) where b is a bit:
Generate random r € Zy and output 72 mod N if
b=0andr“ymodN if b = 1.

IND-security follows directly from the quadratic
residuosity assumption.

GM is a Homomorphic Encryption

Given a GM-ciphertext of b and a GM-ciphertext of
b’, | can compute a GM-ciphertext of b + b'mod 2.

without knowing anything about b or b’!

Enc(pk,b) where b is a bit:
Generate random r € Z5; and output r?y®? mod N.

Claim: Enc(pk, b) - Enc(pk,b") is an encryption of
b&®b' = b+ b'mod 2.

Lectures 8-10

Constructions of Public-key Encryption

Diffie-Hellman/El Gamal

Trapdoor Permutations (RSA)
Quadratic Residuosity/Goldwasser-Micali

4: Post-Quantum Security & Lattice-based Encryption

Sol Sipky Waikinbimeche Eguations

4 A Easy!
o = -~ asy!
(ils)[g 5 /=011 3] :> Find (s1ls2)
% J
How about:
-)

(Sll.gz) [2 ; i] + [81 €2 63] — [11 3 9]

K(e1,e2,e3) are “small” numbers)

Very hard!
> Find s

in large dimensions

Learning with Errors (LWE)

[Regev05, following BFKL93, Ale03]

very hard!

LWE: [(A, sA+e)] :1> Find s

(A € Z}}Xm
S E ZZ} random “small” secret vector

e € Zg: random “small” error vector)

Decisional LWE:
[(A, sA+e) J é [(A, b)J

(b uniformly random)

“Decisional LWE is as hard as LWE”.

Basic (Secret-key) Encryption

[Regev095]

n = security parameter, g = “small” prime

 Secret key sk = Uniformly random vector s € Z7

« Encryption Enc,(m): // me {0,1}

— Sample uniformly random a € Zj, "short” noise e € Z

— The ciphertextc=(a,b=(a,s)+e +m)

« Decryption Decg(c): Output (b — (@, s) mod q)

// correctness as long as |e| < g/4

Basic (Secret-key) Encryption

[Regev095]

This is an incredibly cool scheme. In particular, additively
homomorphic.

c=(ab=(a,sy+e+mlq/2]) +

c'=(a',b'=(a’,s)y+e’"+m’|q/2])

c+c' =(at+a’,b+tb'=(a+a,s)+ (e+te’) + (m+m") |q/2])

In words: ¢ + ¢’ is an encryption of m+m’ (mod 2)

Public-key Encryption

[Regev095]

Here is a crazy idea. Public key has an encryption of O

(call it ¢g) and an encryption of 1 (call it ¢).
If you want to encrypt 0, output ¢, and if you want to

encrypt 1, output ¢;.

Well, turns out to be a crazy bad idea.

If only we could produce fresh encryptions of O or 1 given
just the pk...

Public-key Encryption

[Regev095]

Here is another crazy idea.
Public key has many encryptions of 0 and an encryption
of 1 (call it ¢q).

If you want to encrypt O, output a random linear
combination of the 0-encryptions.

If you want to encrypt 1, output a random linear
combination of the 0-encryptions plus ¢;.

This one turns out to be a crazy good idea.

Public-key Encryption

[Regev095]

Secret key sk = Uniformly random vector s € Z]

Public key pk: fori from 1 to k = poly(n)
q
(CO = (ag,{ag, s) + eg + b‘),ci = (a;,(a;, s) + el-))

Encrypting a bit m: pick k random bits 74, ..., 1%

k

Z:r,;ci+m-c0

=1

Correctness: additive homomorphism

Security: decisional LWE + “Leftover Hash Lemma”

Practical Considerations

| want to encrypt to Bob. How do | know his public key?

Public-key Infrastructure: a directory of identities
together with their public keys.

Needs to be “authenticated”:

otherwise Eve could replace Bob’s pk with her own.

Practical Considerations

Public-key encryption is orders of magnitude slower
than secret-key encryption.

1. We mostly showed “how to
encrypt bit-by-bit! Super-duper inefficient.

2. Exponentiation takes O(n?) time as opposed to
typically linear time for secret key encryption (AES).

3. The n itselfis large for PKE (RSA: n = 2048)
compared to SKE (AES: n = 128).

(For Elliptic Curve El-Gamal, it’s 320 bits)

Can solve problem 1 and minimize problems 2&3 using
hybrid encryption.

Hybrid Encryption

To encrypt a long message m (think 1 GB):

Pick a random key K (think 128 bits) for a secret-
key encryption

Encrypt K with the PKE: PKE. Enc(pk, K)

Encrypt m with the SKE: SKE. Enc(K, m)

To decrypt: recover K using sk. Then using K, recover m

